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Abstract—As the cloud services journey through their lifecy-
cle towards becoming commodities, the demand is increasing
for “pay-per-use” pricing model. In this model, users are
charged for the amount of resources, e.g., volume of trans-
actions, CPU usage, etc., being consumed during a given time
period. Software as a Service (SaaS) providers charging their
customers via pay-per-use (e.g., Microsoft Azure Web Services)
and facing Infrastructure as a Service (IaaS) costs per VM
per month (e.g., SoftLayer) have to carefully choose and scale
their non-revenue generating service management infrastruc-
ture to penetrate and stay in the market. In this paper, we
focus on the metering and rating aspects of cloud service
management, and their scalability with the SaaS business and
operational changes. We design a framework for cloud service
providers to scale their revenue management systems in a
cost-aware manner, where the deployment of these revenue
systems dynamically uses existing or newly provisioned SaaS
VMs, instead of the extant approach of using dedicated setups.
Our experimental analysis shows that service management
related tasks can be offloaded to the existing VMs with at most
15% overhead in CPU utilization, 10% overhead for memory
usage, and negligible overhead for I/O and network usage.
We used traces from IBM production servers to mimic the
load on VMs. By dynamically scaling the service management
setup, we were able to adapt to increasing metering data
processing requirements without incurring additional cost,
while preserving the infrastructure footprint.

I. INTRODUCTION

Until recently, cloud service providers could afford to

charge their customers only on a flat-rate basis, e.g., in

the form of a monthly subscription fee. Although this

pricing methodology is straight forward and involves little

management and performance overhead for the cloud service

providers, it does not offer the competitive advantage edge

of the pay-per-use or usage based pricing [25].

From the perspective of the cloud service provider, main-

taining the competitive advantage by effectively adapting

to versatile pricing policies has become a matter of high

priority [12]. However, usage based pricing policies bring a

new set of service management requirements for the service

providers, particularly for their revenue management [32].

The revenue management aspects impacted by the pricing

policy change are the collection of new metered data and its

rating according to the new detailed price plan. This entails

finer-grain metering, which may impact the performance

of resources due to the need to monitor service resources

and applications at the appropriate level to provide the

usage to be charged for. This may result in collecting large

amounts of metered data. Furthermore, this metered data

needs to be processed in order to perform: (1) mediation, i.e.,

transformation into the desired units of measure expected by

the usage price policy, e.g., average, maximum or minimum

usage; and (2) rating based on the price policy for generating

the invoice for the customers, e.g., multiplying usage by per

unit rate. The capacity requirement for these non-revenue

generating resources fluctuates with the service demand

(e.g., the number of subscriptions), service price policy

updates (e.g., from single metric based charge to complex

multi-metric based charge), while their unit cost changes

depending on the operational infrastructure solution (e.g.,

on premise, traditional outsourcing or IaaS).

The cloud services profit is the difference between the

revenue driven from charging the customers that subscribed

to the services and the cost of managing the service. A

crucial challenge for a sustainable business model, is how to

adapt the pay-per-use revenue management, and implicitly

its costs, to dynamically accommodate business changes in

the pricing model, service demand or operational changes in

infrastructure [20] in order to profitably remain in the race

for the cloud market. The providers have to carefully choose

the metering, mediation, and rating tools and infrastructure

to minimize the cost of the resources performing them.

The first step in performing this cost associated with mon-

itoring and collecting the metering data [11]. The existing

practice is to use a separate setup for collecting metering

data for pricing in addition to the cloud health monitoring

setup that collects information such as performance and

availability of resources and resource usage contention. The

extra resources used for such revenue management place

additional burden on the cloud service provider. To this end,

recent works such as Ceilometer [2] from OpenStack [30],

[4] aim to consolidate metering for multiple purposes and

avoid collecting of the same data by multiple agents. In

this paper, we propose a framework that leverages such

approaches, especially the OpenStack’s ecosystem, to effi-

ciently collect and estimate the volume of metering data.

Second, we need to estimate the cost of storing and pro-

cessing the metering data. As the service demand fluctuation

and the selection of different pricing policies will result

in different sizes of collected metering data, the setup is

expected to store and process data of varying size without
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Figure 1. Current approach for metering cloud services.

wasting resources. Typically, cloud service providers use

a dedicated set of VMs for their service management as

shown in Figure 1, which they manually expand based on the

increasing load in their data centers. Cloud service providers

such as SaaS may themselves be customers of IaaS or PaaS

(Platform as a Service). Thus, they incur monthly charges

for this dedicated set of VMs. This infrastructure cost is

additional to the cost of the tools (e.g., for license per

volume, maintenance etc.). The goal is to minimize the

footprint of this nonrevenue-generating infrastructure, thus

minimizing service management infrastructure cost; ideally

eliminating it.

The typical workloads of the PaaS and SaaS providers

clients have been found to use 50% of the IaaS capacity

at best [6], [1], leaving the remaining un-utilized 50% for

additional workloads. Moreover, SaaS customers can be

conveniently given controlled access to the metering data, if

such data is collected and maintained at the same set of VMs

as that running the workload. Therefore, in our scalable me-

tering solution we adopt this approach. The providers need

to comply with their customers SLAs by scaling up their

setup according to the load on the systems. To this end, our

framework dynamically monitors the resource utilization per

VM and scales up or down the tools deployment accordingly.

In the worst case scenario, when the workloads on all the

customers VMs is about to reach the maximum allowed as

per the SLA, our framework automatically launches new

VM(s) to adapt to the workload. Note that the traditional

customer workload placement is out of the scope of this

paper.

II. ENABLING TECHNOLOGIES

We have designed our protocol on the well-established

cloud ecosystem of OpenStack—an open source project that

provides a massively scalable cloud operating system. A key

component that we leverage in our project is OpenStack’s

Ceilometer that provides an infrastructure to collect detailed

measurements about resources managed by OpenStack. The

use of Ceilometer in our case is to deliver a unique point

of contact for the billing systems to acquire all the mea-

surements needed to generate the customer’s invoice, across

all OpenStack core components [5]. In Ceilometer, resource

usage measurement, e.g., CPU utilization, Disk Read Bytes,

etc., is done by meters or counters. Typically there is a meter

for each resource being tracked, and there is a separate meter

for each instance of that resource. It is important to note that

the lifetime of a meter is decoupled from the associated re-

source, and a meter continues to exist even after the resource

it was tracking has been terminated [2]. Each data item

collected by a meter is referred to as a “sample,” and consists

of a timestamp to mark the time of collected data, and a

volume that records the value. Ceilometer also allows service

providers to write their own meters. Such customized meters

can be designed to conveniently collect data from inside

launched VMs. For a PaaS or SaaS service, this feature

allows the service providers to track application usage as

well. OpenStack allows integration of multiple databases

with Ceilometer for the purpose of storing metering data,

e.g., MySQL, MongoDB, etc. We use MongoDB as that is

the recommended and the default database in OpenStack

because of features such as flexibility and ability to change

the structure of documents in a collection over time.

MongoDB offers two key features of sharding and repli-

cation, which make it a perfect candidate for our ap-

proach [15]. Sharding is a method of storing data across

multiple machines (shards) to support deployments with

very large datasets and high throughput operations. Shard-

ing helps in realizing scalable setups for storing metering

data because the data collected by Ceilometer is expected

to increase linearly over time. This is especially true for

production servers. Replication allows multiple machines

to share the same data. Unlike sharding, replication is

mainly used to ensure data redundancy and facilitate load

balancing. Finally, MongoDB also allows the use of the

MapReduce [19], [3] framework for batch processing of data

and aggregation options, which are highly relevant for the

purposes of our application.

III. DESIGN

In this section, we present the design of our fine-grained

scalable metering framework. Figure 2 illustrates the overall

architecture including the key components and their inter-

actions. The main modules are data size estimator, resource

profiler, resource predictor, auto-scalable setup for mediation

and rating with metering store for Ceilometer, and load

balancer.

The framework initiates a new sequence of operations

upon receiving a heat template file when OpenStack is

servicing a provisioning request. The template is first parsed

to extract the information about the requested resources. This

information is then used to estimate the expected change in

the size of the metering data to be collected by Ceilometer.

Meanwhile, the resource profiler module, which keeps track

of the resources that are already in use, profiles their capacity

for mediation and rating purposes. The resource predictor



module uses the information about the profiled and newly

requested resources to estimate the additional resources that

would be required for the mediation and rating of the

provisioning request. The estimate is then used to scale

the metering store, and the setup is finally launched along

with the requested provisioning. The dynamic load balancer

module comes into action and ensures that resource usage

per VM does not exceed a predetermined threshold.
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Figure 2. Overview of the fine-grained scalable metering and rating
architecture.

A. Data Size Estimator

The data size estimator module calculates the expected

changes in the size of metering data. For this purpose,

the module uses the resources information from the heat

template file of the provisioning request, and determines

the set of meters that are required to perform the necessary

monitoring and metering. Next, the expected total number

of metering events on various polling intervals is calculated

along with the average event object size. The number of

events are calculated by parsing the pipeline.yaml file to

fetch the sampling frequency of each meter. The average

object event size is variable and depends on the type of

meters launched and their sampling frequency or polling

interval. To this end, the data estimator module keeps track

of the changes in the event object size per meter and

estimates the value by taking the average of the three

previously collected values. The module then averages these

values across the meters to determine the overall average

object size. An alternative approach is to directly track the

overall average object event size from the metering store’s

database.

B. Resource Profiler

Ceilometer launches various meters for monitoring and

metering the usage of different resources per VM, e.g., CPU,

memory, storage, networking, etc. The resource profiler

module intercepts the metering data send to the metering

store, and uses it to keep tabs on the per-VM resource

utilization. A challenge is that the collected metering data

only gives an instantaneous view of a VM’s resource usage

at a particular time instance, and do not necessarily portray

the overall usage. To address this, the resource profiler uses a

sliding window across last n metering samples to calculate a

moving average and uses that as an estimate of the current

per-VM resource utilization. An alternative would be that

instead of intercepting the data, we query the metering store

for overall utilization. However, this would unnecessarily

burden the database and impact overall efficiency. Thus, we

do not adopt the querying approach. The resource profiler

also maintains queues of resources sorted based on estimated

utilization. This information can be used to determine free

resources within each VM, which in turn supports effective

scaling of the metering setup.

C. Offline Resource Predictor

The job of offline resource predictor module is to analyze

the data collected by the resource profiler and the data size

estimator output to provide an assessment of the resources

that would be required for the associated metering setup. A

possible trade-off faced in such assessments of the needed

resources is whether to underprovision or not the revenue

management resources at the expense of performance degra-

dation in terms of average time taken to process the collected

metering data. We allow the providers to manage this trade-

off by specifying the expected processing query time, query

rate, and average load on the setup, as an input. Thus,

based on the provided input, the resources predictor first

determines if the current metering store setup will hold under

the newly predicted incoming data without breaching the

established thresholds. Maintaining the current setup avoids

deployment oscillations. If case the threshold is breached,

the replicator will calculate the optimum data partition

emulating the addition of replica sets as shards. Only in

the worst case scenario, when a partition cannot be reached

due to high per-VM resource utilization on all the VMs, our

predictor will resort to introduce new VM(s) to handle the

management workload. This module outputs a recommended

mediation and rating setup to achieve a potential minimum

footprint.

D. On-line Fine Tuning Auto-Scaling of the Metering Store

Once the new request provisoning completed and the me-

tering setup was updated as recommended by the predictor

module, the metering data starts being collected and stored

in the metering store database. The growing volume of the

metering data entails that the database setup is scalable

and efficient, and can handle complex queries in a timely

fashion. This is crucial as the overall goal of our framework

is to provide fine-grained pricing plans that require high-

frequency querying. To this end, we have engineered an

auto-scalable setup for MongoDB to act as the metering

store for Ceilometer. Our setup is instantiated on the same

set of VMs that are used to provide SaaS—as the VMs have

been observed to be not fully utilized as stated earlier in

Section I.



1) When to Scale?: The first step in realizing our auto-

scalable MongoDb setup is to determine when scaling is

needed. For this purpose, we use two kinds of metrics:

i) OS-level metrics, e.g., CPU, memory, disk usage, etc.;

and ii) MongoDB performance statistics, e.g., query time,

writes/s, reqs/s, etc. Since the MongoDB instances are

running on the same VMs as those providing user services,

the VMs are already being monitored and this monitoring

data can be reused to also determine the OS-level info

needed for the scaling purpose. This information, coupled

with periodically collected MongoDB statistics, are then

used to determine if the metering store is loaded beyond

a pre-specified high threshold or below a low threshold, and

scaling decisions are made accordingly.

2) How to Scale?: The next step is to perform the scaling

of the metering store. For this purpose, our framework

exploits the creation of additional MongoDB replica sets.

These replica sets are added as shards to achieve further

partitioning of data, which in turn realizes the desired

scalability of the setup. An important design decision while

performing sharding is to carefully choose the sharding key.

To this end, we keep track of the speedup achieved with

various sharding keys and choose the best option. Note that

replication and sharding are not mutually exclusive, and can

be scaled individually based on the monitored reads/s or

writes/s throughput observed through the MongoDB perfor-

mance monitor.

E. Load Balancer and SLAs Enforcement

The selection of VMs for launching replicas for scaling-up

the metering store is critical, as the additional management

load may affect a VM’s SaaS performance. Over time, this

can lead to a point where the VM can no longer provide suf-

ficient resources for the supported SaaS workload. Typically,

cloud service providers set out service level agreements

(SLA) for the performance of their services. When faced

with a potential SLA violation, the cloud providers perform

traditional workload re-placement or launch additional re-

sources. To account for the additional management workload

on the VMs, our framework complements the traditional load

re-placement by using a load balancer that actively tracks

the management workload on each VM. This is achieved

by coordinating with the resource profiler. Thus, if the

management workload on any of the VMs exceeds a certain

threshold, that workload is either transferred to an existing

VM with lower load or a new VM is launched to handle the

management overload. The load balancer uses the process

shown in Algorithm 1 to handle shards or replica sets. We

exploit the MongoDB’s internal load balancer, which upon

creation of a new shard transfers chunks of 64 MB of data

from other machines to the newly added shard(s) to evenly

distribute the total number of chunks.

How to select the threshold for triggering load bal-

ancing operations?: The management workload threshold

Algorithm 1 The algorithm used for load balancing.

for each resource r monitored by Resource Profiler do

rl← List of VMs sorted by usage for r

for each virtual machine vm in rl do

cl← current load on vm for r

el← Extra load on vm for r

t← Threshold for r

if cl ≥ t then

el← cl− t

REPLACE VM(vm, el, r)

else

break

end if

end for

end for

function REPLACE VM(vm, el, r)

rl← List of VMs sorted by usage for r

for each virtual machine uvm in inverted rl do

cl← current load on uvm for r

if cl + el ≤ t then

Check threshold for rest of the resources

use this vm← uvm

break

else

use this vm← 0

end if

end for

if use this vm ≤ 0 then

use this vm← launch a new virtual machine

end if

Transfer load from vm to use this vm

end function

is set as to ensure that each resource is not over-utilized by

the metering framework to an extent where the performance

of the provided SaaS is affected. As the nature of the

SLAs varies with the type of SaaS, as well as with the

type of resources and configurations, the threshold is not

fixed. Instead, it varies from solution to solution and we

provide means for the resource managers to determine the

appropriate thresholds.

F. System Controller

Finally, we provide a system controller module to con-

trol and fine-tune the scalable metering store, the resource

profiler, and the load balancer. The module also acts as a

facilitator for the various module operations by providing

access to the collected data. We run the controller in a

dedicated VM to ensure that it is not affected by the

performance and workload dynamics of the resources.

G. Discussion

By default, OpenStack installs a standalone instance of

MongoDB to store metering data. In order to perform

mediation and rating, cloud service providers traditionally

use a separate set of dedicated physical machines for a

standalone installation of MongoDB. In case of huge data

sizes, a distributed setup, e.g., Hadoop, is used for data

processing. This approach requires redistribution of metering

data from the metering store to the Hadoop Distributed File

System (HDFS). This is burdensome as the data import

into HDFS is identified as a major performance bottle-

neck [24], in addition to the expensive data copying. Our
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SPECIFICATION OF VMS USED FOR EXPERIMENTATION
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Figure 3. Effect of using different shard keys on query times. The
query calculated variance in utilization (standard deviation) of Ceilometer
counters using MapReduce.

approach has the advantage that it does not require such

data redistribution. Instead, our approach collects data in a

distributed setup to begin with and avoids the extra copying

and import challenges and overheads. Another advantage of

our framework is that it allows cloud service providers to

support in addition to the fine-grained metering information,

customizable price plans, e.g., charging from single metric

based charge to complex multi-metric based charge.

Furthermore, our approach can also be applied for meter-

ing IaaS. However, this would require extending the frame-

work and modifications such as: (i) launching the metering

setup on physical nodes instead of VMs so that customers

do not get access to the collected metered data; (ii) enabling

monitoring of the physical nodes within Ceilometer for

tracking infrastructure utilization per physical node instead

of per VM; and (iii) updating the load balancer to effectively

perform in heterogeneous environments so that cores not

used by Nova can be used to launch metering services. Such

modifications are focus of our ongoing and future research.

IV. EXPERIMENTAL SETUP

We deployed OpenStack Icehouse version 2014.1.1 on 20

physical machines, where each machine has six cores and

32 GB of RAM. We varied the number of VMs from 3 to

12 to emulate a SaaS. The metering data was collected from

these VMs using variable sampling interval. We tracked the

usage of VMs for a period of one month. We launched both

default as well as customized meters to collect the resource

usage. Table I shows the specifications of each VM.

We performed tests using both a standalone as well as a

scalable MongoDB setup. In our scalable setup, each replica

set consisted of only one node that acted as a primary

copy of the data. The replica sets were added as shards to

scale the MongoDB deployment. For testing purposes, we

launched three configuration servers. One query router was

deployed on the controller VM. All the performance related
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Figure 5. Resource usage while calculating variance in utilization (standard
deviation) of various Ceilometer counters using MapReduce.

experiments were done on the actual collected metering data

of more than 11 GB from the deployed OpenStack setup over

the period of one month.

We used different sharding keys for the Ceilometer

database in our tests. Figure 3 shows the effect of using

different sharding keys on the query timings for a MongoDB

setup consisting of 4 shards. As illustrated, the query time

is affected more by the choice of the sharding key in the

distributed setup compared to the standalone setup. Further

investigation revealed that chunks greater than 64 MB were

created in all cases except when timestamp of metering

events was used as a shard key. This resulted in the Mon-

goDB internal load balancer distributing chunks unevenly,

with most of the chunks assigned to just one machine. This

created a bottleneck and caused a significant increase in the

query time. Consequently, the best sharding key to use in

the target environment is timestamp.

V. EVALUATION

In this section, we evaluate the various aspects of our

framework and demonstrate its effectiveness.

A. Data Size Estimation

In our first experiment, we compare the size of estimated

and actual collected metering data associated with the 12

VMs launched within the OpenStack deployment with the

default set of meters.
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Figure 6. Comparison of estimated and
actual collected metering data size.

Figure 6 shows the

results. The frame-

work predicted that

254 events will be

collected from the

VMs every 10 min-

utes. The estimated

average event object size was 1150 bytes, 1134 bytes, and

1188 bytes for per day, per week and per month calcula-

tions, respectively. As illustrated, the data estimator module

predicted metering data size with 99% accuracy compared

to the actual observed values.

B. Resource Profiler

In our next test, we measured the effect of performing

mediation at different granularity levels. Figure 4 shows the

time taken to perform mediation on the data of a single

user using the statistics API provided by Ceilometer. We

measured Maximum, Minimum, Average, Sum, and Count

for the considered meters at three different granularity levels,

namely, daily, weekly, and monthly. The results reveal that

the meters that collect samples continuously at a fixed

sampling interval took 4× to 6× more time to perform

mediation on one month of data compared to one week of

data. Next, we measured the increase in average resource

utilization per VM due to mediation. Figure 5 (a) shows that

the CPU utilization in the observed VMs did not increase

above 15%. Similarly, the increase in memory utilization

was observed to be less than 10%. As the collected data

is inherently distributed over various VMs, the mediation is

expected to generate reads but not writes. This is confirmed

by the I/O usage shown in the Figure 5 (c), where the

observed written data is almost zero, while the data read

has a low average. Another key observation here is that due

to the locally performed computation, the network usage is

also negligible (see Figure 5 (d)). These results validate our

claim that, in our approach, existing SaaS VMs can be used

to perform mediation and rating tasks without affecting the

performance of the provided SaaS.

C. Scalable MongoDB

In our next set of experiments, we analyze the effect

of scaling our metering store, i.e., the distributed Mon-

goDB setup, on the mediation duration. Figure 7 shows the

reduction of the time to calculate the Variance (standard

deviation) of various Ceilometer meters when using Mon-

goDB’s MapReduce [3] functionality, as we scale up the

metering store. As illustrated, the standalone installation of

MongoDB performs better than the single shard distributed

MongoDB setup; this is due to the networking overhead.

However, as we increase the number of shards, the mediation

duration decreases. For the case of two replica sets acting as

shards, the average query time is half of that of the stand-

alone setup. Further increasing the number of shards shows
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increasingly better performance in terms of query time. We

also observe that the reduction in the query time is not

linear and after reaching a certain threshold, the networking

overhead actually causes performance degradation. Figure 8

shows the impact of scaling MongoDB on query execution

time for calculating the Average, Sum, Maximum, and Min-

imum when using the aggregation functionality [2] provided

by MongoDB. Here, a more linear trend was observed when

performing mediation using the aggregation.

Table II
TIME TAKEN FOR SCALING THE TEST MONGODB SETUP.

Scaled from Time to scale Total chunks Chunks transferred
x to y shards (minutes) transferred per shard

1 to 2 10 93 93
2 to 3 6 62 31
3 to 4 3.5 47 15
4 to 5 2 37 9

D. Load Balancer and Effect of Scaling

In our next test, we analyze the load balancer, the effect

of scaling the setup, and the role of load balancing. Figure 9

shows the overall behavior of the framework. We used traces

from IBM production servers to mimic SaaS load on VMs

and launched our framework management load on top of

those VMs. The framework launches initially one sharded

replica on a set of five VMs with 0 GB collected metering

data. At point A, as the size of collected data reaches 1.1 GB,

the load balancer triggers the launching of another sharded

replica to avoid SLA violation. At point B, a new set of five

SaaS VMs is added to the setup. Based on the calculation
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Figure 10. Resource usage under MongoDB setup scaling from one to
five shards.

performed by the offline resource predictor, a third sharded

replica is added to keep the query time under 3.5 sec. At

point C, as the collected data size reaches 8.5 GB, the

load balancer launches another shareded replica to reduce

the load on the VMs. At point D, two new SaaS VMs are

added. The offline resource predictor, after calculating the

expected metering data size, recommends adding another

sharded replica. At the points labeled LB1, LB2, and LB3,

the load balancer successfully shifted load from one VM to

another to avoid both an SLA violation and launching a new

VM.

Table II shows the time taken to scale the metering

store, the total number of chunks transferred and the chunks

transferred per shard. MongoDB, by default, transfers only

one chunk at a time, which slows down the transferring

process. The numbers show that it is important to take the

transfer time into consideration while making setup scaling

decisions. Furthermore, transferring chunks while scaling

the setup also requires additional resources and adds an

observable overhead to the SaaS VMs. Figure 10 shows this

overhead when scaling from one shard to five, in terms of

resource usage per VM for both the primary VM, i.e., the

source of a chunk transfer, and the secondary VM, i.e., the

destination of the chunk. We observe that while the CPU

utilization is high on the primary VM, it never exceeds 10%

of the CPU before the chunk transfer. Similarly, the memory

utilization remains constant for the primary VM but goes up

by 5% to 10% for the secondary VM compared to the pre-

transfer memory usage.

The amount of data written in both the primary and

the secondary VMs remains almost unaffected, although

high spikes of up to 2 MB/s are observed in the write

I/Os. In contrast, the read I/O is higher for the primary

VM as compared to secondary VM. The average write rate

on the primary VM is observed to be 0.5 MB/s while

for the secondary VM it is 0.4 MB/s. Lastly, the network

transmission and reception rates stay below 20 MB/s. The

above results confirm our expectations on the low impact of

our approach on the SaaS VMs.

VI. RELATED WORK

The focus of several recent works [29], [8], [10], [16],

[27], [18], [31] is on providing an efficient and scalable

cloud monitoring setup, however, these works do not con-

sider or discuss scalability of the mediation and rating

systems. In contrast, our approach is designed for scalable

deployment. Furthermore, our approach is also unique in

that it uses existing VMs and only launches additional VMs

rarely, thus incurring little additional cost. [7] provides anal-

ysis of cloud monitoring by discussing motivations and basic

concepts, and pointing out open research issues. Similarly,

[14] focuses on clustering VMs depending on the resource

usage to simplify the monitoring requirements.

A pay-as-you-go scheme has also been proposed [25],

which employs a machine-learning-based prediction model

of the relative cost of interference between metering/rating

and SaaS applications. Similarly, [26] describes a metering

and pay-as-you-go model and proposes a solution to meter

resources. However, unlike our approach, the focus of this

model is to come up with a metering approach for enabling

monitoring of cache space and memory bandwidth.

CloudSim [13] proposes a toolkit to enable modeling and

simulation of cloud computing environments and perhaps is

the closest to our work in terms of profiling and predicting

the resources required for supporting cloud applications.

Similarly, PRESS [22] proposes a PRedictive Elastic re-

Source Scaling scheme for cloud systems. The significant

difference between our approach and these works is that

they predict load as a standalone applications, whereas in

our case we predict the additional load that can be added

to the existing VMs that are already loaded. Moreover,

there has been a lot of work done on SLA based resource

allocation, such as Oceano [9] that is a prototype for resource

allocation for enabling flexible service level agreements

(SLAs). Similarly, [23] provides an algorithm for SLA based

resource allocation for multi-tier cloud computing systems.

However, the problem addressed by our framework is unique



in that we have to place and shift only the prioritized part

of the overall load to ensure SLA.

Several recent works employ a database for enabling a

monitoring system. An elastically-scalable database manage-

ment system is designed in [17], based on the argument that

in spite of the elasticity offered by the cloud infrastructure,

the backend database still is the scalability bottleneck for

cloud applications. A monitoring system that collects and

stores the metering data in distributed database is presented

in [28], but lacks the ability to scale the setup and use

existing VMs. Similarly, a scalable metering architecture is

developed in [21]. These works are orthogonal to our work,

and we leverage the techniques therein when possible to

achieve a scalable and flexible metering and rating system

for the SaaS applications in the cloud.

VII. CONCLUSION

We designed a framework for SaaS and PaaS cloud service

providers to scale their management systems in a cost-aware

manner that minimizes the non-revenue generating manage-

ment resources. We evaluated the ability of our framework

to achieve this goal by co-locating the revenue management

tools on VMs used to provide SaaS. The results of our

experiments show that our efficient approach to deploying

revenue systems has small impact on the co-located SaaS

performance while providing dynamic scaling at minimal

cost. Although we focused on the revenue management only,

our methodology can be applied to other aspects of the

service management.
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