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Abstract—High Performance Computing (HPC) big data prob-
lems require efficient distributed storage systems. However, at
scale, such storage systems often experience load imbalance and
resource contention due to two factors: the bursty nature of
scientific application I/O; and the complex I/O path that is with-
out centralized arbitration and control. For example, the extant
Lustre parallel file system—that supports many HPC centers—
comprises numerous components connected via custom network
topologies, and serves varying demands of a large number of
users and applications. Consequently, some storage servers can be
more loaded than others, which creates bottlenecks and reduces
overall application I/O performance. Existing solutions typically
focus on per application load balancing, and thus are not as
effective given their lack of a global view of the system.

In this paper, we propose a data-driven approach to load bal-
ance the I/O servers at scale, targeted at Lustre deployments. To
this end, we design a global mapper on Lustre Metadata Server,
which gathers runtime statistics from key storage components
on the I/O path, and applies Markov chain modeling and a
minimum-cost maximum-flow algorithm to decide where data
should be placed. Evaluation using a realistic system simulator
and a real setup shows that our approach yields better load
balancing, which in turn can improve end-to-end performance.

I. INTRODUCTION

High performance computing (HPC) is routinely employed

in many science domains such as Physics, and Geology, to

simulate and understand the behavior of complex phenomena.

Big data driven scientific simulations are resource intensive

and require both computing and I/O capabilities at scale. There

is a crucial need for revisiting the HPC I/O subsystem to

better optimize for and manage the increased pressure on the

underlying storage systems from big data processing.

Several factors affect the I/O performance of big data HPC

applications. First, the number and kinds of applications that

an HPC storage system supports is increasing rapidly [32],

which leads to increased resource contention and creation

of hot spots where some data or resources are consumed

significantly more than others. Second, the underlying storage

systems ,e.g., Ceph [29], GlusterFS [3], and Lustre [5], are

often distributed, and adopt a hierarchical design comprising

thousands of distributed components connected over complex

network topologies. Managing and extracting peak perfor-

mance from such resources is non-trivial. With changing ap-

plication characteristics, static approaches (e.g., [6], [27]) are

no longer sufficient, necessitating dynamic solutions. Third,

the storage components can develop load imbalance across the

I/O servers, which in turn impacts the performance and time

to solution for the big data problem. Consequently, achieving

load balancing in the storage system is a key for achieving a

sustainable solution.

Load balancing for HPC storage systems is crucial and is

being actively studied in recent works [7]. Extant systems

typically attempt to perform load balancing by either having

limited support for read shedding to redirect read requests to

replicas of the primary copy, e.g., in Ceph [16], or performing

data migration. Alternatively, per-application load balancing

has also been considered to balance the load of an application

across the various I/O servers [27]. These existing approaches

lack a global view of all the components in the hierarchical

structure of the system, and mainly focus on only a small

subset of metrics (e.g., only the storage capacity, and not per-

formance of the components). Thus, these approaches cannot

guarantee that the aggregate I/O load of multiple big data

applications concurrently executing atop a parallel file system

(with bursty behavior) is evenly distributed.

Consider the Lustre file system that forms the backend

storage in, among other HPC systems, Oak Ridge National

Laboratory’s (ORNL) Titan supercomputer [1], [8]. The de-

fault strategy in Lustre is to allocate storage targets to I/O

requests using a round-robin approach. Experiments show that

this approach is inclined to either under- or over-utilize the

resources due to the bursty nature of applications.

In this paper, we address the load imbalance problem in

Lustre by enabling a global view of the statistics of key com-

ponents. We select Lustre to showcase our approach as Lustre

is deployed on 60 of the top 100 fastest supercomputers [8],

and improving its performance will benefit a wide range

of applications and users. We go beyond just network load

balancing, e.g., as in NRS [22], or per-application approaches,

e.g., as in access frequency-based solutions [27], to ensure that

the Lustre Object Storage Targets (OSTs) that actually store

and serve the data along with other I/O system components are

load balanced. We leverage the existing hierarchy of Lustre to

avoid introducing additional performance bottlenecks, and co-

locate the global component of our load balancer on Lustre’s

Metadata Server (MDS) that has a global view of all other

components.

Our goal is to improve the end-to-end performance of HPC

storage systems for big data applications. Our data-driven

approach learns system behavior to better manage the load

across various Lustre components. Specifically, we make the

following contributions.

• We design a model for the Lustre file system to incor-

porate a load balancing strategy that considers the global



view of the system parameters.

• We utilize a scalable publisher-subscriber model to mon-

itor and capture the load of key components in Lustre.

We use a Markov chain model that learns and predicts

the future behavior of the application using the monitored

data, and a minimum-cost maximum-flow algorithm to

assign storage targets in a global load aware fashion.

• We design a realistic trace-driven Lustre simulator that

captures the load imbalance behavior. We use the simu-

lator and a real setup to study our approach and design

decisions therein.

• We also evaluate the effectiveness and scalability of our

approach. Experiments show that our approach helps in

achieving a better load-balanced storage servers, which in

turn can yield improved end-to-end system performance.

II. BACKGROUND AND MOTIVATION

In this section, we first present an overview of the existing

load balancing used for Lustre. Then we present a quantitative

study of the load imbalance in the HPC I/O subsystem to

motivate our approach.

The default Lustre implementation uses a round-robin ap-

proach coupled with disk utilization measure to balance the

load across Object Storage Targets (OSTs). The first available

OST is selected to store a file and if the OST still has available

space (more than a predefined threshold), is then placed at the

end of a list for the next round . This technique does not

consider the load on other resources (MDS or Object Storage

Servers (OSS)) or the I/O load on OSTs, and can lead to

performance degrading hot spots.

Network Request Scheduler (NRS) [22] aims to achieve

distributed network load balancing at the Lustre server level

by reordering incoming RPCs to a Lustre server (e.g., MDS or

OSS) so that individual Metadata Storage Targets (MDTs) or

OSTs running on the server receive a fair share of the server’s

network resources. Our approach differs from NRS in that we

go beyond considering only the network resources to include

the many factors affecting I/O performance on various Lustre

components (Table I), and aim to provide a globally balanced

I/O subsystem to offer more stable I/O performance.

A. I/O Performance Statistics

Lustre is a hierarchical system. We identify the factors

that affect the I/O performance in every layer of the system

as shown in Table I. We utilize the files /proc/meminfo

and /proc/loadavg to capture the memory and CPU

utilization, and also read the values of Lustre parameters

in various components of the hierarchical system, e.g., via

obdfilter.*OST*.brw_stats.

The performance for serving metadata and the I/O rate

of serving the actual data to the clients is dependent on

the network performance. A congested network affects the

I/O performance adversely. The network bandwidth infor-

mation can be extracted using the lnet stat interface

(/proc/sys/lnet/stats), which runs over LNET and

Lustre network drivers.

B. The Need for Load Balancing

We conducted a simulator-based study to demonstrate the

need for balanced load placement across Lustre components.

Our simulator (Section IV-A1) faithfully implements the func-

tionalities of various components in Lustre. In our model, we

have 8 OSSes and every OSS is linked to 4 OSTs (a total

of 32 OSTs). We use 24-hour traces from the combination

of three application traces to drive the simulator. Two of the

application traces are from the Interleaved-Or-Random (IOR)

benchmark [13] and the Hardware Accelerated Cosmology

Code (HACC) Application I/O kernel [12], while the third ap-

plication trace is generated from a HPC Transaction Processing

Application (TPA) running at a large financial institution [26].

For this test, we use the default round-robin approach of Lustre

for allocating OSTs for file creation requests. All results shown

are the average taken from three runs.

We measured load balance by taking the ratio of maximum

system load to the mean system load—system load for OSTs

is the disk space used, and for OSSes is the CPU utilization.

This ratio should be one for ideal load balance. For OSTs, we

measure the ratio of maximum disk space consumed taking

all OSTs into account to the mean disk space consumed for

every hour for 24 hours as shown in Figure 1. We see that

the system starts from a highly unbalanced setup of OSTs and

takes over 12 hours to get close to 1. Thus round-robin is very

slow in providing load balance.

In addition to load balancing OSTs, our objective is to also

have a load balanced set of OSSes. We study the ratio of

maximum CPU utilization taking all OSSes into account to the

mean CPU utilization for a period of 24 hours with 1-second

interval as shown in Figure 2. This ratio should also be ideally

1. As seen in the graph, there are huge fluctuations in the ratio

for a very long window of 20 hours, again highlighting the

weakness of the round-robin approach.

Since, load on OSTs is a continuous function (not repre-

sented in Figure 1), we also plot load of OSTs along time in a

box-plot. Capacity in an OST is the amount of free disk space

available. As the capacity continuously changes every hour, we

normalize it to the median OST capacity for that hour. This is

shown for the studied 24-hour period in Figure 3. The box plot

highlights the variation in the capacities of all OSTs combined

for different hours. Round-robin policy is unable to balance the

system due to lack of consideration for numerous other factors

as discussed earlier. As the trace file from IOR benchmark

generates a continuous stream of file write requests instead

of a more complex bursty pattern, the system still becoming

unbalanced shows the weakness of the default approach to

capture the application behavior and create a well-balanced

and application-attuned load distribution.

This study highlights the need for better load balancing for

the HPC I/O subsystem. Moreover, an opaque round-robin

approach is incapable of accounting for workload dynamic-

ity [27] such as that created by regular purge of old data

in HPC systems (by OLCF practice [2]). In this paper, we

address such problems by designing an OST management



Component Factors Discussion

Metadata Server (MDS) CPU% CPU and memory utilization

Memory% reflect the system load.

/proc/sys/lnet/stats Load on the Lustre networking

layer connected to MDS.

Metadata Target (MDT) mdt.*.md_stats Overall metadata stats per MDT.

mdt.*.job_stats Metadata stats per MDT per job.

Object Storage Server (OSS) CPU% Reflects the system load

Memory% of the management server.

/proc/sys/lnet/stats Load on the Lustre networking

layer connected to OSS.

Object Storage Target (OST) obdfilter.*.stats Overall statistics per OST.

obdfilter.*.job_stats Statistics per job per OST.

obdfilter.*OST*.kbytesfree Available disk space per OST.

obdfilter.*OST*.brw_stats I/O read/write time and sizes per OST.

TABLE I: List of I/O performance statistics for relevant system components.
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Robin).
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Fig. 4. Overall system design.

layer that provides a global and detailed system state view

to the allocator.

III. SYSTEM DESIGN

In this section, we present the design of our load balancing

system. We focus on Lustre due to its popularity in the top

supercomputing systems, but our approach is also applicable to

other distributed storage systems that use a hierarchical design.

Figure 4 shows the overall design of our proposed approach.

Applications use a client side library that interfaces with a

request handler on the MDS to handle application requests.

Each request consists of an application ID, number of stripes,

and the size of request.

Once a request arrives at the handler, we use a predic-

tion model to predict future requests. It has been observed

that different HPC applications have varying but predictable

characteristic request pattern behavior [28]. We exploit this

observation coupled with Markov Chain Model [23] to predict

expected future requests from the applications and allocate

resources accordingly. We capture system state via statis-

tics collected using a scalable, distributed and hierarchical

publisher-subscriber architecture. The OSSes act as publishers

to provide statistics of OSSes and OSTs to MDS that acts as

the subscriber. Then we design an adaptive load balancing

algorithm that uses information about the state of various

I/O servers and interconnects, as well as a set of predicted

requests. The goal of our dynamic minimum-cost maximum-

flow algorithm [4] is to determine a list of suitable OSTs to

support the current and predicted requests in a load-balanced

manner. Finally, the list of OSTs is provided to the application.

The request handler, request predictor, flow optimizer and

statistics collector are co-hosted and executed on the MDS.

These components are not part of the Lustre MDS stack.

A. Framework for Statistics Collection

A key challenge in designing a load-balanced OST setup

is realizing a scalable load monitoring solution. To this end,

we adopt a hierarchical design that delegates the responsibility

of load monitoring across multiple layers. Figure 5 shows a

typical Lustre deployment, instrumented with our monitoring

software probes that collect the statistics about the various I/O

components of a Lustre deployment.



Fig. 5. Monitoring system architecture.

We utilize a publisher-subscriber architecture [19] for statis-

tics collection with the OSSes acting as publishers and the

MDS acting as the subscriber. Publisher (OSS) and subscriber

(MDS) are interconnected with each other using Ethernet

or Infiniband network. Storage targets are connected to the

servers using traditional storage network or direct attached

storage technologies. Table I shows the list of statistics that we

use in our approach. The D′ component (shown in Figure 5)

on an OSS acts as the statistics collector for both the OSS as

well as the associated OSTs. Once the OSS and OSTs’ data is

collected, it is parsed and published to the publisher-subscriber

system via a message queue, from where the MDS subscriber

can retrieve the data.

D is the statistics collector component on MDS and moni-

tors both the MDS and the associated MDTs. Similar to D′ on

OSS, D collects LNET statistics, CPU and memory utilization

of MDS, and statistics for MDTs.

To ensure proper operation at scale and to avoid being

overwhelmed by a large number of statistics from many

Lustre components, we employ a message broker that logically

sits between the OSSes and MDS, and collects data from

the publishers. The broker then uses a common queue to

communicate with the MDS. This allows the MDS to retrieve

messages from the common queue at its own pace, and avoid

lost messages. Moreover, big data applications typically issue

about 10, 000 file events per second with most events being

read-intensive [32]. Thus, to avoid network overloading, we

set the statistic collection interval to be longer (5 seconds

in our setup). To provide scalability and reduce monitoring

overhead, we piggyback our messages on the already existing

system monitoring infrastructure, such as ODDMON [18], that

is typically already deployed in large supercomputing facilities

for system health monitoring and management. The approach

offers a promising low-cpu (< 0.8%) and memory (< 12MB)

overhead on MDS and OSSes, as we show using a real cluster

setup in Section IV-A2.

B. Applying Machine Learning for OST Request Prediction

HPC applications have been shown to exhibit distinct pat-

terns [21], [28]. Given the longevity of legacy applications,

and our interactions with HPC practitioners, similar behavior

predictability is expected for emerging applications as well.

Therefore, application behavior can be modeled to help predict

future application requests for OST allocations. We leverage

this by identifying two key predictable properties of HPC

applications’ I/O requests namely, the number of requested

OSTs (stripe count) and the number of bytes to be written in

each request.

We balance the load during file creation and use the number

of bytes to be written in the request. If the request is a

read request, the number of bytes written will be zero. We

focus on writes more than reads because once the file writes

have been distributed, the caching mechanism and approaches

such as burst buffers can absorb much of the read requests.

Consequently, read performance is mostly shielded from the

load imbalance at the OSTs, and writes are the overwhelming

factor to be considered [27].

We use a Markov Chain Model [23] to capture the two prop-

erties (stripe count and bytes written) of application requests,

factor in the current patterns, and predict future requests. The

predicted requests along with the current application requests

are then used to drive our load balancer.

Markov chain is a process in which the outcome of an

experiment is affected by the outcome of a previous exper-

iment. If a future state in the model depends on the previous

m states, it is termed as a Markov chain of order m. More

memory can be built into the model by using a higher order

Markov model. But, as the order of Markov chain model

becomes higher, the estimates of different parameters become

less reliable. Also, the model becomes complex for higher

orders with exponentially increasing computation time.

Figures 6, 7 and 8 show the predictions from Markov

chains of varying orders on a collective trace of three differ-

ent applications running simultaneously on the system. Here

again, the application traces are from IOR benchmark [13],

HACC I/O Kernel [12], and Transaction Processing Appli-

cation (TPA) [26]. The results for orders 1 and 2 show

that predicted write bytes are different from the actual bytes

requested to be written by the application. We get the best

results for order 3. We tested our model for higher orders as

well, and the results are shown in Table II. All results are

from the average of three runs. The results show that while

the increase in accuracy from using a higher order model chain

(greater than 3) was minimal, the corresponding execution

time became very high. Thus, we do not go beyond third order

chains in our approach.

We assume that the stripe size for all requests in a particular

application is the same [27]. Thus, we can get the stripe count

by predicting just the number of bytes to be written by a

request. Dividing the number of write bytes by the stripe

size gives us the stripe count. Here, we model the number of

bytes to be written, with associated states shown in Figure 9.

Over time, the number of bytes written can be modeled as a

normal distribution with mean µ and standard deviation σ. The

normal curve can be divided into five distinct segments (mean

µ, between µ and ±1 standard deviation, and between ±1

standard deviation and ±2 standard deviation). This is because

68.3% of the data under the normal curve falls between ±1

standard deviation, and 95.4% of the data falls between ±2

standard deviation. But to uniformly distribute the normal
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Fig. 7. Orig. vs. predicted requests (Order = 2).

0 5 10 15 20 25 30

0
1
0
0
0
0
0
0

2
5
0
0
0
0
0

Timestamp

W
ri

te
 R

e
q
u
e
s
ts

 (
b
y
te

s
) Original

Predicted

Fig. 8. Orig. vs. predicted requests (Order = 3).

Order of Markov chain 1 2 3 4 5 6 7 8

Execution time (seconds) 0.01 0.02 0.15 1.0 2.6 3.8 5.6 8.0

Accuracy (%) 65.6 78.7 95.5 96.3 96.8 97.2 97.5 97.8

TABLE II: Execution time and accuracy % for Markov chain for varying orders.
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Fig. 9. States for write bytes.

curve, we divide the area into 5 segments such that each has an

equal area under the curve (0.2). We assign states to the bytes

to be written (Ri: ith request of the input set of requests)

using the function assignStates in Algorithm 1.

After states have been assigned for the whole input request

set, the training process (function trainModel in Algorithm 1)

starts in one of the states S′

i and moves onto the next state

S′

j with probability pij . These probabilities are the transition

probabilities and are captured by training the model based

on the requests observed so far. We utilize dynamic learning,

wherein the probabilities are continuously updated as more

requests are processed. For example, when predicting the

number of bytes to be written, every request that arrives is

stored as a key with value as the requests that follow. Since,

our model is a Markov chain of order 3, we store three

following requests. The training sequence of requests is a

list of any length longer than the order of Markov chain,

from which the model draws state information for the chain.

Our model dynamically determines the length of the training

sequence. The dynamic approach is needed to accommodate

the fact that the request size and pattern will vary for different

applications as well as over time. We capture such changes

using mean square error computation. To this end, we find the

mean square error for different lengths of training sequence

(e.g., 2, 4, etc.) to arrive at a length that yields the least mean

square error. The model then uses this computed length for

training. We limit the length to 16 to keep the computational

overhead of our approach in check. Our Markov model can

learn different applications behavior and assign them different

identifiers. The model differentiates between the applications

based on their assigned identifiers and predict the appropriate

set of application-specific requests.

After the model is trained, we predict the states of future

requests (function predictModel). Next, we have to map the

states of the requests to the predicted write bytes. The function

statesToPrediction shows how the five different states are

mapped. The values 0, 0.5, and 1.7 in the mapping are the

quantized values in the five regions of the normal distribution

curve, that is, the values where a normal line meets the mean

slope of the respective region in the curve. Since the stripe

size is fixed, once we determine the number of write bytes for

the predicted set of requests, we can calculate the stripe count

as well.

We employ a new client-side library (L in Figure 5) that the

Lustre clients can use to request OSTs during file creation. L
interacts with the global mapper G on MDS to obtain the set

of OSTs on which the file is to be created. G monitors the

load on MDS, and whenever the load is below a pre-specified

threshold (CPU usage < 70% in our implementation), the

system runs the prediction algorithm, and uses the trained

Markov model to create a prediction set with expected future

requests. The current and predicted request sets are then

forwarded to the load balancer, thus completing the prediction

process for the current round of predictions. We test the model

using a real cluster setup in Section IV-A2 and show that cpu

(< 4.5%) and memory overhead (< 90 MB) remains small

even with multiple applications. Thus our model scales well

with increasing number of applications.

C. Load Balancing Algorithm

The completion of the monitoring and prediction phases

provide us with the information to drive our load balanced

allocation scheme for OSTs. We model the allocation problem

as a minimum-cost maximum-flow (MCMF) optimization [9]

over a flow network. The problem aims to find the maximum

flow with the minimum cost from source to sink. We first

explain the flow network structure and then discuss how the

MCMF algorithm works.

In contrast to other approaches, e.g., maximum flow algo-

rithms, MCMF enables us to capture the cost of flow for each

edge, as well as enforce the needed strict bounds on the flow

for both the source and the sink. As sources and sinks represent

actual clients and OSTs, respectively, the limit enforcement is

needed for load balancing by preventing load on an OST from

varying too much from that of other OSTs. The selection of



Algorithm 1: Markov Chain Prediction.

Input: Set of current requests’ write bytes S
Output: Set of predicted requests’ write bytes P
begin

µ = Calculate mean for S
σ = Calculate standard deviation for S
S′ = assignStates (S, µ, σ)
T = trainModel (S′)
P ′ = predictModel (T )
P = statesToPrediction (P ′, µ, σ)
return P

Function assignStates
Input: input set S, mean µ, standard deviation σ
Output: set of states S′

for Request Ri in S do
if µ − 0.25σ ≤ Ri ≤ µ + 0.25σ then

S′

i = 0

else if µ − 0.85σ ≤ Ri < µ − 0.25σ then

S′

i = -1

else if µ + 0.25σ < Ri ≤ µ + 0.85σ then

S′

i = 1

else if Ri < µ − 0.85σ then

S′

i = -2

else

S′

i = 2

return (S′)

Function statesToPrediction

Input: predicted set of states P ′, mean µ, standard
deviation σ

Output: set of predicted requests’ write bytes P
for State Sti in P ′ do

if Sti = 0 then
Pi = µ

else if Sti = −1 then
Pi = µ − 0.5σ

else if Sti = 1 then
Pi = µ + 0.5σ

else if Sti = −2 then
Pi = µ − 1.7σ

else
Pi = µ + 1.7σ

return (P )

a lowest-cost path between source and sink by MCMF also

ensures that the intermediate components, e.g., OSSes and

LNET Routers, are not overloaded in quest of load-balanced

OSTs. Thus, applying MCMF enables an optimal load balance

across OSSes, OSTs and LNET Routers.

1) Flow Network: A flow network is a directed graph where

edges from the source to the sink nodes carry the flow. Every

edge in the flow network has an associated cost and capacity.

Figure 10 shows the formation of the flow network when

adapted to our target case.

In the network, S1 and S2 are the source and sink nodes,

respectively. R1, R2, ..., Rn are the combination of current and

predicted application requests. The cost of the edges between

source node and application requests is zero, and the capacity

of the edges are the number of stripes for a particular request.
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Fig. 10. Flow network used in the MCMF algorithm.

Every request is connected to all the OSTs, as any OST

can potentially be used to service the request. The cost of

the edge between a request (Ri) and an OSTjk is shown as

the cumulative load on OSSj on which OSTjk resides and

the Lustre networking statistic involved between the MDS and

OSSj . The load on OSSj can be expressed as α(CPU%j) +
β(Memory%j), where α and β are the weights associated

with CPU and memory utilization, respectively. We assign

both values as 0.5, thus giving equal weights to both1. The

capacity of the edge between a request (Ri) and an OSTjk is

1 so that it follows the feasibility constraint of our problem.

The feasibility constraint specifies that a single OST can only

service one stripe of a particular request. This ensures that the

stripes are indeed distributed across OSTs.

Finally, all OSTs are connected to the sink (S2), which is

responsible for maintaining a load balanced setup. The cost of

the edge from OSTjk (OSTk of OSSj) is the load on OSTjk,

shown as TotalKBjk − KBavailablejk. The capacity of the

edge between vertices OSTjk and sink S2 is the maximum

number of stripes that the OST can hold. We assume that the

stripe size for all the stripes for every request of an application

is the same [27]. This is a practical assumption as stripe

size is typically a system-wide configuration parameter and a

characteristics of the storage I/O stack. Therefore the capacity

of the edge will be the ratio of the available space on the OST

to the constant stripe size.

2) Minimum-cost Maximum-flow (MCMF) Algorithm: The

input to MCMF is a directed flow network G = (N,A) as

explained in Section III-C1. Every edge (i, j) ∈ A has an

associated cost costij and capacity capij . MCMF aims to find

the optimal flow from all requests (current and predicted) to

the sink satisfying the capacity constraint on each edge.

More formally, the specific goal of our application of the

MCMF algorithm [11] is to find flow such that Equation 1 is

minimized, while satisfying the capacity constraint expressed

by Equation 2.

∑

(i, j)∈A

cos tij flowij (1)

0 ≤ flowij ≤ capij , ∀ (i, j) ∈ A (2)

1The weights can be modified to accommodate applications needs, e.g., if
one resource has higher constraints than other.



Finally, we use the Ford-Fulkerson Algorithm (FFA) [9] to

solve the min-cost max-flow problem. Our choice of FFA is

dictated by the elegance of its implementation, which enables

it to scale. FFA runtime is bounded by O(Ef), where E is

the number of edges and f is the maximum flow of the graph.

It has been shown that the FFA solver performs at least n/14
times faster than other MCMF solvers, where n is the number

of nodes in a dense network [31].

FFA uses the concept of residual network that indicates

additional possible flow in the network. Every edge (i, j) ∈ A
in the residual network is replaced by two edges (i, j)
and (j, i). Edge (i, j) has cost costij and residual capacity

resij = capij − flowij . Additionally, edge (j, i) has cost

− costij and residual capacity resji = flowij . Augmenting

paths are found in the residual network, which adds to the

flow in the graph. The augmenting path that is responsible

for yielding the minimum cost is selected first and the request

is mapped onto the OST on that path. The next minimum

cost path is then selected and this continues until all the

requests have been assigned to the OSTs. This completes the

current allocation round, while ensuring even load distribution

across the OSTs. The edges between OSTjk and sink S2 are

responsible for creating a load balanced distribution of OSTs.

Additionally, if a flow is not possible for all the requests, we

remove one of the predicted requests from the flow network

given as input to the MCMF algorithm and run the algorithm

again. This process is repeated until all requests are mapped

onto the OSTs. The MCMF algorithm is implemented using

the networkx package in python, and provides a low-

overhead (CPU < 2.3%,Memory < 44 MB) solution

(Section IV-A2).

D. Discussion

An important aspect of our design is that the OST selection

process is repeated numerous times on the MDS to achieve

the desired load balancing. Consequently, it is crucial that the

load on the MDS does not become overwhelming. We take

a number of steps to limit and reduce the impact on MDS

performance. First, instead of passing the raw OSS statistics

to the MDS, which would consume high network, message

queue, and MDS resources, we parse OSS/OST information at

the associated OSS, and reduce and compress the information

before sending it to MDS. This distributes the load across

OSSes, keeps the statistics processing on MDS in check, as

well as reduces the pressure on the message queue. Second,

we run the Markov chain model and the MCMF algorithm

only when the CPU utilization on MDS (due to the normal

operations of the MDS) goes below a specified threshold

(70% in our implementation). This allows the MDS server to

perform standard Lustre operations as a first priority. Third,

the Markov chain model processing is independent of the

number of applications concurrently running on the system

as explained in Section III-B. So the overhead is not expected

to increase as the number of applications increases. In terms of

decision quality, MDS receives brw_stats of all the OSTs

via the publisher-subscriber model. Therefore, it also knows

the I/O read/write time per OST. This helps in removing the

stragglers (i.e., slow OSTs) from the decision making list for

allocation of requests. Moreover, based on interactions with

HPC practitioners, we found that Lustre has a very steep

learning curve and is often installed on systems where legacy

and stability requirements entail very long upgrade cycles.

Thus, an additional benefit of our approach without modifying

core Lustre is that it gives users the flexibility to utilize our

services quickly and with a greater degree of flexibility.

IV. EVALUATION

We evaluate the efficacy of our approach using both a Lustre

simulator and a live setup. In the following, we first describe

our simulator and experimentation methodology, then compare

our MCMF-based load balancing with the default Lustre OST

allocation approach.

A. Methodology

1) Simulator: We have developed a discrete-time simulator

based on the overall system design shown in Figure 4 to test

our approach at scale. The simulator has four key components

closely mirroring those of Lustre’s OST, OSS, MDT, and

MDS, which implement the various Lustre operations and en-

able us to collect data about the system behavior. The MDS is

also equipped with multiple strategies for OST selection, such

as round-robin, random, and MCMF. We have implemented

a wrapper component that enables communication between

our various simulator components. The wrapper is responsible

for processing the input, managing the MDS, OST, and OSS

communication and data exchange, and driving the simulation.

All the network components in the simulator are modeled

using Network Simulator (NS-3) [17]. The application traces

collected from client side are modeled as clients in the

simulator. In our simulations, all initial conditions are the same

at the start of any allocation strategy. The parameters, number

of OSSes, number of OSTs under each OSS are provided as

inputs to the simulator.

2) Cluster Setup: We also conducted experiments on a

small Lustre 2.8.0 setup to determine how the various com-

ponents interact. The client node has 8 cores, 2.5 GHz Intel

processor, 64 GB memory, and 500 GB HDD. MDS and two

OSSes have 32 cores, 2.0 GHz AMD processors, 64 GB

memory, and 1 TB HDD. All components are connected

through a 10 Gbps Ethernet interconnect. We have set 6 OSTs

in each OSS, each with 170 GB available disk space and

1 MDT in the MDS with a disk space of 100 GB. For real

setup test, we repeated each experiment three times, and report

the average results.

3) Workloads: To drive our simulations, we collect applica-

tion traces at the client side. These application traces contain

two kinds of data: (a) write entries, which have the timestamp,

the number of bytes to be written, and the number of OSTs

to be selected (i.e. the stripe count); and (b) read entry, which

has the timestamp, number of bytes to be read and the OST

ID from which the bytes have to be read.



To model the behavior of a real Lustre deployment, we run

and capture a trace of 3 simultaneously running big data hpc

applications on a production Lustre deployment. We use the

HACC I/O kernel [12] that measures the I/O performance

of the system for the simulation of Hardware Accelerated

Cosmology Code (HACC) generating around 12000 file events

per second, and the IOR benchmark [13] that is used for testing

the performance of parallel file systems which generates

around 20000 events per second. The third trace is generated

from a high performance computing transaction processing

application running at a large financial institution [26]. This

trace generates about 15000 file events per second. For our

tests (except the scalability study), we simulate the behavior

of one MDS, eight OSSes with four OSTs per OSS, for a

total of 32 OSTs. We also use our real-setup test to verify the

results from the simulator.

B. Comparison of Load Balancing Approaches

We compare our MCMF based OST load balancing with

the standard Lustre round-robin approach, as well as weighted

random allocation where OSTs are selected at random from a

subset of OSTs. Our random allocation model picks a random

OST from a subset of the OSTs whose ratio of available space

to total disk space is greater than 0.4. The goal is to remove

the OSTs with less available space from the eligible list of

OSTs to serve the request.

We measure the load balancing in our setup by plotting

the ratio of the maximum disk space used to the mean disk

space used over time. The ratio should tend to 1 for a load

balanced setup. As seen from Figure 11, over a period of 24

hours, the random allocation gives the worst result as the ratio

starts from 125, which is much more than the starting ratio in

round-robin allocation. In contrast, we get better result with

the MCMF allocation scheme. The ratio starts from 52 and has

a steady decline to 1 in only 7 hours compared to 12 hours in

round robin allocation.

In addition to balancing the load across OSTs, our objective

is to also load balance the OSSes’ CPU utilization—which

is ignored under extant round-robin. Figure 12 shows the

max/mean CPU utilization ratio of OSSes over a period of

24 hours. We see a better load balance in MCMF compared

to round-robin and random allocations with a smoother decline

of the ratio to 1 in 7 hours compared to 20 hours under round-

robin strategy.

Our objective is to load balance OSTs such that every

OST is at an almost similar state (in terms of number of

bytes available, and load) under various file allocations. Since

capacity of OSTs continuously decreases over time, we use

normalized capacity where for every hour, the capacities of

all OSTs are divided by the median capacity. Figure 14 shows

the box-plot for normalized capacity vs. time for 23 hours

under our approach. When comparing this with the round robin

approach (Figure 3), we see that the inter-quartile ranges for

MCMF are less wider than those for round-robin allocation.

This shows that at any given time, MCMF is better able to

balance load across OSTs.

We repeat the test on the real setup, and see a similar

trend of Max/Mean load on both OSSes (CPU utilization) and

OSTs (disk usage) as shown in Figures 11 and 12. Figure 15

shows the normalized capacity over time. The difference in

the interquartile ranges in the box plots and a fewer number

of outliers is due to the fact that on the real setup, we run

2 applications; IOR and HACC I/O kernel, compared to 3

applications being run on the simulator. The experiment on

the real setup also shows that our approach gives better results

on the real setup as well.

On the real setup, we also track on the MDS the CPU

and memory utilization of our system components, i.e., the

publisher-subscriber model, Markov model, and the minimum-

cost maximum-flow algorithm. Figure 13 shows the maximum

CPU utilization on MDS for a period of 12 hours over intervals

of 30 minutes for our three components. The maximum CPU

utilization is 1.3%, 3.8% and 6.5%, and the maximum memory

utilization (not shown in a graph) on MDS are 15.2 MB,

75 MB and 200 MB for publisher-subscriber model, MCMF

algorithm, and Markov model, respectively. On OSS, the CPU

and memory utilization for the publisher never exceeds 1% and

12 MB, respectively. This shows that our approach requires

negligible resources and can easily coexist with Lustre at

scale. The Markov model component has the highest CPU and

memory utilization, and to keep that in check, we designed

the system to train the model and run MCMF algorithm only

when the Lustre CPU utilization on MDS goes below a preset

threshold (70% in our tests) to avoid any impact on data path

performance.

C. Scalability Study

In our next experiment, we test how our approach will work

with higher number of storage targets. For this purpose, we

use a setup with an increasing number of OSTs from 160 to

3600.

In our simulations, in order to calculate the I/O bandwidth,

all OSTs are assigned the same bandwidth at the start. The

simulator also takes into account the number of applications

using a particular OST at a given timestamp and calculates the

read and write bandwidth accordingly. We assume that OSTs

have equal read and write bandwidth. Figure 17 shows the

overall mean I/O bandwidth for Lustre’s default round-robin

approach as well as our MCMF algorithm. As the number of

OSTs increases, the mean bandwidth also increases for both

the algorithms. Our algorithm provides better performance

than round-robin solution even for higher number of OSTs. As

seen from the figure, MCMF allocation is able to achieve up to

54.5% (under 800 OSTs) performance improvement compared

to the default round-robin approach.

The overall execution time for load balancing using both

round-robin approach as well as our algorithm (Markov model

along with MCMF) is shown in Figure 16. Round-robin takes

less time than our approach to allocate OSTs to incoming

requests, but the difference between both execution times

keeps on decreasing as we increase the number of OSTs. This

is because, the increase in execution time with increase in the
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number of OSTs is much higher in Round-robin than MCMF.

This shows that our approach is more scalable. The gain in

the overall performance as shown in Figure 17 is much higher

than the gain in execution time, even for fewer number of

OSTs.

The tests show that MCMF algorithm provides better load

balanced allocation of OSTs with improved performance com-

pared to Lustre’s default round-robin allocation. Also, the

performance of our algorithm does not degrade even with

very large number of OSTs. Moreover, with higher number of

OSTs, the execution time for our approach to allocate OSTs

to requests is similar to that of Lustre’s default round-robin

approach. This is seen in Figure 17, where even for higher

number of OSTs, MCMF performs better than the standard

approach. Note that the difference in the CPU utilization on

MDS when using the default round-robin allocation compared

to when MCMF algorithm along with Markov chain model

was being executed never exceeds 7.3%. Therefore, the bene-

fits achieved by MCMF algorithm over standard round-robin

allocation is achieved at a manageable cost, which is further

amortized by the overall application I/O improvement resulting

from the better load balanced setup.

V. RELATED WORK

Load management has been incorporated into a number of

modern distributed storage system designs. GlusterFS [3] uses

elastic hashing algorithm that completely eliminates location

metadata to reduce the risk of data loss, data corruption, and

data unavailability. However, no load balancing is supported

across the storage targets. Ceph [16], [29] uses dynamic load

balancing based on CRUSH [30], a pseudo-random placement

function. It also adds limited support for read shedding, where

clients belonging to a read flash crowd are redirected to

replicas of the primary copy of the data. However, the ap-

proach does not guarantee that the primary copies themselves

are evenly distributed for optimum utilization of the storage

resource. Our approach considers multiple factors and uses a

global view of the system to make load balancing decisions

for storage targets.

Several recent storage systems have explored optimization

techniques for load balancing. In [6], dynamic data migration

is proposed to balance the load under various constraints.

Such approaches add the overhead of migration, while also

maintaining availability and consistency. The VectorDot [25]

algorithm is able to incorporate all these different constraints,

as it is a multidimensional knapsack problem. It is suitable for

hierarchical storage systems, as it can model hierarchical con-

straints. However, unlike our approach, the algorithm cannot

effectively use history information for load balancing.

Machine learning and data mining techniques have also

been used for the more general problem of resource allocation

that also includes some load balancing. Martinez et. al. [14]

introduce basic learning techniques for improving scheduling

in hardware systems. These techniques are focused on indi-

vidual hardware components and cannot be easily adapted

to distributed file systems. A rule based approach to balance

load in distributed file servers using graph mining methods

is proposed in [10], where access patterns of files is used to

relocate the file sets among different file servers. Schaerf et.

al. [24] explore the problem space of adaptive load balancing

using reinforcement learning techniques. Game Theory is also

used for resource allocation [20]. These works are complemen-

tary to our approach, but require significant effort in feature

selection and experimentation to enable such techniques in

our target problem. We leverage such works in our approach to

realize better I/O behavior capturing and improved predictions.



Finally, Google has recently explored machine learning to opti-

mize various system-level metrics [15]. While such techniques

show the promise of machine learning for optimizing system

parameters, they are orthogonal to our target problem of load

balancing in HPC storage systems, and not directly applicable

to our use case.

VI. CONCLUSION

We have presented a load balancing approach for extreme-

scale distributed storage systems, such as Lustre, where we

enable the system to have a global view of the hierarchical

structure and thus make more informed and load-balanced

resource allocation decisions. We design a global mapper

to be located in MDS of Lustre, which uses a publisher-

subscriber model to collect runtime statistics of the various

components in the I/O system by piggybacking the data on

existing communication, employs Markov chain model to

predict future application requests based on past behavior, and

a minimum-cost maximum-flow algorithm to select OSTs in

a load-balanced fashion. Experiments show that our approach

provides a better load balanced solution for both OSSes and

OSTs than the extant round-robin approach used in Lustre.

This will lead to better end-to-end performance for HPC big

data applications. In our future work, we plan to incorporate

our solution into other systems such as Ceph and GlusterFS,

as well as study our approach under different failure scenarios.

ACKNOWLEDGMENT

The authors would like to thank Ross Miller for his help in

developing and evaluating the data collection mechanisms.

This research used resources of the Oak Ridge Leadership

Computing Facility, located in the National Center for Com-

putational Sciences at the Oak Ridge National Laboratory,

which is supported by the Office of Science of the DOE under

Contract DE-AC05-00OR22725.

This work is also sponsored in part by the NSF under the

grants: CNS-1565314, CNS-1405697, and CNS-1615411.

REFERENCES

[1] A. S. Bland, J. C. Wells, O. E. Messer, O. R. Hernandez, and J. H.
Rogers. Titan: Early experience with the Cray XK6 at Oak Ridge
National Laboratory. In Proceedings of Cray User Group Conference

(CUG 2012), May 2012.
[2] B. Bland. Titan-early experience with the titan system at oak ridge

national laboratory. In High Performance Computing, Networking,

Storage and Analysis (SCC), 2012 SC Companion:, pages 2189–2211.
IEEE, 2012.

[3] E. B. Boyer, M. C. Broomfield, and T. A. Perrotti. Glusterfs one
storage server to rule them all. Technical report, Los Alamos National
Laboratory (LANL), 2012.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. IEEE

transactions on pattern analysis and machine intelligence, 26(9):1124–
1137, 2004.

[5] P. J. Braam and R. Zahir. Lustre: A scalable, high performance file
system. Cluster File Systems, Inc, 2002.

[6] S. C. Deshmukh and S. S. Deshmukh. Improved load balancing for
distributed file system using self acting and adaptive loading data
migration process. In 4th International Conference on Reliability,

Infocom Technologies and Optimization (ICRITO)(Trends and Future

Directions), 2015, pages 1–6. IEEE, 2015.
[7] B. Dong, X. Li, Q. Wu, L. Xiao, and L. Ruan. A dynamic and adaptive

load balancing strategy for parallel file system with large-scale i/o
servers. Journal of Parallel and Distributed Computing, 72(10):1254–
1268, 2012.

[8] J. Dongarra, H. Meuer, and E. Strohmaier. Top500 supercomputing sites.
http://www.top500.org, 2016.

[9] L. R. Ford Jr and D. R. Fulkerson. A simple algorithm for finding
maximal network flows and an application to the hitchcock problem.
Technical report, DTIC Document, 1955.

[10] A. Glagoleva and A. Sathaye. Load balancing distributed file system
servers: a rule-based approach. Web-Enabled Systems Integration:

Practices and Challenges: Practices and Challenges, page 274, 2002.
[11] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and S. Hand.

Firmament: fast, centralized cluster scheduling at scale. In Proceedings

of OSDI16: 12th USENIX Symposium on Operating Systems Design and

Implementation, page 99, 2016.
[12] LLNL. Hacc i/o benchmark summary, 2017.
[13] LLNL. Ior benchmark, 2017. https://asc.llnl.gov/sequoia/ benchmark-

s/IOR summary v1.0.pdf.
[14] J. F. Martinez and E. Ipek. Dynamic multicore resource management:

A machine learning approach. IEEE Micro, 29(5):8–17, 2009.
[15] R. Miller. Google using machine learning to boost data center efficiency

— data center knowledge, 2014.
[16] E. Molina-Estolano, C. Maltzahn, and S. Brandt. Dynamic load

balancing in ceph. 2008.
[17] NS-3. Network simulator, 2017. http://code.nsnam.org/.
[18] ORNL. Oddmon, 2017. https://github.com/ORNL-TechInt/oddmon.
[19] A. K. Paul, R. Chard, K. Chard, S. Tuecke, A. R. Butt, and I. Foster.

Toward scalable monitoring on large-scale storage for software defined
cyberinfrastructure. In 2nd Joint International Workshop on Parallel

Data Storage and data Intensive Scalable Computing Systems (PDSW-

DISCS), 2017. IEEE, 2017.
[20] A. K. Paul and B. Sahoo. Dynamic virtual machine placement in

cloud computing. In Resource Management and Efficiency in Cloud

Computing Environments, pages 136–167. IGI Global, 2017.
[21] A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R.

Butt. Chopper: Optimizing data partitioning for in-memory data an-
alytics frameworks. In 2016 IEEE International Conference on Cluster

Computing (CLUSTER), pages 110–119. IEEE, 2016.
[22] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and A. Dilger. A novel

network request scheduler for a large scale storage system. Computer

Science - Research and Development, 23(3):143–148, 2009.
[23] R. R. Sarukkai. Link prediction and path analysis using markov chains.

Computer Networks, 33(1):377–386, 2000.
[24] A. Schaerf, Y. Shoham, and M. Tennenholtz. Adaptive load balancing: A

study in multi-agent learning. Journal of Artificial Intelligence Research,
2:475–500, 1995.

[25] A. Singh, M. Korupolu, and D. Mohapatra. Server-storage virtualization:
integration and load balancing in data centers. In Proceedings of

ACM/IEEE SC, 2008.
[26] UMass. Umass trace repository, 2017. http://traces.cs.umass.edu/

index.php/Storage/Storage.
[27] F. Wang, S. Oral, S. Gupta, D. Tiwari, and S. S. Vazhkudai. Improving

large-scale storage system performance via topology-aware and balanced
data placement. In 2014 20th IEEE International Conference on Parallel

and Distributed Systems (ICPADS), pages 656–663. IEEE, 2014.
[28] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. Long, and

T. T. McLarty. File system workload analysis for large scale scientific
computing applications. In Proceedings of the 21st IEEE/12th NASA

Goddard Conference on Mass Storage Systems and Technologies, pages
139–152, 2004.

[29] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-

ceedings of the 7th symposium on Operating systems design and

implementation, pages 307–320. USENIX Association, 2006.
[30] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn. Crush:

Controlled, scalable, decentralized placement of replicated data. In
Proceedings of ACM/IEEE SC, 2006.

[31] Zealint. Maximum flow: Augmenting path algorithms comparison,
2017. https://www.topcoder.com/community/data-science/data-science-
tutorials/maximum-flow-augmenting-path-algorithms-comparison/.

[32] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns,
R. Ross, and I. Raicu. Fusionfs: Toward supporting data-intensive
scientific applications on extreme-scale high-performance computing
systems. In 2014 IEEE International Conference on Big Data (Big

Data), pages 61–70. IEEE, 2014.


