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Abstract—Multi-core processors with accelerators are be-
coming commodity components for high-performance comput-
ing at scale. While accelerator-based processors have been
studied in some detail, the design and management of clusters
based on these processors have not received the same focus.
In this paper, we present an exploration of four design and
resource management alternatives, which can be used on large-
scale asymmetric clusters with accelerators. Moreover, we
adapt the popular MapReduce programming model to our
proposed configurations. We enhance MapReduce with new
dynamic data streaming and workload scheduling capabilities,
which enable application writers to use asymmetric accelerator-
based clusters without being concerned with the capabilities of
individual components. We present an evaluation of the pre-
sented designs in a physical setting and show that our designs
can provide significant performance advantages. Compared
to a standard static MapReduce design, we achieve 62.5%,

73.1%, and 82.2% performance improvement using accelera-
tors with limited general-purpose resources, well-provisioned
shared general-purpose resources, and well-provisioned dedi-
cated general-purpose resources, respectively.

Keywords-Accelerator-based systems; heterogeneous clus-
ters; resource management; programming asymmetric clusters;

capability-aware task distribution

I. INTRODUCTION

Multi-core processors can integrate several general-

purpose cores (e.g. x86, PowerPC) and computational

accelerators (e.g. SIMD processors and GPUs), yielding

highly power-efficient and cost-efficient designs, with per-

formance exceeding 100 Gflops [1]–[7]. These asymmetric

accelerator-based processors are rapidly becoming com-

modity components for high-performance computing [8]–

[17]. The commoditization of accelerator-based multi-core

processors enables their deployment in large-scale clusters,

as substitutes of less cost-effective alternatives.

The state of knowledge on the use of accelerator-based

multi-core processors on large-scale clusters is limited.

There is an inherent imbalance between general-purpose

cores and accelerators in asymmetric settings. General-

purpose cores are efficient in executing control-intensive

code, therefore they tend to be employed primarily as

controllers of parallel execution on and communication with
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accelerators. Accelerators on the other hand, are efficient

in executing data-parallel computational tasks. Current ap-

proaches for designing and programming accelerator-based

clusters are either ad hoc or specific to an installation [14],

thus posing several challenges when applying to general

setups. First, the effects of alternative workload distribu-

tions between general-purpose processors and accelerators

are not well-understood. Second, accelerators have limited

capabilities for managing external system resources, such

as communication and I/O devices, thus requiring support

from general-purpose processors and special consideration

while designing the resource management software. Finally,

suitable programming models that adapt to the varying

capabilities of the accelerator-type components have not

been developed, forcing application writers who want to use

accelerators on clusters to micro-manage resources.

A. Targeted Environments

Addressing the inherent imbalances of accelerator-based

asymmetric clusters while hiding the associated complexity

from users is key to achieving high performance and high

productivity. Although designing for all possible resource

configurations and types of accelerators is very complicated,

in this paper, we answer to this challenge by designing

and evaluating four alternatives for realizing asymmet-

ric, accelerator-based clusters. We characterize our designs

based on the general-purpose computing and system man-

agement capabilities of the accelerators. More specifically,

we consider three classes of accelerators:

Self-managed well-provisioned accelerators: These ac-

celerators have high compute density, along with on-chip

capabilities to efficiently run control code and self-manage

I/O and communication. For example, an accelerator coupled

with several general-purpose processor cores on the same

chip falls into this category. The on-chip computational

power of the general-purpose cores and the amount of mem-

ory attached to the accelerators is assumed to be sufficient

for self-management, in the sense that the control code

running for scheduling tasks and performing communication

on the general-purpose cores does not become the major

performance bottleneck.
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Resource-constrained well-provisioned accelerators:

These accelerators have high compute density but insuf-

ficient on-chip general-purpose computing capability for

running control code and/or insufficient on-board memory

for self-managing I/O and communication. I/O and commu-

nication are managed by an external, dedicated, compute

node with general-purpose cores, which acts as a driver for

the accelerators.
Resource-constrained shared-driver accelerators:

These accelerators are similar to the previous case, however

drivers are shared among several accelerators, to yield a

potentially more cost-efficient design.

We develop a programming model for the above types

of resources, which hides the architectural asymmetry while

exploiting the computational density of the accelerators. For

this purpose, we adapt and extend MapReduce [18] pro-

gramming model. Our design uses a dynamic data streaming

approach to effectively support MapReduce computations,

as well as adaptive resource scheduling that factors in the

performance and capabilities of asymmetric components

and strives to overlap I/O and communication latencies.

Our framework implements data transfers and workload

scheduling transparently, while adapting the parameters of

data streaming and task scheduling to the application’s

requirements at runtime, thereby relieving programmers of

some significant programming effort. By contrast, previously

developed data distribution and task management libraries

for asymmetric accelerator-based architectures [19], delegate

parameterization of data transfers and workload scheduling

to the programmer.

Specifically, this paper makes the following contributions:

• An exploration and evaluation of design alternatives for

distributed asymmetric clusters with accelerators;

• An emulation and evaluation of various classes of

accelerators, with varying general-purpose computing

capabilities;

• An implementation of the MapReduce programming

model on asymmetric clusters comprising accelera-

tors, both with and without well-provisioned general-

purpose computing resources;

• A thorough performance analysis of our design alterna-

tives in terms of scalability, adaptation to various com-

putation densities, and resource conservation capability.

Our evaluation using representative MapReduce bench-

marks (WordCount, Histogram, Linear Regression, K-

Means) on an asymmetric cluster with Cell processors

serving as accelerators, shows that our approaches signif-

icantly improve system performance compared to static,

non-streaming schemes for scheduling workload and data

transfers. We achieve performance improvement of 62.5%,

73.1%, and 82.2% using accelerators that have limited

general-purpose resources, well-provisioned shared general-

purpose resources, and well-provisioned dedicated general-

purpose resources, respectively. Moreover, our techniques

adapt effectively to the relative computation to data transfer

density of applications by converging to optimal parameters

for data decomposition and streaming at runtime.

II. BACKGROUND AND MOTIVATION

In this section, we discuss the relevant background, re-

lated work and motivation for our investigation of various

design and resource management alternatives for large-scale

accelerator-based asymmetric clusters.

A. Commodity Accelerators

The use of commodity off-the-shelf components in large-

scale data centers, e.g., Google [20], Amazon’s EC2 [21],

etc., is pervasive. Such commoditization is now becoming a

norm for asymmetric accelerator-type processors such as the

IBM-Sony-Toshiba Cell processor [22], [23] and NVIDIA

GPU-based graphics engines [24], [25], consequently, mak-

ing them cheaper and affordable. This in turn facilitates the

building of asymmetric accelerator-based clusters, similar to

the framework that we consider in this study.

Accelerators provide much higher performance to cost

ratio compared to conventional processors. Thus, a prop-

erly designed accelerator-based asymmetric cluster has the

potential to provide very high performance at a fraction of

the cost and operating budget of a traditional symmetric

cluster. Unfortunately, accelerators also pose challenges to

programming and resource management. Programming ac-

celerators requires working with multiple ISAs and multiple

compilation targets. Accelerators typically have much higher

compute density and raw performance than conventional

processors, therefore coupling accelerators with conven-

tional processors may introduce imbalance between the two.

Accelerators also typically have limited local storage and

limited – if any – support for system services such as

I/O. To ensure overall high efficiency, resource management

on accelerator-based systems needs to orchestrate carefully

data transfers and work distribution between heterogeneous

components.

We use the Cell processor [26]–[28], on commodity

Sony PS3 nodes, in this study. The Cell is a suitable

resource that can serve as an accelerator component in

high-performance computing (HPC) setups envisioned in

this work. The Cell is a heterogeneous chip multi-processor

with one general-purpose PowerPC SMT core (the Power

Processing Element – PPE), and eight vector-only cores

(the Synergistic Processing Elements – SPEs), which are

specialized for acceleration of data-parallel computations.

The PPE functions as a front-end processor for scheduling

work and distributing data between SPEs, as well as for

running the operating system. The SPEs have private address

spaces and the programmer is responsible for moving data

between the main memory and each SPE’s local storage

using the Cell’s coherent asynchronous DMA mechanism.

This facility allows the programmer to explicitly manage the



data flow between Cell components, e.g., for improving I/O

performance [15]. Finally, in current installations, the PPE

runs Linux with Cell-specific extensions that provide user-

space libraries access to the PPEs. The Cell has also been

used as the compute-engines in the IBM Roadrunner [14],

the world’s second faster computer, making it an obvious

candidate to be used as computational accelerator in this

work.

B. MapReduce Programming Model

MapReduce is an emerging programming model for large-

scale data processing on clusters and multi-core proces-

sors [18], [29]–[31]. Current trends show that the model

is widely used as a high-productivity alternative to tra-

ditional parallel programming paradigms for a variety of

applications, ranging from enterprise computing [21], [32]

to peta-scale scientific computing [30], [31], [33]. Several

research activities engage in porting MapReduce to multi-

core architectures [30], [31], whereas recently, vendors such

as Intel begun supporting MapReduce in their libraries and

compilers [6], [34].

MapReduce assumes homogeneous components, and any

work item can be scheduled on any of the available nodes.

Recent work [35] addresses performance heterogeneity for

virtualized nodes [21]. However, inherent architecture het-

erogeneity remains a problem when the cluster components

include specialized accelerators, as the mapping function

should now consider individual component capabilities and

limitations. Furthermore, publicly available implementations

of MapReduce, such as Hadoop [32], assumes that data is

available on local disks of components and can be accessed

fast. Given limited resources of accelerators, this assumption

may not hold, thus creating an imbalance between resource-

rich control components and resource-constrained compute

components.

III. DESIGN

In this section, we discuss the design of accelerator-based

asymmetric distributed systems to efficiently support large-

scale parallel programmingmodels such as MapReduce [18].

A. Architecture Overview

We opt to use MapReduce due to the simplicity and

scalability of the programmingmodel in large-scale data pro-

cessing computations running on loosely coupled systems.

MapReduce better equips us for managing heterogeneous

components in our system than a more traditional tightly-

coupled approach used in standard clusters.

We arrange our resources as shown in Figure 1. A

general purpose well-provisioned multi-core server acts as a

dedicated front-end manager for the cluster. The server man-

ages a number of back-end accelerator-based nodes and is

responsible for scheduling jobs, distributing data, allocating

work between compute nodes, and providing other support
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Figure 1. High-level overview of an accelerator-based asymmetric dis-
tributed system.

services as the front-end of the cluster. The brunt of process-

ing load is carried by the Cell-based accelerator nodes. The

manager divides the MapReduce tasks (map, reduce, and

sort etc.) in small workloads, and assign these workloads to

the attached accelerator-based nodes. Irrespective of the type

of back-end nodes, the manager transparently distributes

and schedules the workload to them. If the back-end is

a self-managed accelerator, its general-purpose core uses

MapReduce to map the assigned workload to the accelerator

cores (SPEs). In contrast, if the back-end is driver-based, the

driver components further distribute the assigned workload

to the attached accelerator node(s). Note that the manager

differs from a driver. Drivers execute control tasks for

communication and I/O on behalf of accelerators, whereas

the manager controls work and data distribution for the

entire cluster. This model can be thought of as a hierarchical

MapReduce: each level maps the workload to the next level

of nodes, until it reaches the compute node, i.e., the Cell

processor, where the generic on-chip core maps the workload

to the accelerators.

B. Programming Asymmetric Clusters

From an application programmer’s point of view, irrespec-

tive of the resource configuration employed, MapReduce is

used on asymmetric resources as follows. The application

is divided into three parts. (i) The code to initialize the

runtime environment. This corresponds to the time spent in a

MapReduce application but outside of the actual MapReduce

work (initialization, intermediate data movement, finaliza-

tion). This part is unique to our design and does not have

a corresponding operation in standard MapReduce. (ii) The

code that runs on the accelerator cores and does the actual

work of the application. This is similar to a standard MapRe-

duce application running on a small portion of the input

data that has been assigned to the compute node. It includes
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Figure 2. Resource configurations for enabling asymmetric clusters.

both the map phase to distribute the workload between the

accelerator cores, and the reduce phase to merge the data

produced from accelerators. (iii) The code to merge partial

results from each compute node into a complete result set

either by the manager or the driver node. This is called every

time a result is received from a compute node and constitutes

a Global Merge phase that is identical in operation to the

reduce phase on each compute node. The only difference

is that the Global Merge on the manager works with entire

data sets and produces the final results. All these functions

are application-specific and provided by the programmer.

C. Alternate Resource Configurations

We consider four resource configurations for the target

asymmetric clusters as shown in Figure 2. The configura-

tions are driven by the type of the back-end components

used, as well as by economical constraints and performance

goals. In all cases, the manager and all back-end nodes

are connected via a high-speed commodity network, e.g.,

Gigabit Ethernet. Application data is hosted on a distributed

file system (NFS [36] in our implementation).

The first configuration (Figure 2(a)) we consider is that

of self-managed well-provisioned accelerators (Conf I), con-

nected directly to the manager. A blade with Cell proces-

sors [37] including multi-Gigabyte DRAM and high-speed

network connectivity would fall into this category. Small-

scale academic settings may also adopt such a configuration,

using, e.g., PS3 nodes and scaling down the workload per

PS3 so as to not exceed the limited DRAM capacity and not

stress the limited general-purpose processing capabilities of

the PS3. The compute nodes execute directly all MapReduce

tasks and the manager merges partial results from the

computes nodes.

The next configuration (Figure 2(b)) uses resource-

constrained well-provisioned accelerators (Conf II). Each

driver provides large memory space, communication and I/O

capabilities to an individual resource-constrained accelerator,

e.g. a PS3. The manager distributes input data to the driver

nodes in large chunks. The driver nodes proceed by stream-

ing these chunks to the attached accelerators. Accelerators

execute the MapReduce tasks, however, partial results pro-

duced by accelerators are merged at the corresponding driver

nodes and the manager executes the global merge operation

on the results received from the driver nodes.

The use of a single driver per resource-constrained accel-

erator is not always justifiable as one accelerator may not

be able to fully utilize the driver’s resources. In contrast, a

single manager may not be sufficient to match the data de-

mands of many accelerators simultaneously. We address this

by using a hierarchical setup (Conf III), so that each driver

node manages multiple accelerator nodes (Figure 2(c)).

Finally, an asymmetric system may employ a mix of

the above configurations based on particular requirements.

We capture this mix in our last configuration (Conf IV)

(Figure 2(d)). In this case, the manager is agnostic of the

class of the attached compute nodes and simply divides

the input workload between available compute nodes. The

execution of MapReduce tasks and merging of partial results

are managed automatically at each component, while the

final result is produced by the manager, which performs

the global merge of the results received from the attached

drivers.

D. Addressing Manager-Accelerator I/O Mismatch

The inherent asymmetry between the cluster components

may lead to performance degradation, especially due to

communication delays associated with data distribution and

collection by the manager. Thus, it is critical to handle

all communication with different components of the sys-

tem asynchronously. Asynchronous communication requires

careful consideration. If chunks from consecutive input data

are distributed to multiple compute nodes, it would require

time-consuming complex sorting and ordering to ensure

proper merging of the results from individual compute nodes

into a consolidated result set. We address this issue by

using a separate handler thread on the manager for each of



the compute nodes. Each handler works with a consecutive

fixed portion of the data to avoid costly ordering operations.

Each handler thread is also responsible for receiving all

the results from its associated compute node and performs

an application-specific merge operation on the received

data. This design leverages multi-core or multi-processor

head nodes effectively. Moreover, we use well-established

techniques such as double buffering to avoid I/O delays

when transferring data between manager/driver and compute

nodes. In our experimental testbed, which uses PS3s as ac-

celerators, double buffering combined with the exploitation

of multiple cores for the communication with accelerators,

overcomes the bandwidth limitations in the network that

connects the PS3s with the x86 manager and driver nodes.

The novelty of our design lies in the adoption of a

streaming approach to supporting MapReduce. Statically

allocating workloads to compute nodes, as is the case in

standard MapReduce setups, could saturate the limited non-

computation resources on the asymmetric compute nodes

and negate any performance benefits. Instead, we slice the

input into work units with sizes based on the capabilities of

back-end nodes at each level of the cluster hierarchy and

stream the slices to the compute nodes, which can then be

processed efficiently.

E. Capability-Aware Workload Distribution

Traditional MapReduce designs do not consider individual

components capabilities since they assume homogeneous

components as compute nodes. Our design, however, has

to factor in the capabilities of back-end resources when

allocating workloads. For self-managed resources or drivers

in other configurations, this task is straightforward. The

manager divides the input data and hands it over to the nodes

being directly managed. The actual assignment is done by

either copying the data to the nodes’ local storage or pro-

viding them with pointers to the files on the distributed file

system. This approach is easy to implement and lightweight

for the manager, as the manager does not need to micro-

manage data allocation to the accelerators.

However, data handover cannot be used for resource-

constrained nodes due to potential limitations such as inabil-

ity to directly retrieve the data, bottlenecks on the central file

system, or lack of sufficient storage and memory for holding

local copies. An alternative, that we adopt, is to divide the

input data into chunks, with sizes based on the capabilities

of compute nodes. Our runtime environment controls the

size of these chunks, so that each chunk can be efficiently

processed at the compute nodes without overwhelming their

resources, e.g., without memory thrashing. Instead of a

single division of data, the runtime environment streams

chunks (work units) to the compute nodes until all data

has been processed. The concern is that such an approach

improves performance on the compute nodes at the cost of

increasing the load of the manager. The runtime environment

balances the load between the manager and the compute

nodes, by controlling the resources dedicated to processing

communication with each compute node on the manager and

continuously adapting the chunk size on the compute nodes.

In addition to addressing I/O diversity, the manager faces

different memory and computation pressure depending on

the type of back-end resources. For self-managed nodes, the

manager is also responsible for merging the results from

each of the accelerators repeatedly for the entire input data.

This process can be resource consuming. By contrast, for

well-provisioned resources, the resource or driver does most

of the merging for the accelerators and the manager simply

has to perform a global merge. These factors have to be

considered when designing asymmetric clusters, taking also

into account workload-specific characteristics.

1) Adapting Workload Size: Our framework adaptively

matches the workload assigned to a compute node to its

capabilities. To this end, we define an optimal workload

size to be the largest amount of data assigned per ac-

celerator, which results in minimum execution time for a

given application. The intuition is that if a smaller than

optimal size is assigned to an accelerator, it would under-

utilize available resources and would take more iterations at

the manager. In contrast, using a larger size would result

in increased iteration time due to memory thrashing and

resource saturation on accelerators.

The optimal workload size can be determined either

statically or dynamically using an auto-tuning heuristic. We

adopt an auto-tuning scheme where the driver or manager

sends varying size workloads to accelerator nodes at the

start of the application and records the completion time

corresponding to each size. For each size, the process-

ing rate is calculated as the fraction (work unit size)/
(execution time). The size corresponding to the maximum

processing rate is selected as the optimal workload size

and is employed for the rest of the application’s execution

time. The same process is repeated at the drivers to find

the optimal workload size allocated from each driver to the

attached compute nodes.

F. Supporting MapReduce Operations

Once an application begins execution, the associated man-

ager and accelerator software is started on the respective

components and the manager initiates MapReduce tasks on

the available accelerator nodes. Once assigned, the tasks

self-schedule their work by reading data from the distributed

file system, processing it, and returning the results back to

the manager in a continuous loop. Once the manager receives

the results, it merges them to produce the final result set for

the application. After a particular MapReduce task has been

completed by a self-managed node, the manager assigns

another task to that node. This process continues until the

entire input data has been processed by the accelerators. The

manager handles the driver nodes similarly.



Table I
RESOURCE DISTRIBUTION UNDER DIFFERENT CONFIGURATIONS.

Configuration # of Drivers # of PS3s PS3s per Driver

Conf I - 8 -
Conf II 8 8 1
Conf III 2 8 4
Conf IV 5 8 4,1

For driver-based resources, each driver loads a portion of

input data into its memory, to ensure that sufficient data is

readily available for the accelerator nodes. The driver then

initiates the required MapReduce tasks on the accelerator

nodes and sends the necessary data to the corresponding

resource-constrained accelerators. When all the in-memory

loaded data has been processed by the accelerators, the driver

loads another portion of the input data into memory and the

whole process continues until the entire MapReduce task

assigned to the particular driver has been completed by the

attached resource-constrained accelerators. The driver also

merges the result data produced by the accelerators and the

merged result-sets are sent back to the manager.

IV. EVALUATION

In this section, we describe our experimental testbed and

the benchmarks that we used. We present results that eval-

uate different design alternatives for realizing asymmetric

distributed systems. We evaluate the MapReduce framework

that implements various functionalities discussed in Sec-

tion III as lightweight libraries for each of the hardware

platforms in our configurations, i.e., x86 on the manager and

PowerPC on the compute nodes, using about 1600 lines of

C code. The libraries provide programmers with necessary

constructs for using the framework.

A. Experimental Setup

Our testbed consists of eight Sony PS3s, a manager node,

and an 8-node x86 multi-core cluster, where each node

can serve as a driver. All components are connected via

1 Gbps Ethernet. The manager has two quad-core Intel Xeon

3 GHz processors, 16 GB main memory, 650 GB hard disk,

and runs Linux Fedora Core 8. The manager also runs an

NFS server. The driver nodes are identical to the manager

except that they have 8 GB of main memory. The PS3 is

a hypervisor-controlled platform, and has 256 MB of main

memory and a 60 GB hard disk. Of the 8 SPEs of the Cell,

only 6 SPEs are visible to the programmer [15], [38] in the

PS3. Moreover, each PS3 node has a swap space of 512 MB,

and runs Linux Fedora Core 7.

Table I shows the distribution of resources that we use

for each of the configurations presented in Section III, in

addition to the manager node. Note that in Conf I, the PS3s

are connected directly to the manager, and in Conf IV, four

PS3s share a driver, while each of the other four has a

dedicated driver. Moreover, in all the test configurations,

Table II
EXECUTION TIME (SEC.) ON STAND-ALONE PS3.

Input Linear Word
Histogram K-Means

(MB) Regression Count

4 0.34 1.95 1.06 1.66
64 2.88 501.76 45.66 167.93
128 12.56 - 318.66 -
192 21.81 - 394.78 -
256 34.89 - - -

the total number of accelerators is fixed, i.e., 8 PS3s or 48

SPEs and only the resource arrangement is varied. We used

a publicly available MapReduce library implementation for

Cell [31], to accelerate data mapping, sorting, partitioning

and reduction tasks running on individual PS3s.

B. Methodology

We focus on evaluating our design decisions and deriving

clues about what is the best way to utilize a given set

of accelerator-based resources for maximizing performance.

We use the following well-known MapReduce applications

to study the effect of the various design alternatives for

the asymmetric cluster. These applications originate from

scientific computing environments, including epidemiology,

environmental science, image segmentation, and statistical

analysis [39]–[41]. More details on these applications can

be found in [31].

• Linear Regression: This application takes as input a

large set of 2D points, and determines a line of best fit

for them.

• Word Count: This application counts the frequency

of each word in a given document. The output is a

list of unique words along with their corresponding

occurrence counts.

• Histogram: This application takes as input a bitmap

image and produces the frequency count of each color

composition in the image.

• K-Means: This application takes a set of points in an N-

dimensional space and groups them into a set number

of clusters with approximately equal number of points

in each cluster.

C. Results

We first examine how the benchmarks behave under

our resource configurations discussed in Section III. Then,

we evaluate the effectiveness of our design in managing

resource-constrained accelerators by adapting workload size

and the consequent impact on the manager and drivers.

Finally, we examine the scalability of the design.

Table II shows the average execution time for running

the four benchmarks on a stand-alone accelerator without

using our framework. Note that Linear Regression is the only

benchmark that successfully completes for all input sizes.

All other benchmarks incur swapping and run out of swap
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Figure 3. Linear Regression execution time with increasing input size.

 0

 50

 100

 150

 200

 250

 300

 0  500  1000  1500  2000

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Input Size (MB)

Conf I
Conf II
Conf III
Conf IV

Figure 4. Word Count execution time with increasing input size.
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Figure 5. Histogram execution time with increasing input size.
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Figure 6. K-Means execution time with increasing input size.

space with smaller input sizes. Also note the rapid growth in

the completion time due to excessive swapping as the input

size is increased.

1) Benchmark Performance: We first examine the effect

of different resource configurations on the average execution

time for each of our benchmarks.

Linear Regression: For this benchmark, the input size

ranges from 222 points (4 MB) to 231 points (2 GB).

Figure 3 shows the average execution time for running the

Linear Regression benchmark with increasing input size

under different resource configurations. All four resource

configurations show similar scaling patterns with the in-

creasing input size. Overall Conf II performs 53.1% better

than Conf I, since each driver node in Conf II makes use

of its large memory to store and process the intermediate

results from the attached PS3s. For similar reasons, i.e.,

having a higher number of drivers to handle the PS3s, Conf

II performs 14.4% and 8.0% better than Conf III and Conf

IV, respectively.

Word Count: For Word Count, we observe an expo-

nential growth in memory consumption relative to the input

data size, since each word emits additional intermediate data

out of the map function. This has the direct impact on the

execution time as shown in Table II. For any input size

greater than 44 MB, a single accelerator node thrashes and

runs out of available swap space (512 MB). However, all

the resource configurations in our setup are not only able to

process any input size, but also complete the benchmark

without thrashing, with linear increase in execution time

with increasing input size (Figure 4). Once again, Conf II

outperforms Conf I, Conf III and Conf IV by 32.5%, 19.2%

and 12.7%, respectively, since job scheduling and merging

tasks are distributed efficiently between driver nodes.

Histogram: Figure 5 shows the average execution time

for running the Histogram benchmark under the four test

configurations. On average Conf II performs 25.1%, 17.8%

and 11.1% better than Conf I, Conf III and Conf IV, respec-

tively. In our experiment with a stand-alone PS3, we observe

that the execution time for 192 MB input size is 394.8

seconds because of excessive swapping of intermediate data.

This benchmark also shows that our design scales linearly

for any input size for all tested configurations.
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Figure 7. Effect of workload size on execution time.
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Figure 8. Impact of workload size on the driver.

K-Means: Figure 6 shoes the results for the K-Means

benchmark. K-Means uses a different number of iterations

for different input sizes. Therefore, considering total exe-

cution times for different inputs does not provide a fair

comparison of the effect of increasing input size. We remedy

this by reporting the execution time per iteration in the

figure. The result for this benchmark shows that Conf II

outperforms Conf I, Conf III and Conf IV by 9.0%, 6.6%

and 4.4% respectively. Just as in the case of previous

benchmarks, the improvement comes from the fact that

in Conf II each accelerator node has more memory and

computation resources in the form of a dedicated front-end

node attached with it.

In summary, memory constraints non-withstanding, all

resource configurations using our framework show similar

patterns with increasing input size. They also exhibit better

memory utilization and enable efficient handling of large

data sets. Overall, we observe that Conf II gives the best

performance across applications, however, it is not cost-

effective given the need for dedicated drivers. However,

if the number of accelerators per driver increases, accel-

erators may stress the drivers with management tasks and

overwhelm their resources, leading to reduced performance,

as we observe for Conf I or Conf III. The number of

accelerators per driver that keeps the workload in limits,

is a function of the driver and accelerator capabilities and

is different for different resources. Thus, Conf III and Conf

IV offer better choices: they economize on the number of

drivers, yet provide performance comparable to Conf II.

2) Driving Resource-Constrained Nodes: We focus on

Conf I to examine the performance of our design in han-

dling resource-constrained nodes. For this discussion, we

use manager and driver interchangeably as the role of

manager in Conf I is identical to the role of driver in other

configurations.

Adapting Workload: Varying workload size affects the

processing time on a node. To show this, we use one

PS3 connected to the manager, and run Linear Regression

with an input size of 512 MB. Figure 7 shows that as the

workload increases, the execution time first decreases to a

minimum and eventually increases exponentially. The valley

point (shown by dashed line) indicates the size after which

the compute node starts to page. Notice that the curve is

almost flat before the valley indicating no extra overhead

for processing more data. Also, using a smaller work unit

size increases the manager’s load, as the manager now has

to handle a larger number of chunks for a given input size.

We argue that using the valley point as the workload size

provides the best trade-off between node performance and

manager performance.

Next, we evaluate our framework’s ability to dynamically

determine the optimal workload. We follow an experimental

process to discover optimal workload size. We manually

determine the maximum workload for each application that

can run on a single PS3 without paging, and compare it with

the work unit size that Conf I determines at runtime. Table III

shows the result. Our framework is able to dynamically

determine an appropriate workload that is close to the one

found manually and this determination on average across our

benchmarks takes under 0.93 seconds. This is negligible, i.e.,

less than 0.5% of the total application execution times when

the input size is 2 GB. Thus, adaptive workload determi-

nation in our framework is efficient as well as reasonably

accurate.

Impact on the Driver: We determine the effect of

varying workload sizes on driver performance. We use Conf

I, however, with a driver node instead of the manager.

First, we start a long running job (Linear Regression) on

the driver node. Next, we determine the time it takes to

compile a large project (Linux kernel 2.6) on the driver,

while the MapReduce task is running. We repeat the steps

as we decrease the workload size, potentially increasing

the processing requirements from the driver. We repeat the

experiment 10 times and record the minimum, maximum,



Table III
PERFORMANCE OF ADAPTING WORKLOAD TO ACCELERATORS.

Application
Hand-Tuned

Our Framework

Size (MB)
Size # Time
(MB) Iterations (s)

Linear Regression 32 30 16 0.65
Word Count 3 2 8 1.82
Histogram 2 1 4 0.15
K-Means 0.37 0.12 16 1.09

and average time for the compilation as shown in Figure 8.

The horizontal dashed line in the figure shows the overall

average of compile time across all studied workload sizes.

Given that the overall average remains within the minimum

and maximum times, we can infer that the variations in

the compile time curve are within the margin of error.

Thus, the relatively flat curve indicates that our framework

has a constant load on the driver and can support various

workloads without the driver becoming a bottleneck.

3) Scaling Characteristics: We observe how the perfor-

mance of our benchmarks scale with the number of acceler-

ator nodes using Conf I, Conf II, and Conf III. Figure 9(a)

shows the speedup in performance normalized to the case of

1 node in Conf I and Conf II. Both these configurations have

similar speedups because of similar manager to compute

node relationship, and are shown in a single graph. For Conf

III, we only have enough PS3s to scale up to using four

drivers with four PS3s each. However, we emulate up to

8 drivers as follows. During our tests with 1 to 4 drivers,

we observe near identical load on the manager from each

of the drivers. Based on this observation, we create a test-

loader that generates the same requests to the manager as

that of a driver with accelerators and use it to scale the

experiment beyond four accelerators. Figure 9(b) shows the

speedup for our benchmarks in Conf III. We use the same

input size for all runs of an application. However, the input

sizes for the different applications are chosen to be large

enough to benefit from using 8 nodes: 512 MB for Linear

Regression and Histogram, 200 MB for Word Count, and

128 MB for K-Means. The curve of K-Means is based on

time per iteration, as explained earlier.

Although we are only able to evaluate scaling on the

relatively modest scale of 8 nodes, our results show that

our framework scales almost linearly as the number of

compute nodes increases and this behavior persists for all

the benchmark. However, we observe that the improvement

trend does not hold for all benchmarks in Conf I/II when

the eighth node is added. Upon further investigation, we

find that the network bandwidth utilization for such cases is

quite high, as much as 107 MB/s compared to the maximum

observed value of 111 MB/s on our network, measured

using remote copy of a large file. High network utilization

introduces communication delays even with double buffering

and prevents our framework from achieving a linear speedup.
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Figure 9. Effect of scaling on resource configurations.

However, if the ratio of time spent in computation compared

to that in communication is high, which is the case in

scientific applications, we can obtain near linear speedup.

We test this hypothesis by artificially increasing our compute

time for Linear Regression by a factor of 10, which results in
a speedup of 7.8. For Conf III, no such network bottleneck

exists, since each driver manages the attached accelerator

using a dedicated connection.

V. CONCLUSION

This paper presents four design alternatives and configura-

tions for building asymmetric clusters with PS3 accelerators

at the compute nodes and multi-core x86 servers at driver

and manager nodes. We presented the design, implementa-

tion, and evaluation of different resource configurations by

emulating accelerator nodes with varying general-purpose

computing capabilities and their impact on overall system

performance. We explored this design space by design-

ing an extended MapReduce model for asymmetric HPC

clusters, which adopts a data streaming approach to make

the data available to the accelerator in a timely fashion.

Our implementation of MapReduce hides the imbalance

and architectural asymmetry between the general-purpose

nodes and accelerator components and uses adaptive re-

source scheduling by considering the performance and ca-

pacities of the components. Thus, our design enables higher

performance and better utilization of the available asym-

metric components, which in turn helps capacity planning

for emerging asymmetric distributed systems. During our



evaluation, we observed a large variance in the performance

of different design choices for the asymmetric clusters,

which shows that asymmetric clusters are highly sensitive

to the design configurations of their general-purpose and

accelerator resources.

In our ongoing work, we aim to deploy the framework

presented in this paper to non-MapReduce programming

models. Moreover, our long-term objective is to develop

planning tools and models that will allow system designers

to create performance-budget balanced configurations.

ACKNOWLEDGMENT

This research is supported by NSF (grants CCF-

0746832, CCF-0346867, CCF-0715051, CNS-0521381,

CNS-0720673, CNS-0709025, CNS-0720750), DOE

(grants DE-FG02-06ER25751, DE-FG02-05ER25689),

IBM through an IBM Faculty Award (grant VTF-874197),

and the European Commission (grants MCF-IRG-224759,

IST-004408, IST-217068). M. Mustafa Rafique is supported

through a Fulbright scholarship.

REFERENCES

[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai, “The Impact of
Performance Asymmetry in Emerging Multicore Architectures,” in
Proc. ISCA., 2005.

[2] M. Hill and M. Marty, “Amdahl’s Law in the Multi-core Era,”
Department of Computer Sciences, University of Wisconsin-Madison,
Tech. Rep. 1593, Mar. 2007.
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