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Abstract—Detection and identification of important biologi-
cal targets such as, DNA, proteins, and diseased human cells
is crucial towards early disease diagnosis and prognosis. The
key to differentiate healthy cells from the diseased cells is
the biophysical properties that differ significantly. Micro and
nanosystems, such as solid-state micropores and nanopores,
can measure and translate these properties of human cells and
DNA into electrical spikes to decode useful biological insights.
Nonetheless, such approaches result in large data streams that
are often plagued with inherit noise and baseline wanders.
Moreover, the extant detection approaches are tedious, time-
consuming, and error-prone, and there is no error-resilient
software that can analyze large datasets instantly. The ability
to effectively process and detect biological targets in larger
datasets lies in the automated and accelerated data processing
strategies using state-of-the-art distributed computing systems.
To this end, we propose a distributed detection framework,
which collects the raw data stream on a server node that
then splits/distributes the data into segments across the worker
nodes. Each node reduces noise in the assigned data segment
using moving-average filtering, and detects the electric spikes
by comparing them against a statistical threshold (based on the
mean and standard deviation of the data), in a Single Program
Multiple Data (SPMD) style. Our proposed framework enables
the detection of cancer cells with an accuracy of 63% in a
mixture of Cancer cells, Red Blood Cells (RBCs), and White
Blood Cells (WBCs), and achieves a maximum speedup of 6X
over a single-node machine by processing 10 gigabytes of raw
data using an 8-node cluster in less than a minute.

Keywords-Distributed computing; automated cancer cell de-
tection; solid-state micropores; accelerated-diagnosis;

I. INTRODUCTION

Diseases such as cancer can be mitigated, if detected

and treated at an early stage. Micro and nanoscale devices

such as micropores and nanopores, enable the translocation

of biological targets, such as, DNA, proteins, and human

cells at its finer granularity. These devices are tiny orifices

in silicon-based membranes and the output is a current

signal, measured in nanoamperes. Solid-state micropore is

capable of electrically measuring the biophysical properties

of human cells, when a blood sample is passed through

it [1]. The passage of cells via such pores results in an

interesting pattern (pulse) in the baseline current, which can

be measured at a very high rate, e.g., 500, 000 samples per

second [2]. The pulse is essentially a sequence of temporal

data samples that abruptly falls below and then reverts back

to a normal baseline with an acceptable predefined time

interval, i.e., pulse width. The pulse features such as, width

and amplitude corresponds to the translocation behavior and

the extent to which the pore is blocked, under a constant

potential. These features are crucial in discriminating the

diseased cells from healthy cells such as, identifying cancer

cells in a mixture of cells [3].

The task of detecting interesting patterns is critical in

many biomedical applications including ECG and MRI [4],

[5], [6] in order to find useful insights towards disease di-

agnosis. With the advent of novel biological applications of

micro and nanoscale devices [7], [8], [9], [10], we are able to

detect the biological targets, such as DNA and human cells,

at finer granularity. Unfortunately, the detection of biological

targets with these devices have many challenges. The devices

produce large amounts of raw data and the task of pattern

detection is coupled with the enormity of the datasets [2],

[11]. For example, the data collected from the translocation

of a typical biopsy sample through a pore is about 10 GB.

The state-of-the-art detection and analysis is based on the

visual inspection, which is tedious, error-prone, and even

an expert has to spend innumerable hours to analyze a

blood sample, which is in the magnitude of gigabytes. In

addition, the available softwares, such as, pClamp can only

analyze a subset of the total acquired data. Furthermore,

due to the highly dynamic nature of data produced by the

bio-nano sensors, the useful patterns are very sparse in the

data and are orders of magnitude smaller than the total

acquired data. In a clinical setup, the raw data collected

from many patients’ biopsy samples, using multiple solid-

state micropores quickly becomes too large to be handled by

a single workstation. These challenges motivate the design

of an automated and distributed detection technique, which

can effectively acquire and process the raw data (collected

from many micropores) for detecting and identifying useful

patterns.

Recent trends show the efficacy of using distributed com-

puting in genomics [12], [13], [14], [15], proteomics [16],

[17], and other large-scale applications such as physics [18]

and astronomy [19]. In this paper, we design and develop

a novel distributed technique that distributes/splits the data



across multiple nodes and enables individual nodes to ac-

quire and process its raw data segments to detect and identify

useful pulses.

To this end, our proposed framework performs the fol-

lowing steps:

• Splits the collected raw data into a number of segments,

one for each participating node in the system.

• For improved performance, each raw data segment is

acquired by individual nodes using double buffers.

• Each node converts the raw data into integers for

efficient processing, i.e., to avoid round-off errors and

also reduce the total size of the acquired data.

• The integer data is then smoothed using moving-

average filtering to reduce the noise in the data.

• The useful patterns in the de-noised data are detected

using a threshold that is based on the mean and

standard-deviation of the data.

Evaluation of our system using the datasets of real cancer

cells show that our technique can detect pulses with 63%
accuracy, and process 10 gigabytes of raw data on an 8-
node cluster in less than a minute, a task that would rather

take several hours when using the extant manual process.

Our framework produces output in the form of scatter plots,

which can be further used by physicians/scientists to infer

useful information for disease diagnosis and useful decision-

making.

The rest of the paper is organized as follows. In Section II,

we discuss the design and algorithm of our distributed

framework. Section III presents our experimental setup and

results with rigorous performance evaluation and comparison

between the distributed system and single node implemen-

tation with an increasing size of input raw data and different

size of double buffers. Section IV captures the related

work. Finally, we discuss success stories and limitations in

Section V and conclude in Section VI.

II. DISTRIBUTED DETECTION FRAMEWORK

We present the design and implementation of our frame-

work for splitting and distributing the data stored on an

NFS shared storage across multiple nodes. Each node then

processes the raw data segment assigned to it in a SPMD

(Single Program Multiple Data) style using the following

software modules: pre-processor, smoother, detector, and

post-processor. The high-level work flow of our distributed

framework is shown in Figure 1. The pre-processor formats

its segment of raw data and reads the data efficiently

using double buffers. The smoother reduces the noise and

eliminates baseline shifts. The detector detects pulses in the

data based on a threshold computed from the statistics of

the smoothed data. Finally, the consolidated results from all

the nodes are merged and delivered for further analysis.

Figure 1. Distributed Detection Framework: Data can be collected from
multiple bio-nano sensors on a shared storage of a high-speed server.
Clusters nodes retrieve their own data segment from the shared storage
and process it in parallel. Each data segment is processed by an individual
node in four steps, including pre-processor, smoother, detector, and post-
processor that delivers results for useful decision-making.

A. Distributed Design

The data is collected on the shared storage of an NFS

server and then distributed among participating nodes such

that each node gets its own data segment using the system

modules as below. The pre-processor at each node retrieves

its data segment from the shared NFS storage and optimizes

the overall processing from two perspectives: (i) the pre-

processor overlaps the data transfer with the computation

using double buffering; and (ii) converts the raw data into

an integer format to avoid round-off errors, as well as enable

reliable and data efficient processing. The raw data segment

is read from the storage device in chunks for subsequent

processing. However, the time required to process a given

chunk comprises of the data transfer phase from the storage

and the subsequent computation phase while the data is held

in the main memory of the node. Double buffering enables

us to partition the main memory into two buffers, which

are switched alternatively between the data transfer and the

computation phase. For example, copying of the data chunk

k in buffer A and the computation on chunk k− 1 in buffer

B is achieved simultaneously. This enables processing of



the data chunks in a pipeline fashion in order to improve

the overall performance.

In the next step, the smoother removes noise and baseline

wanders from the integer data. The cut-off frequency is an

important factor used for deciding which band of frequencies

need to be passed in order to only capture the interesting

patterns in time-domain. However, the cut-off frequency is

inversely proportional to the size of the sampling window

used in moving-average filtering. Higher cut-off frequency

allows higher frequencies to pass, and thus results in slighter

smoothing, and vice versa. We tested the moving-average

technique with different size of sampling window, i.e., 5, 10,
and 20, and found 5-sample moving average to be the most

effective for our problem. Different techniques have been

designed to detect peaks in temporal data [6]. The detector

module detects pulses against a statistical threshold that is

based on the mean and standard-deviation of the smoothed

data. Furthermore, the mean and standard-deviation are

computed from the number of samples equal to the size

of window used in moving-average (5 in our case), and

then used for the detection of patterns in the smoothed data

samples as given by Eq. 1:

Threshold = mean− 4× std− deviation (1)

The value of 4 in Eq. 1 is selected from empirical knowl-

edge. However, our framework has the capability to automat-

ically adapt to the changing characteristics (i.e., mean and

standard-deviation) of the input data. The threshold is re-

computed based on the initial k samples of the buffer of size

N . The computed threshold stays constant for N − k data

samples of a given buffer. In addition, our framework allows

for experts to adjust the size of sampling window in moving

average technique and the domain-specific value in Eq. 1 in

order to further tailor and tune the detection according to

the dynamic characteristics of the collected data.

In case of high variations in data, the buffer size can be

reduced in order to allow the threshold to quickly adapt to

the data and vice versa. The threshold detects the pulses

along with their width and amplitude in smoothed data. The

acceptable range of pulses for our problem is greater than

3 data samples, and less than 45 data samples. From the

domain knowledge, we know that fewer samples (i.e., less

than or equal to 3) are noisy pulses, while pulses with a

width less than or equal to 45 data samples constitute a

useful pulse that stems from a human cell [3]. The detected

pulses along with their features are delivered to the post-

processor. The post-processor stores the features of the

detected pulses in a comma separated values (csv) format

on the storage device, which can be later used for further

analysis in the form of scatter plots.

B. Algorithm

During the initialization phase, the data is split into num-

ber of segments equal to the number of nodes, and assigned

Algorithm 1 Distributed Detection Algorithm

Initialize();
for all sample ∈ data− segment do

DataConversion();
end for

for all sample ∈ data− segment do

Smoother();
end for

for all sample ∈ data− segment do

Detector(); // detects patterns
end for

for all patterns ∈ detected− patterns do

ComputeFeatures();
end for

to individual nodes according to static data distribution

strategy. Each node then processes its data segment through

several time-steps. Note that the size of double buffers is

always less than or equal to the size of an individual data

segment. The duration of a time-step is directly proportional

to the size of double buffers that is used. Larger buffers result

in coarser time-steps and thus the given data segment can be

processed within few time-steps. Conversely, smaller buffers

result in fine-grained time-steps and therefore, requires large

number of time-steps in order to process a given data

segment.

Algorithm 1 shows that during a given time-step, each

node concurrently processes its assigned data segment based

on the offset, as shown in the following steps:

1) Initially, each node reads the assigned data segment

using double buffering technique and converts the raw

data into integer data.

2) The converted data is then de-noised using smoothing.

3) Patterns in the de-noised data are detected against the

threshold, which is computed from the statistics of the

data.

4) Compute useful features (i.e., width and amplitude) of

the detected patterns.

III. EVALUATION

In this section, we first explain the experimental setup of

our target distributed system. Then, we show the impact of

different levels of smoothing and threshold on the detection

of different cell types and summarize statistics of distin-

guishing features of the detected pulses. Next, we analyze

the speedup achieved on a distributed systems in comparison

to a single node for an increasing size of input data. We also

examine the impact of the size of double buffers on overall

execution time. Finally, we show the performance impact of

using different interconnects for the nodes, such as 1 Gbps

Ethernet and Infiniband.
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(a) Temporal data of Cancer Cells.
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(b) Temporal data of WBCs.

44

46

48

430 460 490 520

cu
rr

en
t 

[m
ic

ro
am

p
]

time [millisec]

Raw signal

Smoothed signal

(c) Temporal data of RBCs.

Figure 2. Noisy raw data and its smoothed version for different cell
types with distinguishing pulses. Different features of the RBCs, WBCs,
and Cancer cells are summarized in Table I.

A. Experimental Setup

Our experimental testbed consists of 9 server nodes, in

which one node is used as master node and the remaining

8 are worker nodes. Each node is equipped with two 64-bit
Intel Quad-Core Xeon processors, clocked at 2.8 GHz with

an 8 GB of main memory (as reported by commands, cat

Raw signal

MA Smoothing

Threshold = µ - 4 * σ

(a) Typical Cancer pulse.

Raw signal

MA smoothing

Threshold = µ - 4 * σ

(b) Typical WBC pulse.

Raw signal

MA smoothing

Threshold=µ-4*σ

(c) Typical RBC pulse.

Figure 3. Typical pulses from each cell type and their moving-average
filtering with sampling window size of 5.

/proc/cpuinfo and cat /proc/meminfo, respectively)

and a 500 GB, 7200 RPM Seagate Barracuda ES.2 SATA

disk. The eight cores on each node are organized as core

0, 1, 2, and 3 on processor 0, and cores 4, 5, 6, and 7 on

processor 1. The operating system used is Linux CentOS 6

with kernel version 2.6.32. We implemented our framework

in C using gcc compiler version 4.4.4.

Datasets: The biological raw datasets are collected from

the translocation of a typical biopsy sample via a micropore.

The sample consists of Red Blood Cells (RBCs), White
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Figure 4. Scatter plot of different types of cells and their features detected
from a mixture of cell types.

Pulse Features RBCs WBCs Cancer Cells

Pulse Amplitude
1.6± 5 3.14± 1 8.3± 4

(microamp)

Pulse Width
15.0± 90 27.8± 31 30.1± 25

(msec.)

Table I
SUMMARY STATISTICS OF PULSE FEATURES FROM RED BLOOD CELLS

(RBCS), WHITE BLOOD CELLS (WBCS), AND CANCER CELLS.

Blood Cells (WBCs), and Cancer cells. A typical profile

of cells contains around 4 million samples recorded over a

period of 2.2 microseconds. The overall data collected from

a sample consists of 90 profiles (i.e., 360 million samples

= 10 GB of raw data), as shown in Table II. Each sample

has a resolution of 2 bytes and can measure up to 65, 535
nanoamperes.

Micropore assembly: The biopsy sample is translocated

through a Micropore of 12 micrometer radius and 200 nm

long. The calibration of sampling frequency is an important

factor to achieve the maximum throughput out of the pore.

Decreasing sampling frequency results in a stable baseline

with less noise, but cannot capture the useful translocation

events at finer granularity. Conversely, higher sampling

frequency results in the noisy data, which can suppress some

of the translocation events. The optimal sampling frequency

found for the micropore is 0.4 MHz.

B. Detection of Target Corpuscles

The level of threshold and the extent of smoothing are the

two important parameters in order to effectively detect useful

pulses. Changing the level of smoothing or threshold affect

the shape and count of the detected pulses, respectively.

Impact of Smoothing: Smoothing helps to eliminate the

noise and baseline shifts, however, it also reduces informa-

Raw Input Data Integer Data Double Buffers

Num. Samples Size Size Max. Size

Profiles (Billion) (GB) (GB) (GB)

90 0.36 10 1.44 0.72

180 0.72 20 2.88 1.44

270 1.08 30 4.32 2.16

540 2.16 60 8.64 2.16

Table II
THE MAXIMUM SIZE OF DOUBLE BUFFERS THAT CAN BE USED IN

COMPARISON TO THE INTEGER DATA, I.E., CONVERTED FROM RAW

INPUT DATA.

Sampling Type RBCs WBCs Cancer Cells

Raw signal ±465.9 ±469.1 ±492.1

5-sample smoothing ±152.7 ±188.9 ±181.0

10-sample smoothing ±93.2 ±143.3 ±135.9

20-sample smoothing ±65.5 ±124.8 ±116.2

Table III
SUMMARY OF THE VARIATION REDUCED IN THE RAW DATA DUE TO

DIFFERENT LEVELS OF SMOOTHING.

tion available in raw data, i.e., it affects shape of pulses, as

shown in Figure 2. Larger smoothing reduces variations in

the baseline to a greater extent, but at the cost of significantly

changing the pulse shape. Smoothing with a sample size of

5 results in better pulse shape as compared to a sample

size of 10 and 20, which results in higher reduction of

noise and deterioration of pulses. For clarity, we have only

shown smoothing achieved by 5-sample moving average in

Figure 3. The results also demonstrate that cancer pulses are

larger than other cell types and retain their shapes even after

smoothing, thus making them amenable to such proposed

automated detection.

Impact of Threshold: Different thresholds result in dif-

ferent count of the detected pulses. Threshold closer to the

baseline (e.g., Threshold = mean− 3× std− deviation)

results in the detection of noisy pulses (false positives) in

addition to the useful pulses. However, threshold away from

the baseline (e.g., Threshold = mean−5×std−deviation)

results in miss-detection of useful pulses that are smaller

in size (false negatives). Smoothing with 5-sample moving

average followed by a Threshold = mean − 4 × std −

deviation is found optimal for our datasets, as captured in

Figure 3.

Detected Pulses: Figure 4 shows the scatter plots of the

detected pulses from all the three different types of data.

The plots show the width and amplitude of the detected

pulses along x-axis and y-axis, respectively. The reason for

horizontal spread observed in the plot is due to smoothing

that actually reduces the amplitude of the pulse by eliminat-

ing vertical fluctuations in the pulse, however, this increases

the horizontal width of the pulses. We also observe overlap

among different types of pulses. This is because some
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Figure 5. Scalability of our framework on a single node.

clustered smaller pulses of cancer cells closely resemble

the larger pulses of WBCs due to their similar widths and

amplitudes. The average of the translocation time and the

amplitude of the detected pulses show that these features are

different for each cell type and that they differ significantly

in their size and stiffness i.e., the extent to which they block

the pore when the pass through it, as shown in Table I.

Pulse Statistics: Increasing smoothing decreases variation

in the data, as shown in Table III. Greater smoothing (e.g.,

20-sample moving-average) results in higher suppression

of noise in the original signal (i.e., the standard deviation

for RBCs is reduced from ±465.9 nanoamperes to ±65.5
nanoamperes), as compared to 10-sample and 5-sample

moving average, which results in fairly small reduction in

noise. As show in Table I, Cancer pulses have greater pulse

amplitude and width than other cell types. Furthermore, the

p-value <0.01 for the translocation time shows that the cell

types significantly differ from each other. In contrast, p-value

>0.01 for pulse amplitude shows that the cell types do not

differ significantly.

C. Performance and Scalability

Next, we discuss the performance of automated pulse

detection on a single node versus multiple nodes on a

distributed system. We show the scalability achieved over

multiple nodes. In addition, we also discuss the impact of

changing the size of double buffers on overall execution

time.

An Increasing Input Raw Data: The input data pro-

cessed by our distributed framework ranges from 10 GB to

20 GB, 30 GB, and 60 GB. These datasets correspond to

the raw data collected from typical blood sample(s) when

translocated through a solid-state pore. Furthermore, when

a 60 GB raw data is converted to integer data, it reduces

to about 8.64 GB, slightly larger than the memory footprint
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Figure 6. Scalability of our distributed framework on cluster nodes.

of a cluster node, as shown in Table II. The time taken

to process these different datasets on a single node versus

multiple distributed nodes is shown in Figure 5 and Figure 6,

respectively.

Performance on a Single Node: We show the scalability

achieved with a single node on our target cluster machine.

The 10 GB raw data is processed for different size of double

buffers (i.e., 180 MB, 360 MB, 720 MB, and 1.44 GB),

20 GB with a double buffer size of 360 MB, 720 MB,

1.44 GB, and 2.88 GB, and so on, as captured in Figure 5.

The maximum size of double buffers is kept less than the

total size of the integer data in order to make sure that

we process the given data in chunks and do not overflow

the memory footprint of the machine. We observe linear

scalability for an increasing size of input data. Additionally,

we do not see significant change while changing the size

of double buffers. However, we see slight degradation in

performance, when we increase the size of double buffers

i.e., in case of 30 GB and 60 GB.

Impact of Double Buffers: The execution time with

respect to different double buffer sizes for an increasing

size of input raw data is shown in Figure 5. We do not

see significant difference in the execution time for different

double buffers. This shows that the results are scalable with

varying size of double buffers. However, slight overhead is

incurred in case of large buffer size, such as when using the

2.16 GB double buffers to process 60 GB of raw data, as

captured in Figure 5.

Speedup Achieved on Multiple Nodes: Execution of our

distributed detection system for 2, 4, and 8 nodes is shown in
Figure 6. We observe the performance when the number of

nodes is increased for a given dataset. However, we do not

see significant performance improvement when the size of

double buffers is larger, due to the overhead incurred in the

critical path. Additionally, we are able to process 60 GB of
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raw data, collected from six biopsy samples, using 8 nodes

in less than 15 minutes.

Overhead in Speedup: The overhead in speedup is

smaller in the case of fewer nodes as compared to the

large number of nodes as shown in Figure 7. In case of

2 nodes, the overhead in speedup is 5%, 16.2%, 14.2%, and

20.1% for an input data of 10 GB, 20 GB, 30 GB, and

60 GB, respectively. While in case of 4 nodes, we observe

an overhead of 20%, 22%, 42%, and 53% for an input of

10 GB, 20 GB, 30 GB, and 60 GB, respectively. However,

the parallelization of 10 GB, 20 GB, 30 GB, and 60 GB,

results in 16%, 35.2%, 66%, and 78% overhead, respectively.

We observe that the overhead increases with the increase in

the size of input data.

Impact of Interconnects: We observe a large difference

between the underlying interconnects, i.e., 1 Gbps Ethernet

and Infiniband. The performance increase achieved from the

Infiniband is 23.1% compared to 1 Gbps Ethernet, as shown

in Figure 8.

Selection of Parameters: In case of moving-average

filtering, a size of 5 for the sampling window is found

optimal for the signal-to-noise ratio in our datasets. Based on

the empirical knowledge, the value of k=4 is found suitable

in order to subtract k times standard-deviation from the

mean of the data and thus, compute the threshold, as shown

in Eq. 1. Finally, the increase in size of double buffers is

scalable with an increasing size of input data, as far as, their

size (double buffers) do not overflow the memory footprint.

IV. RELATED WORK

In this section, we present existing pattern detection

approaches and a brief background about solid-state micro-

pores that are closely related to our work.

Grid Computing: Grid computing has been used to

leverage large-scale scientific applications, including ge-
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nomics [12], [13], [14], [15], proteomics [16], [17],

physics [18], and astronomy [19] etc. Furthermore, dis-

tributed computing has been used to enable real-time

response from an online collection of large-scale ECG

data [20], simulations of diffusion MRIs [21], and cardiol-

ogy [22]. In this work, we aim to show the use and scalability

of distributed systems in processing large amount of raw

data generated by micropore-based experimental setup, for

disease diagnosis.

Pattern Detection Techniques: Recent trends in medical

research and modern clinical setups show an increase in

recording important physiological signals, which substan-

tially involves the detection of patterns (peaks/troughs) in

the target signals. Numerous pattern-detection algorithms

have been developed [23], [24], [25], [26], [27], however,

these are domain specific. Efforts have been made to build

a generalized mathematical model [28] for peak detection

algorithms. Nonetheless, such model suffers from a large

number of false alarms and cannot be used in a particular

domain, unless properly tailored and tuned. In contrast, our

goal is to develop such a pattern detection technique that is

quicker and amenable for online monitoring and prognosis.

Solid-State Micropores: These are tiny orifices in silicon-

based membranes used to measure the passage of human

cells through them in the form of electrical pulses [1].

Corpuscles passing via orifices blocks the micropore and

results in a translocation event in the output current. The

strength of the event is determined from the degree to which

the pore is blocked by a target corpuscle. These events

are registered as pulses and their features depict patterns

specific to the human cell type [3], [2]. Biomechanical

properties of the diseased cells, such as tumor cells, are

known to be different than the normal cells [3], [29], [30],

[31]. Furthermore, the diseased cells are more elastic than



the other cell types [32], [33], [34], [35] and the recorded

pulses significantly differ in the case of tumor cells [3]. The

downside of these devices is that the detection and analysis

is all done manually. Therefore, it is important to automate

and accelerate the detection and identification of different

biological targets in the high-throughput raw data generated

by micropores. Our work benefits from improvements in

micropore technology, and these works are complementary

to ours.

V. DISCUSSION

In this paper, we present a distributed detection approach

that can acquire and process raw data collected from bio-

nano sensors at a very high speed. In our experiments,

we show that the designed framework can process data

at a maximum throughput of 36 MB/sec. In other words,

the framework has the ability to support the collection of

raw data and its online processing from about 18 micro-

pores simultaneously (each calibrated at a sampling rate

of 2 MB/sec). In order to further accelerate the detection

process, we need to incorporate fine-grained parallelism

at the chunk level with the use of accelerator such as

graphics processing units (GPUs). Such faster platforms will

demand an increased sampling rate from the micropore-

based experimental setup. Nevertheless, the sampling rate

depends on many factors including the speed and size of

the biological targets that are translocated via micropores.

The accuracy achieved with our detection technique is

about 63%, mainly because of the highly dynamic nature

of data generated from bio-nano sensors, and secondly, due

to the moving-average filtering and subsequent threshold-

based detection that is suitable for an online monitoring

and clinical setup to make quicker decisions. On the other

hand, such a technique is not quite robust against noise

and more sophisticated approaches such as machine learning

techniques are needed. Such approaches, while computation-

ally expensive, are more error-resilient and can differentiate

between the noise and information (actual patterns) with

an increased accuracy. While developing more robust and

error-resilient detection algorithms, the need for an increased

accuracy also stresses advancements on bio-nanotechnology

to detect biological targets with an increased signal-to-noise

ratio, while sensing them at finer granularity.

Our distributed computing framework splits the overall

data on a shared storage among nodes, and enables each

node to retrieve the assigned data chunk with its offset.

Chances are rare for useful patterns to span across the

boundaries of the split data segments and become a false

alarm. The reason is that the patterns are very sparse in the

data and the size of patterns is orders of magnitude smaller

than a data segment (few bytes vs. gigabytes).

In addition to splitting the data into segments across

nodes, we use double buffers within each node to overlap

I/O with the computation, while enable processing of large

datasets in chunks. Furthermore, to address large-scale pro-

cessing of data, which is greater than the memory footprint,

requires careful consideration of the memory usage. In order

to achieve this, the breakdown for the size of double buffers

is the physical memory limit. In our experiments, we are

able to process 60 GB of raw data by keeping the aggregated

size of double buffers to a maximum of 4.26 GB (2.13 GB

for an individual buffer). However, increase in the size of

buffers results in an increase in the critical path of the overall

computation, and become effective until after reading the

very first chunk of a data segment. In addition to that, buffers

larger than the size of memory footprint can either crash due

to segmentation faults, or results in paging, if virtual memory

is enabled. Conversely, very small buffers result in too much

swapping and I/O that leads to an increased communication

rather than the computation itself. Therefore, we need an

optimal size of double buffers that is selected based on the

total size of the input data in order to read large amount of

raw data efficiently. Our experiments show that as far the size

of double buffers is less than the size of the integer version

of input data and within the memory footprint, delivers an

acceptable performance.

In our distributed setup, the splitting of data segments

across nodes and the assignment of functional nodes is deter-

mined statically. In our future work, we aim to determine the

status of nodes on fly and subsequently, utilize the node only

if it is alive in order to achieve fault tolerance. Furthermore,

we have assumed an even distribution of workload across

the participating nodes. This is possible in our framework,

since the interesting patterns are very sparse in the datasets

and therefore, a node will barely have larger number of

patterns than its neighbors. Nonetheless, with the advent of

high-performance sensors with high-quality of raw data (i.e.,

enhanced information with respect to the noise and baseline

shifts), we will need to design dynamic load balancing

techniques. One such strategy is to throttle the amount of

data fed to a node on fly and assign data to an another node

that is idle or relatively less-burdened.

VI. CONCLUSIONS

We design a distributed framework for the automated and

accelerated detection of cancer cells in temporal cellular

spike streams collected from solid-state micropores. Our

framework splits the raw data (collected in shared storage)

among the worker nodes. For improved performance, each

node acquires the data segment assigned to it, using double

buffers, and processes it in multiple time-steps. The total

number of time-steps and the duration of an individual time-

step depends on the size of the assigned data segment and

the size of double buffers. In each time-step, a node performs

data conversion, noise removal, detection of pulses against

the threshold, and finally, merging the detected pulses from

the individual nodes.



In summary, our framework can support instant data pro-

cessing from multiple micropores in an online setup, where

many biopsy samples need to be collected, processed, and

analyzed quickly for useful decision making. The framework

has the ability to distribute the data across the nodes, making

it an efficient tool for faster data processing.
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