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ABSTRACT

Recent advent of the asymmetric multi-core processors such
as Cell Broadband Engine (Cell/BE) has popularized the
use of heterogeneous architectures. A growing body of re-
search is exploring the use of such architectures, especially
in High-End Computing, for supporting scientific applica-
tions. However, prior research has focused on use of the
available Cell/BE operating systems and runtime environ-
ments for supporting compute-intensive jobs. Data and I/O
intensive workloads have largely been ignored in this do-
main. In this paper, we take the first steps in support-
ing I/O intensive workloads on the Cell/BE and deriving
guidelines for optimizing the execution of I/O workloads
on heterogeneous architectures. We explore various perfor-
mance enhancing techniques for such workloads on an actual
Cell/BE system. Among the techniques we explore, an asyn-
chronous prefetching-based approach, which uses the Pow-
erPC core of the Cell/BE for file prefetching and decentral-
ized DMAs from the synergistic processing cores (SPE’s),
improves the performance for I/O workloads that include
an encryption/decryption component by 22.2%, compared
to I/O performed näıvely from the SPE’s. Our evaluation
shows promising results and lays the foundation for develop-
ing more efficient I/O support libraries for multi-core asym-
metric architectures.

Categories and Subject Descriptors

C.1.2 [Processor Architecture]: Multiple Data Stream
Architecture; D.4.4 [Operating Systems]: Input/output

General Terms

Design, Experimentation, Performance
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1. INTRODUCTION
Asymmetric multi-core processors are widely regarded as

a viable path to sustaining high performance, without com-
promising reliability. Given a fixed transistor budget, asym-
metric multi-core processors invest heavily on many simple,
tightly coupled, accelerator-type cores. These cores are typ-
ically designed with custom Instruction Set Architectures
(ISAs) and features that enable acceleration of computa-
tional kernels operating on vector data. Researchers have
collected mounting evidence on the superiority of asymmet-
ric multi-core processors in terms of performance, scalability,
and power-efficiency [5, 24, 40, 42, 43]. Application-specific
asymmetric multi-core architectures have previously been
used extensively in network processors [51]. The recent ad-
vent of the Cell Broadband Engine (Cell/BE) processor [45]
as a high-performance computing and data processing en-
gine [3, 7, 8, 19, 23, 41, 48], further attests to the potential
of emerging asymmetric multi-core architectures.

This paper explores the use of the Cell/BE, arguably a
dominant asymmetric multi-core processor, in I/O-intensive
applications. With modern high-performance computing ap-
plications generating and processing exponentially increas-
ing amounts of data, the scalable parallel processing capa-
bilities, large on-chip data transfer bandwidth, and aggres-
sive latency overlap mechanisms of the Cell/BE render it
an attractive platform for high-performance I/O. Although
several recent efforts have demonstrated the potential of the
Cell/BE for high-speed computation on data staged through
its accelerator cores (SPE’s) [19, 23], there is little under-
standing of how I/O operations interact with the architec-
ture of the Cell/BE. The implications of such Cell/BE char-
acteristics as asymmetry, DMA latency overlap, and soft-
ware management of disjoint address spaces, on the design
and implementation of the I/O software stack have not been
explored. This paper addresses these important questions
and makes the following contributions:

• A study of the I/O path in the currently available
Cell/BE operating system and in the accelerator sup-
port library;

• An exploration of various alternative I/O methods that
can be applied to the Cell/BE architecture;

• An investigation of the impact of data prefetching tech-
niques on improving I/O performance for the Cell/BE
architecture; and

• An evaluation and recommendation of appropriate
methods for handling I/O intensive workloads.



Our evaluation reveals that allowing individual accelera-
tors to perform direct I/O faces the bottleneck of all I/O
requests routed through the main core. Thus, we argue
that (i) if the current OS and library support is not to be
extended, the most efficient technique of performing I/O
is to allow the main core to pre-stage (prefetch) the data
for the accelerator cores, and (ii) the performance can be
improved if the accelerator support library is extended to
do direct I/O, hence removing the said bottleneck. We ex-
plore several I/O optimization schemes on the Cell/BE, in-
volving prefetching and staging of data between cores. An
asynchronous prefetching scheme which combines prefetch-
ing from the PowerPC core (PPE) with asynchronous DMAs
from the synergistic processing cores (SPE’s), improves the
performance of I/O workloads by up to 22.2%, compared to
näıve I/O from the SPE’s. We also re-affirm the intuition
that the Cell SPE’s have significant acceleration capabili-
ties, which can be leveraged in compute-intensive compo-
nents of I/O software stacks, such as encryption/decryption
and compression.

The rest of this paper is organized as follows. Section 2
provides background and motivation for the research pre-
sented in the paper. Section 3 describes the Cell/BE ar-
chitecture in detail. Section 4 describes our experimental
setting and workloads, followed by a presentation and eval-
uation of several schemes to improve I/O performance on
the Cell/BE. Section 5 discusses related work. Section 6
concludes the paper.

2. MOTIVATION AND BACKGROUND
In this section, we describe the background of this work,

and outline the enabling technologies for this research.
We are concerned with the implementation of efficient

I/O schemes for data-intensive applications on asymmetric
multi-core processors. We assume processors with heteroge-
neous cores, heterogeneous ISAs, and disjoint address spaces
between cores of different technology. This organization pro-
vides for a simplified hardware design which supports high
raw computational speed and data transfer bandwidth, at
the cost of increased programming complexity. Applications
leverage the processor by offloading their time-consuming
computational kernels to accelerator-type cores and by us-
ing the on-chip interconnection network to efficiently stage
(“stream”) data to the local storage space of the accelera-
tors. Clearly, acceleration capabilities are relevant to I/O-
intensive applications with significant I/O processing com-
ponents such as encryption and compression.

Besides acceleration of vector data processing, the design
of the I/O subsystem on asymmetric multi-core processor
merits further investigation. A design consideration of par-
ticular importance is the distribution of the I/O process-
ing path between the cores of the processor. Current de-
signs run the operating system on the conventional “host”
cores (e.g. the PowerPC PPE of the Cell/BE) of the proces-
sors and route all I/O requests made from the “accelerator”
cores (e.g. the SPE’s of the Cell/BE) through the host cores.
While this design simplifies the system software architecture
it imposes bottlenecks. In particular, parallel I/O from the
accelerator-type cores, which are typically many more than
the host cores, may suffer from serialization and queuing at
the host cores.

In contrast to conventional processors, asymmetric multi-
core processors delegate more control of the memory hierar-
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Figure 1: Cell Broadband Engine system architec-
ture.

chy to software. The Cell/BE maps the local store of each
accelerator core to the virtual address space, and enables
direct transfers to and from the local stores of any core,
through a DMA mechanism. The DMA mechanism further
enables overlap of multiple DMA requests with computa-
tion on each core. This capability extends naturally to the
I/O subsystem, which should properly stage data from the
disk, to off-chip memory, to on-chip memory, so that the
non-overlapped data transfer latency is minimized. The de-
sign space for data staging in the I/O system involves tuning
of the unit of data transfer between layers of the memory
hierarchy, synchronous and asynchronous prefetching algo-
rithms to stage data timely in the local store of accelerator
cores for further processing, and synchronization and com-
munication mechanisms between host cores and accelerator
cores to coordinate I/O requests.

3. CELL ARCHITECTURE
We now present details of the Cell/BE architecture. Given

the focus of this work, we also describe the path that is
taken by application I/O requests before being delivered to
the disk. Figure 1 shows the high level system components
making up the Cell/BE, namely, the PowerPC Processor
Element, a number of Synergistic Processing Elements, the
Memory Interface Controller, two non-coherent I/O Inter-
faces, and the Element Interconnect Bus.

3.1 PowerPC Processor Element
The execution“controller”of the Cell/BE is a general pur-

pose 64-bit PowerPC Processor Element (PPE), currently
operating at 3.2 GHz [25, 29]. The PPE is a dual issue, two-
way multithreaded core. The PPE boasts a 32 KB instruc-
tion and 32 KB data Level-1 cache, and a 512 KB Level-2
cache. The PPE can theoretically execute two double pre-
cision or eight single precision operations per clock cycle.
In current installations, the PPE runs Linux, with Cell/BE-
specific extensions that provide access to the accelerator-
type cores of the processor to user-space libraries. The
PPE itself implements superscalar architecture, out-of-order
and SIMD (AltiVec) instruction execution, as well as non-
blocking caches [45].



3.2 Synergistic Processing Elements
The intended use of the PPE on the Cell/BE is mainly ex-

ecution control, running the operating system and support-
ing legacy applications. The major portion of computational
workload is handled by multiple Synergistic Processing El-
ements (SPE’s) [22]. SPE’s are optimized vector engines
and operate at the global processor frequency of 3.2 GHz.
Each SPE consists of a Synergistic Processing Unit (SPU),
and a Memory Flow Controller (MFC). Each SPE also has
an embedded software-managed SRAM referred to as “Lo-
cal Store”. The local store is similar to scratch-pad memory.
The SPE has exclusive access to its local store, and the local
store holds both the executable running on the SPE and the
data needed by the executable. SPE’s can access external
DRAM and memory-mapped remote local stores exclusively
through DMA operations. The PPE can also access the SPE
local stores through DMAs. PPE accesses to an SPE local
store are processed with higher priority than local load and
stores issued by the SPE. The size of the local store on cur-
rent processor models is 256 KB.

SPE’s execute code read directly from their local stores
and may issue a very limited number of system calls, includ-
ing I/O calls. These calls utilize a stop-and-signal instruc-
tion and are routed to the PPE for kernel-level processing.
The PPE and SPE’s have different instruction sets, therefore
applications running on the Cell/BE are divided into two ex-
ecutables. The main executable runs on the PPE and uses
a POSIX-like interface for creating and triggering threads
on the SPE’s. The SPE threads can utilize high-level vector
processing library operations, expressed using directives, to
leverage the SIMD execution units, as well as a get/put in-
terface to execute DMAs and access main memory and/or
the local stores of other SPE’s. SPE thread management,
vector intrinsics and high-level primitives for DMA trans-
fers are provided by a user-level runtime library (libspe2).
The PPE and SPE may execute threads in parallel and syn-
chronize through either DMAs, or a “mailbox” mechanism.
SPE’s are expected to run through completion, as operat-
ing system support for preemptive time-slicing of SPE’s is
currently at an experimental stage.

3.3 Memory Interface Controller
The Memory Interface Controller (MIC) is responsible for

providing the PPE and SPE’s access to the main system
memory. MIC supports a dual channel Rambus XIO macro
that interfaces to external XDR Rambus DRAM. The XIO
operates at the maximum frequency of 3.2 GHz. Each XIO
channel can have eight memory banks with a total memory
size of 256 MB, making the total memory size of a single-
processor system limited to 512 MB. Observed peak raw
memory bandwidth is stated to be 25.6 GB/s at 3.2 GHz
with both XIO channels [29], however such estimates for the
peak bandwidth assume that all the banks are fully engaged
by incoming request streams, and all the requests are made
up of only reads or writes of 128 bytes. In the more typi-
cal case of blended reads and writes, the estimated effective
bandwidth is 21 GB/s [45].

3.4 I/O Controller
The I/O controller is an off-chip component that provides

interface to external network, disk, and other I/O devices.
The Cell/BE I/O controller, called FlexIO, is also based on
Rambus. The FlexIO has twelve one-byte wide links, five

of which are point-to-point inbound paths to the Cell/BE,
and the remaining seven are outbound transmit links [14].
The links are configured in two logical interfaces, referred
to as Input/Output Interfaces (IOIF). Each link operates at
5 GHz and the IOIF provides raw bandwidth of 35 GB/s out-
bound and 25 GB/s inbound. However, the actual data and
commands are transmitted as packets, which incur an over-
head due to presence of metadata such as command identi-
fier, data tags, and data size [45]. As a result, the effective
bandwidth that can be attained is reduced to between 50%
and 80% of the raw bandwidth. The operating system run-
ning on the PPE supports transparent application access to
the I/O controller. The I/O requests from SPE’s are handled
by the PPE operating system. Currently, the applications
do not have direct access to the controller.

3.5 Element Interconnect Bus
All the components making up the Cell/BE, i.e., the PPE,

the SPE’s, the off-chip I/O interfaces, and the MIC, commu-
nicate through a shared Element Interconnect Bus (EIB) [28]
and using DMA transfers, supported by the MFCs. The EIB
operates at half the system clock rate. The EIB is designed
as a circular ring comprised of four 16-bytes wide unidi-
rectional data channels. Two of the data channels run in
the clockwise direction, and the other two run in the anti-
clockwise direction. Each channel is capable of conveying
up to three concurrent transactions.

Both the PPE and SPE’s use EIB to transfer data to and
from the main memory. The PPE accesses main memory
with normal load and store instructions through the EIB.
The PPE can also issue DMA put and get commands to
and from the local storage of SPE’s, which can be mapped
to the virtual address space. An SPE accesses both main
memory and the local storage of other SPE’s exclusively
with DMA commands. The MFC of each SPE runs at the
same frequency as the EIB, supports naturally aligned DMA
transfers of 1, 2, 4, 8, or a multiple of 16 bytes, and includes
a DMA list that can be used to execute up to 2048 DMA
transfers with a single DMA command. The maximum sup-
ported size of a single DMA request from SPE’s is 16 KB.

Before sending data on to the EIB, each requesting unit
sends out a small number of initial command requests. Each
request on the EIB uses one command credit. The number
of credits reflects the size of the command buffer of the EIB
for that particular request. The EIB returns the credit back
to the requesting unit when a slot becomes available in the
command buffer due to a previous request moving ahead in
the request pipeline.

Different elements utilize the EIB by issuing a request
which is queued by a bus arbiter process. In case of con-
tention for the bus by multiple elements, the arbiter strives
for an optimal allocation of data channels to the requesters.
In order to avoid stalling any read requests, highest prior-
ity is given to the memory controller, while all other com-
ponents are treated equally with their requests served in
a round-robin fashion. Furthermore, the data ring is not
granted to a requester if the requested transfer would inter-
fere with any other data transfer, or if it would have to travel
more than halfway around the ring to reach its destination.

Each unit can simultaneously send and receive 16 bytes
of data on every bus cycle on the EIB. The maximum data
bandwidth of the entire EIB is limited by the maximum rate
at which addresses are snooped across all units in the sys-
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tem, which is one per bus cycle. Since each address request
can transfer up to 128 bytes, the theoretical peak bandwidth
on the EIB at 3.2 GHz is calculated to be 128 Bx(3.2/2) GHz
= 204.8 GB/s. However, the location of source and destina-
tion relative to each other, interference between existing and
new transfers, number of the Cell/BE chips in the system,
and whether the data transfer is to local stores or to main
memory, are some of the factors [45] that reduce sustained
data bandwidth from its theoretical peak. Moreover, if all
the data requests are in the same direction, half of the rings
will be idle, thus reducing the data bandwidth on EIB to at
least half of its peak value.

3.6 PPE/SPE I/O Path
Figure 2 shows the path that application I/O requests

from the PPE and SPE’s follow before being serviced by the
disk. The PPE supports a full operating system, and the
I/O path on the PPE is a standard one. All I/O requests
through the VFS layer are first sent to the buffer cache. In
case of miss in the buffer cache, a request to read the data
from the disk is issued. The kernel clustering mechanisms
combine multiple requests for contiguous blocks, and the
kernel prefetching algorithm detects and prefetches blocks
to reduce execution stalls due to synchronous disk requests.
Interested readers are referred to [9] for a detailed explana-
tion of the standard Linux I/O path.

Since the SPE does not support a native operating system,
there is no kernel context on SPE and all system calls issued
by SPE’s are handled as external assisted library calls. We
now discuss how external calls are supported. Note that the
same process is used to service all system calls from SPE’s
on the PPE, not just the I/O related calls.

The SPE uses special stop-and-signal instructions [26] to
hand over control to the PPE for handling external service
requests. In order to perform an external assisted library
call, the SPE allocates local store memory to hold the input
and output parameters of the call and copies all the input
parameters (from stack or registers) into this memory. It
then combines a special function opcode corresponding to
the requested service with the address of this input/output
memory image to form a 32-bit message. The SPE then
places this message into the local store memory, immedi-
ately followed by a stop instruction. It then signals the
PPE to execute the library function on behalf of SPE. In

PPE Time SPE Time

SPE Context Creation - 1.46
Program Loading on SPE - 0.16
Thread Creation on SPE - 0.104
Buffer Allocation 0.012 0.015
File Reading 48688 48414
Buffer Deallocation 0.012 0.016
Total SPE execution time - 48806
Total time 49664 49241

Table 1: Average time (in msec.) required by major
tasks while reading a 2 GB file from the disk on the
PPE and a SPE.

response to the signal, the PPE reads the assisted call mes-
sage from SPE’s local store, and uses the stop and signal
type and opcode to dispatch the control (PPE context) to
the specified assisted call handler. The handler on the PPE
retrieves the input parameters for the assisted call from the
local-store memory pointed to by the assisted call message,
and executes the appropriate system call on the PPE. On
completion of the system call, the return values are placed
into the same local store memory, and the SPE is signaled to
resume execution. Upon resumption, the library on the SPE
reads the input value from the memory image and places
them into the return registers, hence, completing the call.
Thus all I/O calls on the SPE’s are routed through the PPE
operating system.

4. EVALUATION OF I/O IMPROVING

TECHNIQUES
In this section, we present and evaluate a number of I/O

improving techniques for the Cell/BE architecture. For
our evaluation, we use different I/O workloads executed on
a Sony Play Station 3 (PS3). The PS3 is a hypervisor-
controlled platform. It has 6 active SPE’s with 256 KB local
storage, 256 MB of main memory of which about 200 MB
is directly accessible to the operating system (OS), and a
60 GB hard disk. Although the Cell/BE has 8 SPE’s, on
the PS3, one SPE is reserved for running the hypervisor
and another SPE is deactivated. Accesses to storage de-
vices, including the disk, are routed through the hypervisor
with dedicated hypercalls and their completion is commu-
nicated to the OS through virtual interrupts. Due to the
proprietary nature of the PS3 hypervisor, it is not possible
to assess its imposed overhead on accesses to storage devices
for the purpose of this work.

In the following, we first evaluate the characteristics of our
experimental platform by running simple workloads, then we
explore how the SPE’s can be used to handle I/O intensive
tasks such as data encryption. Finally, to account for ex-
perimental errors the presented numbers represent averages
over three different runs unless otherwise stated.

4.1 Identity Tests
In the first set of experiments, we created a workload that

reads a large file of size 2 GB. We refer to this experiment
as the Identity Test. The goal of this Test is to determine
the maximum I/O bandwidth available on our experimental
platform for the PPE and SPE’s.

Table 1 shows the timing break down for the Identity Test
both on the PPE and a SPE using a block size of 16 KB. Note
that context creation, loading, and thread creation are only



block size 4 KB 16 KB
PPE SPE PPE SPE

Time (msec.) 48674 53779 48688 49414
Throughput (MB/s) 41.09 37.19 41.08 40.48

Table 2: The average time and observed throughput
for reading a 2 GB file from disk on the PPE and a
SPE using different block sizes.

needed when running the Test on the SPE. It is observed
that the time to read the file on the SPE is similar to that
on the PPE. The table also shows that the cost of the context
loading steps on the SPE is relatively insignificant. However,
this cost can become crucial if SPE workloads are repeatedly
loaded or if the execution time of the SPE program is small.
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Figure 3: Average time and observed throughput
for simultaneously reading a 2 GB file using 16 KB
blocks from one to six SPE’s.

Next, we modified the block size to 4 KB, and determined
the overall time it would take to perform the Identity Test
both on the PPE and the SPE. Table 2 shows the results,
and comparison with the previous case. We observe that
while changing block sizes does not have a significant effect
on the PPE I/O throughput, the large block size gives bet-
ter throughput on the SPE. The reason for this improved
throughput is that data transfers between SPE and the
memory is done via DMA, and DMA is optimized by us-
ing the maximum transfer size per DMA operation, which
for the Cell/BE is 16 KB. For this reason, in our remaining
experiments we set the buffer size to 16 KB.

Next, we repeated the Identity Test while increasing the
number of SPE’s from one to six. Figure 3 shows the result.
For this experiment, the PPE invokes one thread on each of
the available SPE’s, however, the total size of data read is
same as before, i.e., 2 GB. A different file is read at each SPE
so that unique requests are issued and any caching at the I/O
controller and/or memory does not come into play. As seen
in the figure, the average observed throughput decreases as
the number of SPE’s reading the file increases. The average
observed I/O throughput is reduced by 6.4% when all the
six available SPE’s are used, compared to the case of using
a single SPE for the same amount of data. This is due to
increased contention for the EIB, and indicates that simply
offloading I/O intensive jobs to multiple SPE’s is unlikely to
yield the best use of resources.

Buffer size
Num. SPE’s 1 KB 2 KB 4 KB 8 KB 16 KB

1 21750 13952 9427 7828 6394
6 95410 56953 37031 26168 21206

Table 3: Time measured (in msec.) at PPE for send-
ing data to SPE through DMA under varying buffer
sizes, and for using one and six SPE’s.

4.2 Workload-based Tests
In this section, we present the results of running an I/O

intensive workload on the Cell/BE architecture. We first
describe our workload, followed by detailed investigation of
techniques to support the workload on the PS3.

4.2.1 Workload Overview

The workload that we have chosen is a 256-bit encryp-
tion/decryption application. Our choice is dictated by the
computation intensive component of the encryption and de-
cryption along with the need to do large I/O transfers for
reading the input and writing the output. The workload
reads a file from the disk, encrypts or decrypts it, and then
writes back the results. Given that the PS3 has only about
200 MB of main memory available to user programs, we
chose to encrypt a 64 MB file. This allows us to keep the
entire file in memory if so needed and isolate the effects
of buffer caching etc. We also vectorized the computation
phase of our workload to achieve high performance on SPE’s,
which improved the time taken in the computation phase by
42.1%.

4.2.2 Effect of DMA Request Size

Our evaluation requires that the computation be offloaded
to specific SPE’s. Therefore, we first evaluate the effect of
DMA buffer sizes on such offloading. Table 3 shows the time
of computation offloading as we varied the buffer size used
for DMA communications between the PPE and SPE. Note
that these buffers are different from the file I/O block size
of the previous experiments (which is fixed at 16 KB). We
focused on the decryption phase of our workload for this
experiment. In this case, all I/O is performed at the PPE,
which after reading a full buffer of data from disk, passes its
address in the main memory to a SPE. The SPE uses the
passed address to do a DMA transfer and brings the contents
of the buffer to its local store. The SPE then processes the

Time (msec.)
Buffer size 4 KB 16 KB

No. of times SPE is loaded 16384 4096
SPE loading (excluding execution) time 1787 823
SPE execution (including loading) time 8014 4273
CPU time used by SPE 5200 1850
Disk read time 450 497
Disk write time 1191 1221
CPU time for disk read operations 400 570
CPU time for disk write operations 330 250
Execution time of program 10176 6565
CPU time used by PPE 6050 2890

Table 4: Breakdown of time spent (in msec.) in dif-
ferent portions of the code when data is exchanged
between a SPE and the PPE through DMA buffer
sizes of 4 KB and 16 KB.



PPE PPE SPE SPE

Time 3403 205 714 640
.

SPE SPE PPE PPE

Time 4174 329 217 217

Table 5: Time (in msec.) for reading workload file
at PPE/SPE followed by access from SPE/PPE.

data in the local store, and upon completion of the computa-
tion issues another DMA to transfer the processed contents
back to the main memory. Finally, the PPE can write the
updated buffer in the main memory back to the disk. Note
that the maximum size of a single channel DMA that can
be sent on the EIB is 16 KB, thus the maximum DMA size
of our experiments is limited to that. The whole experiment
is repeated for two cases: using a single SPE, and using all
six SPE’s. These results show that increasing the buffer size
improves the execution times of our workload.

Timing breakdown for the cases of 4 KB and 16 KB
DMA buffers.

For the previously described experiment, we also per-
formed a detailed timing analysis for 4 KB and 16 KB
DMA’s using a single SPE. Table 4 shows the results. This
experiment was conducted to see the effect of different DMA
sizes on the time spent on various parts of the program. For
the same input file, when the DMA size is increased from 4
KB to 16 KB, the number of times the PPE has to invoke a
thread on an SPE is reduced by a factor of 4, thus reducing
SPE loading time. The number of times the SPE is loaded
to perform the same task also affects the total execution
time, since it cuts down the number of times initialization is
required on the SPE. Table 4 shows that the total execution
time for the same workload is less when SPE and the PPE
communicate with each other through DMA operations and
a block size of 16 KB, than using a block size of 4 KB for
the same data set. Observe that the total execution time
is significantly less when using 16 KB blocks compared to
4 KB blocks. This is due to the fact that the total time also
includes the time required at SPE to fetch the data into
its local store through DMA operations, and the number of
DMA operations done by SPE for 16 KB blocks is 4 times
less than that for 4 KB blocks for the same data set.

4.2.3 Impact of File Caching

As discussed in Section 3, the I/O system calls from the
SPE are handed over to the PPE for handling. This implies
that once a file (or portion of a file) is accessed by the PPE
it may be in memory when subsequent access for the file
are issued from a SPE or the PPE, and these accesses can
be serviced fast. In this experiment, we aim at confirming
this empirical observation. First, we flushed any file cache
by reading a large file (2 GB). Then we read the 64 MB
workload file on the PPE, followed by reading the same file
at a SPE. Table 5 shows the result for reading a file cold
first on the PPE, followed by reading at SPE. The same
experiment is repeated for first reading the file at a SPE,
followed by at the PPE. From the table, we conclude that
the caching effect is noticeable, and can help in reducing I/O
times both on the PPE and on the SPE’s, by first reading a
file on the PPE. We also notice that file reading on the SPE
is slower due to the I/O being routed through the PPE.
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Given the effectiveness of file caching, we now explore a
number of schemes to improve I/O performance of our work-
load. For the following experiments, we utilize the encryp-
tion phase of our workload. Figure 4 shows the results. In
some schemes tasks are executed in parallel at the PPE and
SPE’s. This is shown as two side-by-side bars for a scheme,
with the total execution time dictated by the higher of the
two bars. The breakdown for various steps is also shown.

Scheme 1: SPE performs all tasks.
Under this scheme, we perform all the tasks of our work-

load, i.e., reading the input file (b), processing it (d), and
writing the output file (f), on the SPE. Note, however, that
we still utilize the PPE to invoke the tasks as a single pro-
gram on the SPE.

Scheme 2: Synchronous File Prefetching by the PPE.
In this scheme, we attempt to improve the overall perfor-

mance of our workload by allowing the PPE to prefetch the
input file in memory. This scheme is driven by the above
observation that subsequent accesses by SPE’s to a file read
earlier by the PPE improves I/O times due to file caching.
For this purpose, the PPE first pre-reads the entire file caus-
ing it to be brought in memory. Then the program from
Scheme 1 is executed as before. Results in Figure 4 show
that the File read at SPE (b) is much faster for this scheme,
compared to Scheme 1. However, the time it takes to read
the file on the PPE (a) is 81.6% longer compared to File read
at SPE (b) in Scheme 1. We believe this is due to the PPE
flooding the I/O controller queue, and lack of overlapping
opportunities between computation and I/O in a sequential
read compared to the read and process cycle of Scheme 1.
Hence, Scheme 2 shows promise in terms of improving SPE
read times, but suffers from slow I/O times on the PPE. The
overall workload execution time is longer in Scheme 2 than
Scheme 1.



Scheme 1 Time Scheme 6 Time

Read at 1 SPE 346 -
Read at PPE - 1719
Process at 1 SPE 1082 858
Write at 1 SPE 1357 -
DMA read at 1 SPE - 499
DMA write at 1 SPE - 287
DMA wait at 1 SPE - 25
Write wait at PPE - 99
Write at PPE - 1448
Total (6 SPE’s) 3735 3410

Table 6: Timing breakdown (in msec.) of various
tasks for scalability tests for Scheme 1 and Scheme
6 by using six SPE’s.

Scheme 3: Asynchronous Prefetching by the PPE.
In the next scheme, we try to remove the file reading bot-

tleneck of Scheme 2. For this purpose, we created a separate
thread to prefetch the file into memory. Simultaneously, we
offloaded the program of Scheme 1 to the SPE. The goal is to
allow the prefetching by the PPE to overlap with computa-
tion on SPE, thus any data accessed by SPE will already be
in memory and the overall performance of the workload will
improve. Note that we do not have to worry about synchro-
nizing the prefetching thread on the PPE with the I/O on
SPE. In case the PPE thread is ahead of SPE, no problems
would arise. However, if the SPE gets ahead of the PPE
thread, the SPE’s I/O request will automatically cause the
data to be brought into memory, which in turn will make
the PPE read the file faster, thus once again getting ahead
of the SPE. The integrity of data read by SPE will not be
compromised.

It is observed from the results in Figure 4 that although
the I/O times (a) for individual steps increased, better
I/O/computation overlapping resulted in an overall im-
provement of 4.7%, compared to Scheme 2. This shows that
the PPE can facilitate I/O for SPE’s and doing so results in
improved performance.

Scheme 4: Synchronous DMA by the SPE.
So far, we have attempted to improve SPE performance by

indirectly bringing the file in memory and implicitly improv-
ing the performance of the SPE workload. However, such
schemes are prone to problems if the system flushes the file
read by the PPE from the buffer cache before it can be read
by SPE, hence negating any advantage of a PPE-assisted
prefetch.

In this scheme, we explicitly prefetch the file on the PPE
and give the SPE the address of memory where the file data
is available. The SPE program is modified to not do direct
I/O, rather use the addresses provided by the PPE. Hence,
the PPE will read the input file in memory, give its address
to the SPE to process, the SPE will create the output in
memory, and finally the PPE will write the file back to the
disk. The SPE will use DMA to map portions of the mapped
file to its local store and send the results back. Figure 4
shows the results. Here, we observe that the DMA read at
SPE (c) takes 55.0% and 62.0% less time than File read at
SPE (b) in Scheme 2 and Scheme 3, respectively. However,
the synchronous reading of file in this scheme takes long,
causing the overall times to not improve as much: 4.9% and
0.2% compared to Scheme 2 and Scheme 3, respectively.

Scheme 5: Asynchronous DMA by the SPE.
To mitigate the effect of blocking read, we once again try

the approach of Scheme 3 and utilize a separate thread to
read the input file asynchronously. The DMA handover and
processing at SPE are similar to that of Scheme 4. Figure 4
shows the results. A caveat here is that there is no automatic
syncing of the prefetch thread and the SPE process, as was
the case in Scheme 3. If the SPE process got ahead of the
PPE prefetch thread, it will process junk data from memory
where the input file has not been loaded. Hence, although
this scheme is promising, it cannot guarantee the correctness
of the operation.

Scheme 6: Asynchronous DMA by the SPE with Sig-
naling.

The main shortcoming in Scheme 5 is the lack of a sig-
naling mechanism between the prefetching thread produc-
ing the data (reading into memory) and the SPE consum-
ing the data. One way to address this to use the mailbox
abstraction supported by the Cell/BE. However, documen-
tation [27] advises against using mailboxes given their slow
performance. Therefore, we used DMA-based shared mem-
ory as a signaling mechanism to keep the prefetching thread
synchronized with the SPE’s. The PPE starts a thread to
read the input file, and simultaneously also starts the SPE
process. The difference from Scheme 5 is that the prefetch-
ing thread continuously updates a status location in main
memory with the offset of the file read so far, and uses this
location to determine how much of the data has been pro-
duced by SPE for writing back to the output file. Moreover,
the SPE process, instead of blindly accessing memory as-
suming it contains valid input data, periodically uses DMA
to access a pre-specified memory status location. In case the
prefetching thread is lagging, the SPE process will busy-
wait and recheck the status location until the required data
is loaded into memory. Finally, the SPE can also use the
shared location to specify the amount of processed output.
This allows the PPE to simultaneously write back the out-
put to the disk, and achieve an additional improvement over
Scheme 5 where output was written back only after the en-
tire input was processed. Thus, Scheme 6 achieves both
reading of the input file and writing of output file in parallel
with the processing of the data. Figure 4 shows the results,
which are quite promising. Scheme 6 achieves 22.2%, 24.1%,
and 24.0% improvement in overall performance compared to
Scheme 1, Scheme 3, and Scheme 4, respectively.

Scalability Test.
In order to test the scalability of Scheme 6, we tested it

by fully parallelizing it to 6 available SPE’s on the Cell/BE,
and compared the result with the scaled version of Scheme
1, where all the I/O is being managed by the SPE’s. For this
experiment, we made the following changes to the workload
of Scheme 1 and Scheme 6, while keeping the total input size
unchanged (i.e. 64 MB).

For Scheme 1, the PPE starts one thread for each of the
six SPE’s. Each SPE thread reads an input file of 10.67 MB,
encrypts it, and writes the resulting buffer back to the disk.
The total input size across all the SPE’s remains 64 MB.

For Scheme 6, we still read the 64 MB file on the PPE,
but instead of giving the entire workload to a single SPE,
it is evenly distributed among the six SPE’s. Each SPE
processes its portion of the buffered data as follows. The



first 16 KB block in the input buffer is processed by one
SPE, the next 16 KB block in the same buffer is processed
by another SPE, and so on. Once the PPE has read the file
completely in main memory, it waits for the output to be
produced by the SPE’s before writing it back to the disk.

Table 6 shows the results of this experiment. The total
time for Scheme 1 also includes the time spent by PPE to
wait for all the six SPE threads to complete their execution
(i.e. barrier time). Note that parallelizing read and write op-
erations among SPE’s provides considerable speedup, 44.7%,
44.0% respectively, compared to Scheme 1 in Section 4.2
where the same amount of data is read and written by a
single SPE. Also note that average time to read the file at
each SPE is less than the total file reading time on the PPE
because each SPE reads only a fraction of the file read by
the PPE. The results show that Scheme 6 performs better
(8.7%) than Scheme 1, when all available SPE’s are utilized
in the Cell/BE, albeit by a narrower margin compared to
the case where a single SPE is used.

Scheme 6 improves performance only by about 23.9%
when it is scaled from one to six SPE’s. This result is at-
tributed to several reasons. First, the file reading time for
the scaled version of Scheme 6 is considerably more than the
original version because here the PPE also has to compute
the reserve status locations based upon the block number
that has just been read from the disk.

File reading time also increases because of EIB contention
since now all six available SPE’s along with the PPE are
using the EIB to read and write data in main memory. Sec-
ondly, the DMA wait time at each SPE increases signifi-
cantly in the scaled version of Scheme 6 (25 msec.) as com-
pared to Scheme 6 using a single SPE (0.07 msec.), although
each SPE in the former case is required to process 1/6 of the
total data processed in the latter case. This happens also
because of EIB contention and suboptimal routing of the
DMA requests on the EIB rings.

4.3 Discussion
Our evaluation has shown that to achieve good I/O perfor-

mance, the I/O block sizes and the DMA buffer sizes should
be matched to the maximum DMA channel size of 16 KB.
Further, we observed a clear benefit of prefetching a file us-
ing the PPE and then offloading it to SPE, rather than let-
ting the SPE’s do the I/O directly. One observed bottleneck
is that all I/O from SPE’s is sent to the PPE for handling,
which results in performance degradation. Our DMA based
approach using signaling provided best performance for our
workload. We recommend using similar techniques for I/O
intensive workloads with the current OS implementation on
the Cell/BE.

An important observation is that by allowing SPE’s to do
DMA to a prefetched file in memory, the bottleneck of do-
ing centralized I/O is removed: each SPE directly goes to
the memory through DMAs rather than going through the
PPE for I/O. This indicates that incorporating I/O func-
tionality in the SPE library code rather than relying on the
PPE OS can yield promising results. The trade-off lies in
the fact that loading full I/O capabilities onto the SPE’s
reduces the space available in SPE local storage for running
other compute-intensive tasks. We plan to explore this av-
enue, by developing direct I/O functionality in libspe and
investigating the aforementioned trade-off in the context of
realistic I/O workloads.

5. RELATED WORK
We discuss related research on the Cell/BE and on

prefetching for improving I/O performance.

Cell/BE The Cell/BE has been the subject of several ap-
plication studies, including particle transport codes [41], nu-
merical kernels [1, 3], irregular graph algorithms [4], and al-
gorithms for sequence alignment and phylogenetic tree con-
struction [7, 44]. More recent studies explores the potential
of the Cell/BE for accelerating the processing of large data
volumes and used the Cell/BE to implement fast sorting [19],
query processing [23], and data mining [8] algorithms. Our
contribution departs from earlier work by focusing on the
implementation of I/O operations in the Cell/BE system
software stack.

The Cell/BE has also spurred several efforts for devel-
oping high-level programming models and supporting en-
vironments for simplifying code development and optimiza-
tion. These efforts include Sequoia [17], Cell SuperScalar [6],
CorePy [37] and PPE-SPE code generators from single-
source modules [16, 49]. Our research is based on the generic
Linux I/O interfaces, however it is conceptually related to
programming models that explicitly manage the memory hi-
erarchy by staging data vertically through the machine and
localizing computation to specific layers of the memory hi-
erarchy [17].

Prefetching A key technique for improving I/O per-
formance of workloads is prefetching, which dates back
to as early as Multics [18]. A large amount of work
on I/O prefetching utilizes hints about an application’s
I/O behavior, e.g., programmer-inserted hints [12, 39],
compiler-inferred hints [36], and hints prescribed by a bi-
nary rewriter [13]. Alternatively, dynamic prefetching has
been proposed that detects applications’ reference patterns
at runtime, e.g., prediction using probability graphs [21, 50],
and time series modeling [47]. Prefetch algorithms tailored
for parallel I/O systems also have been studied [2, 30, 31].
Speculative prefetching at the level of whole files or database
objects has been proposed by many works [15, 20, 34, 35,
38].

The interaction between prefetching and caching has also
been identified [9, 10]. Based on these interactions, a number
of works have proposed integrated caching and prefetching
schemes [2, 11, 30, 31, 32, 39, 46] that simultaneously iden-
tify and handle temporal and spatial I/O access patterns.
FlexiCache [33] provides a new flexible interface that allows
easy modification of disk cache management decisions using
OS-level modules.

In this paper, we explore how basic prefetching techniques
can be employed to improve the performance of I/O inten-
sive workloads on the Cell/BE architecture. To the best of
our knowledge, this is the first exploration of such techniques
in the Cell/BE setting.

6. CONCLUSION
We investigated prefetching-based techniques for support-

ing I/O intensive workloads involving significant computa-
tion components on the Cell/BE architecture. We observe
that the current operating system facilities for performing
I/O directly on accelerator cores (SPE’s) are limited, and
do not provide judicious use of the available resources. A
particular concern is that currently, I/O on SPE’s is redi-



rected to the PPE, hence creating a central bottleneck. We
have presented an asynchronous prefetching-based approach
that partially breaks up this bottleneck, utilizes decentral-
ized DMA to achieve 22.2% better performance for our work-
load compared to the case where all I/O is handled at the
SPE. However, we argue that a fundamentally better ap-
proach would be to extend SPE support libraries with I/O
functionality, thus removing the dependence on the PPE,
simplifying the SPE program design for I/O intensive work-
loads, and improving overall performance. We are currently
investigating the feasibility of such library support.
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