
AptStore: Dynamic Storage Management for

Hadoop

Krish K. R.†, Aleksandr Khasymski†, Ali R. Butt†, Sameer Tiwari‡, Milind Bhandarkar‡

†Virginia Tech, ‡Greenplum

{kris,khasymskia,butta}@cs.vt.edu, {Sameer.Tiwar, Milind.Bhandarkar}@emc.com

Abstract—
Typical Hadoop setups employ Direct Attached Storage (DAS)

with compute nodes and uniform replication of data to sustain
high I/O throughput and fault tolerance. However, not all data
is accessed at the same time or rate. Thus, if a large replication
factor is used to support higher throughput for popular data,
it wastes storage by unnecessarily replicating unpopular data as
well. Conversely, if less replication is used to conserve storage
for the unpopular data, it means fewer replicas for even popular
data and thus lower I/O throughput. We present AptStore, a
dynamic data management system for Hadoop, which aims to
improve overall I/O throughput while reducing storage cost.
We design a tiered storage that uses the standard DAS for
popular data to sustain high I/O throughput, and network-
attached enterprise filers for cost-effective, fault-tolerant, but
lower-throughput storage for unpopular data. We design a file
Popularity Prediction Algorithm (PPA) that analyzes file system
audit logs and predicts the appropriate storage policy of each file,
as well as use the information for transparent data movement
between tiers. Our evaluation of AptStore on a real cluster shows
21.3% improvement in application execution time over standard
Hadoop, while trace driven simulations show 23.7% increase in
read throughput and 43.4% reduction in the storage capacity
requirement of the system.

I. INTRODUCTION

Hadoop Distributed File System (HDFS) [27] provides a

robust storage for managing massive amounts of data in a

scalable manner by aggregating the direct attached storage

(DAS) of Hadoop cluster nodes [7]. The off-the-shelf machines

that make up typical Hadoop clusters and the scale of the

system imply that failures are the norm. To prevent data loss,

HDFS relies on replication [27]. Replication also increases the

read throughput, not only because it reduces access contentions

that can arise when accessing popular data, but also by

increasing the probability of finding the data on a local DAS.

While DAS with replication offers significant throughput

benefits in Hadoop, the default three replicas also incur a

200% storage overhead. Not only does this overhead add to

the direct cost of the storage, it has indirect maintenance

costs of energy consumption and administration, which can

be significant [22]. Another limitation of the DAS-based

Hadoop architecture is that storage capacity is tightly coupled

with compute capacity; to add more storage, more compute

nodes need to be added. Thus increasing storage capacity in

standard DAS-based Hadoop also incurs the cost for compute

components, which may be unnecessary for typically I/O-

bound Hadoop applications. Adding a whole node for just

using the extra storage exacerbates energy efficiency as well,

as typically, storage accounts for only a fraction of a Hadoop

node’s energy consumption [28].

To this end, Network Attached Storage (NAS) can offer

an alternate storage solution for Hadoop, especially enterprise

NAS is attractive due to its lower failure rates. To add to this,

the per GB storage cost in enterprise storage solutions [25]

is only a fraction of that in a commodity Hadoop node DAS.

However, the challenge is that naively adding NAS to Hadoop

clusters may entail a large number of data accesses over the

network, resulting in reduced I/O throughput. A promising

trend observed in recent analysis is that there is significant het-

erogeneity in I/O access patterns. GreenHDFS [16] observed

a news server like access pattern in HDFS audit logs from

Yahoo, where recent data is accessed more than the old data

and more than 60% of used capacity remains untouched for at

least one month (period of the analysis). Scarlett [4] analyzed

job history logs from Bing production clusters and observed

that 12% of the most popular files are accessed over ten times

more than the bottom third of the data.

In this paper, we design a tiered storage system, AptStore,

with two tiers designed to better match the heterogeneous

Hadoop I/O access patterns. The tiers include: Primary storage

— DAS in Hadoop node for files that require high throughput;

and Secondary Storage — NAS for unpopular files and files

with lower Service Level Objectives (SLO). AptStore analyzes

the I/O access patterns and suggests data placement policies

across the tiers to increase the performance and efficiency of

the storage system. Our system optimizes for read throughput

as typically MapReduce workloads exhibit write-once read-

many characteristics [27]. To achieve this, we predict the

popularity of each file, and then retain the popular files

in primary storage and move unpopular files to secondary

storage. We also adjust the replication factor of files in primary

storage based on their popularity. The replication factor for

files in the secondary storage is set to 1, and other means

such as RAID are employed to achieve fault tolerance. We

have realized AptStore as an extension to the Unified Storage

System (USS) [1], [25], a federated file system for Hadoop,

which allows transparent movement and management of data

across different file systems.

Specifically, this paper makes the following contributions:

• We present a detailed quantitative study of the factors

that affect the read throughput in HDFS, such as block

and file size, replication factor, locality, and number and

frequency of concurrent accesses to files.



• We design and implement the tiered storage solution of

AptStore, which improves both storage efficiency and

read throughput.

• We design an access pattern based popularity prediction

algorithm (PPA) that predicts popularity of files based on

file size, access frequency, and load in the cluster.

• We validate and evaluate our data placement strategy

using both trace-driven simulations and experimentation

on a real cluster.

Evaluation of AptStore shows a 43.4% average reduction

in the disk space requirement and 23.7% increase in the read

throughput over standard Hadoop framework in our simu-

lations. Moreover, our implementation of AptStore achieves

up to 21.3% speed up in studied applications execution time

compared to standard Hadoop.

II. FACTORS AFFECTING HADOOP STORAGE

PERFORMANCE

In the following, we discuss the key factors that impact the

performance and efficiency of the storage system in Hadoop.

A. Understanding Read Throughput

There are two key factors that affect read throughput in

HDFS: data locality and number of concurrent accesses. Local

accesses result when a job and its associated data reside on the

same node, thus reducing the number of remote I/O requests

and yielding higher throughput. On the other hand, many

concurrent accesses to the same file increase contention, thus

decreasing read throughput.

1) Locality: HDFS divides the data into equal sized blocks

and distributes data to multiple nodes, which distributes the

read request throughout the cluster, thereby achieving better

aggregate throughput. Block size is an important tunable

parameter in the system. Bigger block sizes decrease the

overall number of blocks per file and hence the number of

nodes that hold data. This decreases probability of the job

scheduler assigning tasks that are local to the data. However,

decreasing the block size too much is also undesirable as it can

result in memory contention in the NameNode. With constant

block size, file size has a direct effect on the distribution of the

data; larger files are distributed throughout the cluster, while

the smaller files are restricted to a small set of nodes.

Replication also affects locality and in turn the read through-

put in a Hadoop cluster [27]. Higher replication factor in-

creases the distribution of the data in the cluster, thereby

increasing the probability of JobTracker finding a local or rack

local slot for a task. This results in reduced network and disk

contention, particularly when multiple jobs access the same

data concurrently. Thus, a small file with more replicas can

have the same distribution as that of a larger file.

2) Concurrent Access: Concurrent jobs accessing a single

block, or blocks from a single machine, not only affect the

disk bandwidth available per access, but also the network

bandwidth. In Hadoop clusters, concurrent access to popular

data are common [4]. In such cases, when the number of

tasks accessing the data exceeds the number of replicas, read

throughput of the tasks is affected because of slot contention

and hardware resource contention[5].

Large number of concurrent tasks reading data from a

node decrease the probability of scheduling a task local to

the data, and as a result read throughput includes network

overhead. Since concurrent requests share the disk bandwidth

and network bandwidth, the number of concurrent accesses is

inversely proportional to the read throughput. The scenario is

typical in production clusters, especially on machines storing

popular data. Scarlett’s [4] analysis of Bing production cluster

indicates that more than 50% of read requests were directed to

less than 17% of the cluster. The decrease in read throughput

because of increased concurrent accesses can be reduced

by increasing the replication of the file and distributing the

requests across the cluster.

B. Fault Tolerance

Since Hadoop clusters are built using commodity machines,

the hardware failure rate is non-negligible. The typical Mean

Time Between Failures (MTBF) is 3 years [6], so for a

thousand node Hadoop cluster, the probability of failure of

a single machine in the cluster is close to one. Data loss

prevention using RAID is not a feasible solution because

equipping each Hadoop node with a RAID controller is expen-

sive and software RAID on unreliable machines incurs high

performance overhead. Since availability is proportional to

MTBF, reducing the replication factor to 1 and using parity to

prevent data loss might result in reduced availability. Moreover

the low reliability of the hardware implies periodic loss of data

resulting in reconstruction from the parity. Such generation

and reconstruction will adversely affect the performance of

the in-progress Hadoop jobs.

In contrast, a more feasible RAID based solution can be

used by employing consolidated NAS if high I/O throughput

is not a concern. Enterprise storage solutions typically utilize

RAID and have lower MTBF [11]. These devices ensure

the same reliability of data with significantly less storage

overhead. Moreover these devices are self managed and re-

construction of parity would not affect the in-progress Hadoop

jobs, unless the jobs are trying to access the files under

recreation. Thus, incorporating NAS into Hadoop architecture

is promising and can support low-cost fault-tolerant storage.

C. Storage Cost

The use of replication increases the capacity needed to be

provisioned and thereby exacerbates the cost associated with

the storage. While DAS offers better performance at higher

cost, enterprise filers offer degraded performance at lower cost.

Thus, it would be beneficial to utilize the different kinds of

storage in realizing an efficient Hadoop storage architecture,

provided the performance requirements for the data items can

be determined or predicted.

Typically, a Hadoop node with a maximum of 24 TB of data

storage uses up to 200 W [2] at idle state. The energy cost

of adding a Hadoop node for storage scalability would result

in 8.33 W/TB. Along with the 200% storage overhead the
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energy cost of storing data in DAS is 25 W/TB. This is very

high when compared to the 0.78 W/TB in enterprise storage

solutions [19]. Thus, from the energy consumption perspective,

use of NAS in Hadoop is very favorable.

III. SYSTEM DESIGN

In this section, we describe the design of AptStore, includ-

ing its decision engine, the Popularity Prediction Algorithm

(PPA), as well as how AptStore is realized within an available

enterprise NAS implementation.

A. AptStore

AptStore is designed as an extension to the Unified Storage

System (USS) [1], [25] 1, a federated file system for Hadoop,

which allows tiered storage across different file systems. As

access rate and number of accesses varies for each file,

AptStore improves the overall read throughput and storage

efficiency of the system by designing access-pattern-based data

placement and replication. Figure 1 illustrates the components

of AptStore and their interactions. The PPA periodically an-

alyzes the usage patterns of the file system and the Decision

Engine (DE) suggests appropriate data placement strategy.

In designing AptStore, we make the following four de-

sign choices. First, we consider replication at file granularity

because Hadoop jobs access files as a whole [4]. Making

replication decisions at the block level is unnecessary, as

the read cost of a file will be dependent on the block with

the lowest replication factor. Second, we assume that typical

production clusters are heavily used and have very large

working sets. Thus, any effects of file system level caching is

negligible, and the majority of reads are serviced from disk.

Third, all the files in the system are assumed to have the same

block size, which is standard in Hadoop deployments. Finally,

AptStore is designed for the extant Hadoop deployments where

all nodes contribute storage and computation.

B. Unified Storage System

The Hadoop framework works best when used in con-

junction with HDFS. The Hadoop command line (FsShell)

and file system API are supported only by HDFS and its

variants [23]. Jobs involving data from other sources are

processed by first loading the needed data into HDFS, typically

by using tools such as cron, scp, and distcp. Another

solution to multi-source data access is to use viewFS [14] or

add data sources directly using Uniform resource identifiers

(URI). However, adding enterprise storage devices through

1Note that techniques developed in AptStore are not USS-specific and can
be easily implemented and integrated with other NAS solutions.

these approaches lead to load imbalance and decreased read

throughput, mainly because the devices would likely not be

available centrally/equidistant across the cluster.

To address such issues, USS implements a federated file sys-

tem that provides a unified view using a single namespace that

encompass a multitude of data sources. USS supports trans-

parent, zero-copy access of data from various data sources.

It also maintains a mapping of all HDFS files to their actual

locations in the respective file systems. We leverage and extend

this feature in AptStore to transparently move data between

primary and secondary storage as needed.

C. Popularity Prediction Algorithm

We design a Popularity Prediction Algorithm (PPA) using

file access information to determine when and where to store

the files. At every RT , the PPA analyzes the access pattern

for each file and predicts a expected popularity value for it for

the next RT . The popularity value Pi+1(f) of a file f varies

with each access i+ 1 to the file. Pi+1(f) is defined as:

Pi+1(f) = Pi(f) +
c

a(f) ∗ l ∗ b(f) ∗ Pi(f)
, (1)

where c is the popularity constant, a(f) is a function of the

access interval of file f , l is the load in the cluster and b(f) is
a function of number of blocks in the file f . Observe that we

designed our popularity measure to recursively depend on the

file popularity during the previous time interval. This causes

the number of replicas to remain stable even in the presence of

a bursty access patterns between successive intervals, yet adapt

to changes that are longer lasting. Additionally, this allows the

system to adapt effectively to access patterns of periodic jobs

or ones that are scheduled at intervals wider than RT .
Equation 1 also ensures that the popularity of file f in-

creases not only with the number of accesses but also if it is

accessed concurrently by many clients. The access frequency

is inversely proportional to the time between the previous

access, i, and the current access, i+ 1. During any RT , files
with the same number of accesses may have different access

frequencies. For example, a file can have one access every five

minutes for a total of 12 accesses in an hour, whereas another

file may have 12 concurrent (non-repeating) accesses. Reads

with higher access frequency require more replicas of the

accessed files than those exhibiting lower accesses frequencies,

even if the total number of reads within a RT are the same.

This is because frequent reads cause contention both at the

disk and network, resulting in degraded read throughput.

The required replication factor also depends on the cluster

load, l, computed using the overall popularity of all files in

the system. Many concurrent requests for multiple files can

compound and result in an increase in contention for both

the disk and the network bandwidth. Although increasing the

cluster infrastructure to handle a higher load is one possible

solution, it is not always feasible. Our solution is to aggres-

sively replicate popular data, because it would better distribute

the requests across the cluster and increase the probability of

accessing the data locally. Conversely, we reduce the number

of replicas for unpopular data.



As we assume a constant block size, larger files have

more blocks. Consequently, larger files are better distributed

throughout the cluster, so they require fewer number of repli-

cas than smaller files. To capture this aspect, we update the

popularity of the file after each access by an increment that is

inversely proportional to the file size.

During the creation of a file, the popularity of the file P1(f)
is initialized to average file popularity observed in the system,

AV G(P ). Initialization based on observations such as the

type of jobs accessing the file or popularity of other data

created by the same user are also promising, but we leave

that for future work. Similarly, whenever a file is deleted, it

will result in popularity of other files being modified when the

values are updated at the end of RT . When a popular file is

deleted, the popularity of other files in the system increases.

Conversely, when an unpopular file is deleted, the popularity

of other files decreases. We do fix the minimum, PMin, and

maximum, PMax, threshold on the popularity of a file to make

sure that there are bounds on the number of file replicas in

the system. The minimum threshold ensures data reliability

and compliance with system SLAs, while maximum threshold

captures space constraints in primary storage.

After the accesses of all files in the reference time RT are

processed the popularity value Pi(f) of a file f for the most

recent access i is modified as follows:

Pi(f) = Pi(f)−
MIP

s
, (2)

where MIP is the mean increase in the popularity of the

file f during reference time RT , AV G(P ) is the average

popularity of all the files in the cluster, s is the scalability con-

stant. Equation 2 ensures that the popularity of the file P (f)
does not grow arbitrarily. The mean increase in popularity is

a fraction of increase in popularity, IP during RT over F ,

the set of all files in the system. The scalability constant s,
is used to contract or expand the amount of data stored in

primary storage. For a value of s greater than one, more data

is pushed to primary, while a positive value of s, less than

one, creates more space in the primary storage.

The choice of RT is critical. A very large RT can miss

opportunities to change the file replication factor to adapt to a

change in the access pattern as the workload varies. However,

setting RT too small can result in excessive thrashing as

PPA state is rapidly updated. The appropriate value of RT
depends on the usage pattern of the cluster and the cluster

infrastructure. Previous work [4] suggest an RT between

12 and 24 hours is sufficient to capture varying patterns in

the workload, while minimizing overheads associated with

managing extra replicas.

Finally, AptStore adopts a proactive prediction scheme. The

predicted popularity, Ppredicted(f), for the the next RT is

computed using a linear extrapolation. We assume that the rate

of change of popularity for the next RT will be same as the

rate of change of the current RT . By choosing an appropriate

size of RT , the accuracy of the predicted popularity can be

made high.

Input : USS file System Audit Logs

Output: Predicted popularity Ppredicted.

F is the set of files in the file system;

foreach access i+ 1 to the file f ∈ F in RT do

if i==0 then
Pi+1(f)← AV G(P );

end

else
Pi+1(f)← Pi(f) +

c
a(f)∗l∗b(f)∗Pi(f)

;

end

if Pi(f) < PMinP then Pi(f)← PMin;

else if Pi(f) > PMax then Pi(f)← PMax;

IP = IP + Pi+1(f)− Pi(f);
end

foreach deletion of the file f in F do
IP = IP + AV G(P )− P (f);

end

MIP ← IP
size(F ) ;

foreach file f in F do

Pi(f)← Pi(f)−
MIP

s
;

where i is the most recent access to the file f .
Ppredicted(f)← Pi(f) + (P (f)− Pi(f));
P (f)← Pi(f);

end

Algorithm 1: Popularity Prediction Algorithm.

D. Decision Engine

At every reference time RT , the decision system suggests

the replication and data placement strategy for a file f based

on Ppredicted(f), the predicted popularity of the file for the

next RT . Files with higher popularity are replicated based

on the function Ppredicted(f) and are placed in the primary

storage. Files with lower popularity are moved to secondary

storage and the replication factor is reduced to 1. Files with

average popularity are maintained in the primary storage with

default replication levels.

The system also considers cron jobs or jobs that are sched-

uled for later execution and predicts the appropriate storage

strategy, thereby improving the read throughput. Finally, the

system considers the SLA requirement irrespective of the

popularity. For example, an unpopular files, although accessed

rarely, may have significant SLA restriction, so it may be

always replicated and stored in the primary storage.

E. Replication and Inter-tier Data Movement

Hadoop performance is sensitive to network bandwidth.

Replication or data movement across tiers during such net-

work intensive phase may adversely affect the performance

of the Hadoop jobs in progress. To balance the bandwidth

consumption, HDFS employs multi-location replication [4],

where the data to be replicated are read from multiple sources

thereby spreading the replication traffic across multiple nodes.

File movement between primary and secondary storage as well

as change in replication factor is realized by a low priority

background process.
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System performance may further increase with a rack-level

dedicated link from primary storage to secondary storage.

Furthermore, significant work is done to improve the network

utilization and storage utilization in Hadoop by compressing

the data [10], which can be leveraged. For replica deletion,

lazy deletion [4] of data, i.e., waiting for it to be overwritten

by another block, may significantly reduce the cost of deletion.

F. AptStore Computation Overhead

AptStore requires calculation of each file’s popularity at the

end of every RT . This computational overhead is negligible,

because popularity is computed by linearly processing the file

system audit logs, which the NameNode already generates.

Hence, from the point of view of the TaskTrackers, our system

produces negligible overhead for typical cluster sizes. For

small clusters, PPA algorithm can run on the same node as the

NameNode. However, for a very large cluster where popularity

computation may incur some overhead, the algorithm can be

offloaded to a separate machine.

The design of AptStore aims to monitor file I/O and utilize

the PPA to determine the popularity of individual files. Our

system extends USS to use the popularity information to move

the files between primary and secondary storage tiers, thus pro-

viding high replication and high throughput for popular data,

and low-overhead high-volume cheaper storage for unpopular

data. Moreover, the use of PPA ensures that the AptStore is

able to adapt to the changing characteristics of the Hadoop

workloads.

IV. EVALUATION

In this section, we present a detailed evaluation of factors

that affect read performance in Hadoop and evaluate the

performance of AptStore.

A. Experimental Setup

We use a 28 node cluster for our experiments. The master

nodes have 3.33 GHz 2×Intel Xeon X5680 6-core CPUs with

hyper-threading, 64 GB of RAM, and up to 3 SATA disks.

The worker nodes have 3.33 GHz 2×Intel Xeon X5680 6-core

CPUs with hyper-threading , 48 GB of RAM, and 12∗600,

15 K RPM disks. The master and workers are equipped with

four and two network ports, respectively, and are intercon-

nected using 10 Gbps link. There are two master nodes, one

running a dedicated NameNode and the other the JobTracker

and the SecondaryNameNode. Moreover, there are 26 worker

nodes, each with an instance of TaskTracker and DataNode.

The default HDFS block size is 512 MB and the version of

Hadoop we employ is GPHD 1.2.

B. Impact of Design Parameters

In the first set of experiments, we analyze how various

factors impact read throughput of Hadoop, and quantify the

impact under different test conditions. To compute the read

cost and eliminate any computation cost, we run a map-only

job that reads a block of data. We execute this job with varying

number of concurrent reads and on data sets of same size with

varying replication factor. To minimize the effect of caching,

we flush the file system caches on all disks contributing to

HDFS between test runs.

1) Read Bandwidth Comparison: We observe the read

bandwidth by varying the replication factor and the number

of concurrent reads. Figure 2 shows the results. We find that

3 replicas provide sufficient for workloads with up to 8 con-

current reads and adding an more replicas produces marginal

improvement in read throughput. As we increase the number

of concurrent reads and thus the contention, more replicas are

required to sustain the read bandwidth. For a workload with 80
concurrent accesses, any replication below 9 suffers significant

loss in throughput. Conversely, in a workload with up to 32
concurrent accesses, increasing the number of replicas beyond

9 produces no performance benefit, thus wasting storage space

used by the extra replicas. The results show that using a

uniform replication factor is problematic in terms of both

meeting throughput demands for popular files, and conserving

space for unpopular files.

2) Impact of Access Locality: Next, we repeat the previous

experiment but study the percentage of read requests that

are served locally versus remotely. The results are shown in

Figure 3. The percentage of local accesses increases with the

replication factor. While the dataset with a replication factor

of 12 achieves more than 40% of local accesses in all of the

concurrent reads, using a replication factor of 3 achieves only

a maximum of 14% local accesses.

Bandwidth of local, rack local, and remote access are

compared in Figure 4. We find that the local access use similar

bandwidth across varying concurrent number of reads. With

increasing concurrent accesses, there is a difference between

bandwidth for the rack local and remote rack accesses. For

higher number of concurrent reads, files with lower replica-

tion factor shows low bandwidth. When remote requests are

serviced, the network bandwidth is shared among the requests.

With fewer number of replicas and high concurrent access, the

contention for network resource of the nodes containing the

replica is high, leading to low available bandwidth per access.
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3) Impact of Access Variation: Not all replicas of a file are

accessed equally. Whenever a client requests the NameNode

for accessing a block, the NameNode returns the location of

all the replicas of the block. The location list is ordered by

its proximity from the requesting client. The client checks the

availability of a local replica and if it fails to find one, it

looks for a rack local, and then a remote rack occurrence of

the block. If there are many more concurrent accesses than

number of replicas, the scheduler is unable to balance the

load to all replicas, because Hadoop performs scheduling on a

best effort basis. Figure 7 shows the standard deviation in the

number of accesses to a block of data with varying number

of requests to the data and with varying replication factor. A

workload with 3 replicas and 80 concurrent accesses produces

very high variance, while increasing the replication produces

a more uniform access pattern and thus lower variance. Such

uniform access increases the overall throughput because the

load in the system is more balanced and the contention for

hardware resources is reduced.

4) Impact of Replication and File Size: Locality increases

with the distribution of data in the cluster. Figure 5 shows that,

as with increasing replication, increasing file size increases

the data distribution among the cluster nodes, resulting in

reduced contention and increased locality. Figure 5(a) shows

that data with a replication factor of 1 is available only in

one rack, but as the replication increases to 6 we find that

data is more evenly distributed among racks. Figure 6 shows

that with increasing file size and with increasing replication

more and more local tasks are scheduled. Previous studies has

shown similar behavior with MapReduce benchmarks such as

TeraSort [16]. These results are promising as our PPA takes

into account such behavior to provide accurate predictions.

C. Fault Tolerance in Hadoop

To study the effect of replication on overall fault tolerance in

Hadoop, we first choose an appropriate failure model. We base

our probability of data loss model on a previous study [26]

and define Pdata−loss as:

Pdata−loss = 1−
n
∑

f=0

Pfailure(n, f)∗Pno−loss(n, b, r, f), (3)

TABLE I
PROBABILITY OF DATA LOSS PER DAY.

File Sys-
tem

Replication
Factor

Number of
nodes

Pdata−loss

per day

HDFS 3 1000 6.44 ∗ 10
−2

HDFS 3 100 1.1 ∗ 10
−4

HDFS 2 1000 0.23

HDFS 2 100 3.86 ∗ 10
−3

HDFS 1 1000 0.59

HDFS 1 100 8.7 ∗ 10−2

Filer 3 1000 1 ∗ 10
−2

Filer 3 100 1.42 ∗ 10−5

Filer 2 1000 7 ∗ 10−2

Filer 2 100 9.7 ∗ 10−4

Filer 1 1000 0.36

Filer 1 100 4.4 ∗ 10−2

Pfailure(n, f) =

(

n

f

)

∗ pf ∗ (1− p)(n−f), (4)

Pno−loss(n, b, r, f) = (1−

(

f

r

)

/

(

n

r

)

)b (5)

where p is the probability of failure of a single machine, n
is the number of machines in the cluster, r is the replication

factor of a block, Pfailure(n, f) is the probability that there

are exactly f failures in the cluster and Pno−loss(n, b, r, f) is
the probability that there is no data loss in the cluster [26].

Moreover, the probability of losing a node in time T , is 1−R,

where R is the reliability of a node or the probability that the

node will not fail over the time T . R is defined as:

R = e−
T

MTBF (6)

The MTBF of a Hadoop node and an enterprise storage

server is three and six years respectively [6], [20]. Based on

these values, Table I compares the probability of data loss per

day in HDFS and NAS filers using Equations 3. We compare

the HDFS cluster with 1000 nodes to a filer with 100 nodes

assuming that they can offer the same storage capacity. This

is valid assumption given recent trends in storage capacity.

Enterprise systems can easily support more than 240 TB of

storage [24], while a typical Hadoop node has 12 TB to 24 TB

of storage.

Filers can offer probability of data loss with one replica of

4.4 ∗ 10−2, compared to HDFS with 3 replicas, which has a

6.44 ∗ 10−2 probability of data loss. Given the high number

of disks in a single enterprise storage node, fault tolerance

is handled by a RAID controller with a probability of data

loss of 4.4 ∗ 10−3, and hence in this case we decrease the

replication factor to 1. Disks are arranged in, for example, a

(10, 2) RAID array, which protects from a simultaneous loss

of two disks with ten-fold decrease in storage overhead when

compared to two replicas. Thus, the use of filers as secondary

storage is promising in AptStore and offer a most cost-efficient

yet robust solution.

D. Performance Analysis of AptStore

In the next set of experiments, we evaluate AptStore both

in a real system as well as using whole-system simulation.
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(a) 5 GB file with replication factors 1 and 6.
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Fig. 5. Data distribution in Hadoop with increasing file size and increasing replication factor.
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Fig. 9. Comparison of storage requirement be-
tween Hadoop, Scarlett, AptStore-perf and Apt-
Store.
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1) Experiments Using Trace Driven Simulation: For our

simulation, we replay Facebook-like traces synthetically gen-

erated by sampling historical MapReduce cluster traces. The

traces provided by Chen et. al. [9] are one day in duration and

contain 24 historical trace samples each 1 hour long.

We use these traces to compare the performance of Apt-

Store with the default Hadoop and an emulated version of

Scarlett [4]. Scarlett is a budget-based Hadoop system that

increases throughput by replicating files based on their ac-

cess patterns. For every file, Scarlett computes the maximum

number of concurrent accesses (cf ) in a learning window

of length TL. Once in every rearrangement period, TR,

Scarlett computes desired replication factors for each file as

max(cf + δ, 3), where δ is the cushion factor against under

estimation. In our simulation there were 24 rearrangement

periods, i.e., rearrangement happens once every hour and our

learning window is the same as that of the rearrangement

period. We simulate various factors including the impact of

replication, contentions while accessing popular data, and

advantages of distribution of data.

The comparisons are made with two variants of our system.

The first version, AptStore-perf stores file only in HDFS and

the minimum replication factor of both popular and unpopular

data is 3, while the maximum factor varies based on the

popularity of the data. The second version, AptStore, uses

two underlying file systems. The popular files reside in HDFS

with varying replication and the unpopular files are pushed

to a lower-throughput reliable storage with only one replica.

AptStore-perf isolates and measures the performance gains of

our techniques, while AptStore provides insight into both the

performance and storage efficiency. Similar to Scarlett, our

simulation of AptStore rearranges the data once every hour.

Figure 8 shows the comparison in the read throughput

normalized to default Hadoop. Scarlett produce a 19.57%
improvement in performance while AptStore-perf and Apt-

Store produce 23.74% and 18.64% improvement over default

Hadoop, respectively. It is important to note that in AptStore,

where the popular files are fetched from primary storage and

the unpopular files are fetched from secondary storage, only

2.6% of accesses are served by the secondary storage.

In the next experiment, we compare the storage requirement,

shown in Figure 9, where the required storage is normalized to

the case of default Hadoop. Scarlett requires 13% additional

storage while AptStore-perf uses only 10% additional storage

to achieve the same performance. AptStore achieves the same

performance using only 57% of the storage required under

standard Hadoop. The replication required for unpopular files

in the secondary storage is considerably low when compared

to the 200% storage overhead of the primary distributed file

system. Figure 9 also compares the performance to storage

ratio, normalized to default Hadoop and AptStore achieves

a significant 2× improvement over default Hadoop. Over the

default Hadoop, Scarlett shows a 5% improvement in the ratio

and AptStore-perf shows 12.5% improvement.

2) Experiments on a Real Testbed: We implemented Apt-

Store on top of USS [1], [25]. Since all file system requests

are handled by USS, the USS audit logs record all the access

to the underlying file systems. The Hadoop master node

communicates with AptStore, which provides it with a data

management and replication strategy. Note that for very large

clusters our system can run on a cluster of machines to

compute the data placement strategy. AptStore accesses the

logs and the PPA assigns a popularity to each file at the end

of every reference time. The decision system gives hints to

the USS for the appropriate replication policy for the file.

Migration is performed through POSIX-like USS file system

API, while replication of files in HDFS uses the setrep

file system API in Hadoop. Our workload is generated from

traces mentioned in Section IV-D1. We replace the jobs in the

trace with sort, grep and wordcount [15]. We believe

this approximation is reasonable as the advantage of AptStore

is mainly because of read access in the map phase. For our

implementation, we adjust the length of the trace and the size

of the files to match the size of our test cluster. We did not

have access to an enterprise filer, so we used HDFS for all

the data, irrespective of their popularity. Our implementation

shows that AptStore reduces the execution time of the trace by

21.9% over default Hadoop, with 11.9% increase in storage.



Figure 9 compares the number of files with different number

of replicas. We observe that increasing the replication of

19% of files, results in a performance improvement of 21.9%
over default Hadoop. The increase in the replication factor of

certain files does not pertain to one single factor, it is based

on the combination of factors described in Section III-C.

Our evaluations show the analysis of various factors af-

fecting the read throughput and fault tolerance in HDFS

and enterprise storage solution. We also show the impact of

these factors on the design of AptStore, by comparing the

performance of AptStore to Hadoop and Scarlett.

V. RELATED WORK

Research on increasing the storage efficiency in GFS [13]

and HDFS managed clusters [12] propose to asynchronously

compress the replicated data down to RAID-class redundancy.

However, these techniques lower MTBF, which results in

lower availability and reliability. Much of the recent work

focuses on energy efficiency in Hadoop storage [16], [17],

[18], [3]. These works propose energy aware date placement,

where unpopular data is placed in a subset of Hadoop cluster

nodes, generating significant periods of idleness to operate in

a high-energy-saving mode without affecting nodes containing

the hot data. However, this approach increases the skewness

in popularity as hot data is concentrated on a subset of nodes,

resulting in degraded throughput compared to spreading the

hot data throughout the entire cluster. To improve scalability

MixApart [21] uses an integrated data caching and scheduling

solution to allow MapReduce computations to analyze data

stored on enterprise storage systems.

The work most similar to our own is Scarlett [4]. One

shortcoming of this approach is that larger files are given a

priority for increased replication over smaller files, and hence

popular small files may still suffer read throughput degradation

and popularity skewness. To achieve similar goals Yahoo

proposed HotROD [24], an on-demand replication scheme,

which allows access to the data from some other HDFS cluster

by creating a proxy node. However, this approach might suffer

degraded performance if inter-cluster network bandwidth is

low. Finally, SCADS Director [8] offers a control framework

that reconfigures the storage system on-the-fly in response to

workload challenges using a performance model of the system,

and in that is complementary to AptStore.

To the best of our knowledge, AptStore is the first work

that addresses both storage efficiency and read performance.

VI. CONCLUSION

In this paper, we presented a dynamic data management

scheme for Hadoop for achieving higher throughput and lower

storage cost. We observe that managing all Hadoop data in

a uniform manner results in increased storage overhead or

reduced read throughput. For popular files, default replication

is insufficient and leads to decreased throughput. For unpopu-

lar files, default replication results in storage inefficiency. We

proposed AptStore, a system that exploits the heterogeneity

in access patterns to achieve overall reduction in storage cost

and increase in read throughput. We identify various factors

that affect the throughput of the system and propose PPA

to predict the popularity associated with each file, and use

the information to adjust the replication and data placement

strategy of the files. Using extensive simulations and a real

deployment, we demonstrated that AptStore data management

scheme increases the read throughput by 23.7%, reduces

overall storage utilization by 43.4%, and results in speeding

up the studied jobs by as much as 21.3%.
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