
A Heterogeneity-Aware Task Scheduler for Spark
Luna Xu∗, Ali R. Butt∗, Seung-Hwan Lim†, Ramakrishnan Kannan†

∗Virginia Tech, †Oak Ridge National Laboratory
∗{xuluna, butta}@cs.vt.edu, †{lims1, kannanr}@ornl.gov

Abstract—Big data processing systems such as Spark are
employed in an increasing number of diverse applications—
such as machine learning, graph computation, and scientific
computing—each with dynamic and different resource needs.
These applications increasingly run on heterogeneous hardware,
e.g., with out-of-core accelerators. However, big data platforms do
not factor in the multi-dimensional heterogeneity of applications
and hardware. This leads to a fundamental mismatch between
the application and hardware characteristics, and the resource
scheduling adopted in big data platforms. For example, Hadoop
and Spark consider only data locality when assigning tasks to
nodes, and typically disregard the hardware capabilities and
suitability to specific application requirements.

In this paper, we present RUPAM, a heterogeneity-aware
task scheduling system for big data platforms, which considers
both task-level resource characteristics and underlying hardware
characteristics, as well as preserves data locality. RUPAM adopts
a simple yet effective heuristic to decide the dominant scheduling
factor (e.g., CPU, memory, or I/O), given a task in a particular
stage. Our experiments show that RUPAM is able to improve
the performance of representative applications by up to 62.3%
compared to the standard Spark scheduler.

I. INTRODUCTION

Modern computer clusters that support big data platforms
such as Spark [40] and Hadoop [2] are increasingly hetero-
geneous. The heterogeneity can arise from nodes comprising
out-of-core accelerators, e.g., FPGAs, or staged upgrades
resulting in nodes with varying performance and capabilities.
Similarly, the resource needs of today’s applications are also
heterogeneous and dynamic. Modern applications in machine
learning, data analysis, graph analysis, etc., can have varying
resource requirements during the application lifetime. For
instance, a machine learning job may be I/O-bound and need
I/O resources for input data processing in the initial stage,
and then be memory- and compute-bound during the later
processing stages. However, big data platforms, e.g., Spark,
are typically oblivious of the dynamic resource demands of
applications and the underlying heterogeneity, as the unit of
per-task resource allocation is a homogeneous container (i.e.,
the abstraction does not capture heterogeneity of resources
such as CPU cores, RAM, and disk I/O). This fundamental
mismatch between the high level software platforms and the
underlying hardware results in degraded performance, and
wastage of resources due to inability to efficiently utilize
different resources.

We focus on the Spark scheduler in this paper, as Spark
has become the de facto standard for big data processing
platforms. Similar to most task schedulers in the MapRe-
duce framework, the Spark scheduler mainly considers data

Application

Job 1

Job 2

Job 3

…

…

Stage 1

Stage 2

Stage n

…

Partition 1

Partition 1

Partition 1

…

submit partition

Stage1.RDD

Task 1

Task 2

Task n

Application-level Task-level

Fig. 1: Spark application architecture.

locality for scheduling, and does not differentiate between
the various resource capabilities, e.g., CPU power between
the nodes, assuming them to be uniform, and is not aware
of other resources that a node may have such as GPUs and
SSDs. Varying resource demands within an application are
also not captured. While, some external resource managers
such as YARN [33] and Mesos [17] have begun to support
heterogeneous clusters, these external managers are not aware
of the internal heterogeneity of tasks within applications, and
rely entirely on applications to request the right resources for
further second-level (i.e., task-level) scheduling. This need-
lessly burdens the application developer. Other approaches
either require historical data for periodical jobs [18] or require
job profiling [9], [11], [35]. Moreover, they do not count the
emerging accelerators and storage devices. Note that this paper
focuses on internal task-level scheduling, which is orthogonal
to aforementioned job-level resource managers.

Extant approaches [3], [16], [36] often make the assumption
that tasks perform generic computations, and tasks in the same
Map/Reduce stage would have same resource consumption
patterns. As a result, such approaches focus on general purpose
CPU architectures and often optimize for a dominant resource
bottleneck for tasks in a Map/Reduce stage, regardless of the
differences among tasks in a single stage, as well as the tasks
that may benefit from special devices such as GPUs [37]. A
recent study [23] shows that a task in Spark requires multiple
resources when executing, and the completion time of a stage
depends on the time spent on each resource. Consequently,
a scheduler should consider the heterogeneity of the resource
consumption characteristics of tasks in an environment with
heterogeneous hardware, as disregarding such factors leads to
suboptimal scheduling and overall inefficient use of resources.

In this paper, we address the above problems and propose
RUPAM, a heterogeneity-aware task scheduler for distributed
data processing frameworks. RUPAM considers both hetero-
geneity in the underlying resources as well as the various
resource usage characteristics of each task in each stage of
an application. RUPAM manages the life cycle of all tasks

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000

S
y
s
te

m
 U

ti
liz

a
ti
o
n
 (

%
)

CPU Memory

(a) CPU and Memory

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1000 2000 3000 4000 5000 6000

N
e
tw

o
rk

 p
a
c
k
e
ts

 (
b
y
te

s
/s

)

in
out

(b) Network

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140

D
is

k
 u

ti
liz

a
ti
o
n
 (

M
B

/s
) read

write

(c) Disk

Fig. 2: System resource utilization under 4K×4K matrix multiplication. X-axis represents relative timestamp (trimmed for Disk performance).

inside a job. To this end, RUPAM uses a self-adaptable heuris-
tic that does not sacrifice data locality, to efficiently match
a machine with the right task that can benefit most from
the machine’s resources in a dynamic fashion. The heuristic
coupled with real-time resource utilization, enables RUPAM to
avoid resource contention and overlapping tasks with different
resource demands, and thus yields high overall performance.

Specifically, this paper makes the following contributions.
1) We present a motivational study to demonstrate the

diverse resource utilization and dynamic characteristics
of tasks in Spark applications and show how the cur-
rent Spark task scheduler is unable to properly handle
heterogeneity in resources and application demands.

2) We design a self-adaptable heuristic based algorithm
to automatically schedule tasks based on task charac-
terization, cluster node capabilities, runtime resource
utilization, and data locality.

3) We implement RUPAM atop Spark and evaluate RUPAM
using SparkBench [21]. Results show that compared to
the current Spark task scheduler, RUPAM reduces work-
load execution time by up to 2.5×. The performance
increases (up to 3.4× in our tests) with more application
iterations (common in emerging deep learning applica-
tions).

II. BACKGROUND AND MOTIVATION

In this section, we first discuss the standard scheduling
process of Spark. Next, we present an experimental study to
motivate the need for RUPAM.

A. Spark scheduling

As shown in Figure 1, a typical Spark application comprises
multiple “jobs” triggered by various actions on Spark Resilient
Distributed Dataset (RDDs). A job is further divided into
multiple “stages” differentiated by shuffle dependencies, which
perform the data transformation operations for an RDD. The
“tasks” within a stage perform the same operation on different
data partitions. Here, two levels of scheduling are performed
for a Spark application, namely, application level scheduling
that provisions nodes in a cluster for an application, and task
level scheduling.

Application scheduling is done by cluster managers, either
the internal Spark standalone cluster manager or external man-

agers such as Mesos and YARN. The cluster manager provi-
sions a subset of cluster nodes for an application, which Spark
then uses to run jobs and tasks. Spark and major resource
managers provision resources into abstract units of number of
CPU cores and sizes of memory. However, other resources
of a node, e.g., storage setup, network configuration, accel-
erators, etc. are not considered in the scheduling decisions.
Mesos and YARN do provide support for accelerators, e.g.,
GPUs, but that too is limited and requires user configuration
and labeling. Moreover, such configuration-based approaches
are static throughout the application life cycle and unable
to capture the dynamic application requirements. The main
reason for this limitation is that the resource managers are not
aware of the application task characteristics, and programmatic
approaches need to be employed to negotiate and renegotiate
between application and resource managers to dynamically
require resources only when needed.

Once the resources are acquired from the resource manager,
task-level scheduling is performed to assign the tasks to each
executor running on a node. Current Spark task schedulers
assign one task per a CPU core. Given a node, as long as it
has cores available, the scheduler finds a task that has data
residing on that node, and schedules the task to the node.
Thus, only data locality is considered, while other factors are
ignored. For example, a node with available cores may not be
suitable for running more tasks say because it does not have
enough memory left, and a new task would fail with an out of
memory error. Existing heterogeneity-aware schedulers only
focus on the heterogeneity of the underlying nodes, and often
assume that all tasks in the same Map/Reduce stage have the
same characteristics, which as we show does not always hold
true.

B. Motivational study

To show that the assumptions in current Spark scheduler are
not always true and can lead to inefficiencies, we performed
several illustrative experiments with Spark. We use a simple 2-
node setup, each node having 16 CPU cores and 48 GB mem-
ory. However, we configured the nodes with different CPU
frequencies and network throughputs to emulate a heteroge-
neous environment. We explore more heterogeneous resources
including memory, storage, and accelerators in Section IV.
We configured node-1 to have 1.6 GHz CPU frequency and

0
39
40
41
42
43
44
45
46
47

 0 10 20 30 40 50 60 70 80 90

T
a
s
k
 I
D

Compute
Shuffle

Serialization
Scheduler Delay

(a) node-1

5
11
7
1
9

15
13
2

33
34
35
36
37
38
3

 0 20 40 60 80 100 120 140 160

T
a
s
k
 I
D

Compute
Shuffle

Serialization
Scheduler Delay

(b) node-2

Fig. 3: Task distribution and execution breakdown of PageRank.

10 GbE network speed, and node-2 to have 2.4 GHz CPU
frequency and 1 GbE network speed. We set up the latest
version of Spark 2.2 with one master and two workers.

1) Resource utilization of different stages in a single ap-
plication: In our first test, we study the dynamic demands
for resources during an application’s execution. Here we
employ a crucial kernel used in numerous machine learning
applications [37], [42]–[44], matrix multiplication, to make our
case. We multiply two 4K×4K matrices as input and monitor
the resource utilization during the execution. Figure 2 shows
the CPU and memory utilization, network utilization for both
inbound and outbound traffics, and disk utilization for both
read and write. We observe that memory utilization remains
high with an initial slope and a slight reduction in the final
stages. In contrast, CPU usage is high for only the last stages
where the actual multiplication happens, and shows a spike
in the beginning data processing stage. Network utilization
shows spikes in both beginning and final stages due to the
reduce operations. The application exhibits relatively low disk
reads but high disk writes during different shuffle stages.

We see from the graph that the matrix multiplication ap-
plication requires multiple resources including CPU, memory,
network and storage to execute, and the demand for different
resources changes with the different execution stages. For
example, it is CPU dominant in the beginning stages, memory
dominant in the middle stages, and finally network dominant.
Statically allocating a subset of cores and memory to a
given application, as is the case in current schedulers, does
not consider this diversity and inconsistency in the needed
resources.

2) Task skewness in a single stage: Existing heterogeneity-
aware schedulers assume tasks in the same stage to have
similar characteristics as they perform the same computation.
However, this assumption does not hold true due to data
skewness, shuffle operations, etc. To demonstrate the diverse
task characteristics in the same stage, we perform a PageRank
calculation with 20 GB input data on the 2-node cluster.
Figure 3 shows the task assignments on the two nodes. We
further break down the execution time into four categories:
compute, shuffle, data serialization, and scheduler delay. Here

y-axis represents task ID, and x-axis represents the execution
time in seconds. Note that node-1 has a higher CPU processing
capacity and lower network throughput than node-2. We can
see that tasks in the same stage have different execution times,
with the difference being as much as 31× between the two
nodes. Also we can see some tasks, such as task 47, are CPU
intensive where they spend most of time on compute, while
other tasks, such as task 13, are shuffle intensive. However,
Spark task scheduler does not consider the characteristics of
the tasks and assigns most CPU intensive tasks to node-1, and
shuffle intensive tasks to node-2. It also does not consider
overlapping tasks with different resource demands on the
same node. For example, most tasks in node-1 are compute
intensive, and compete for CPU resource. Moreover, node-1
has 10 tasks assigned while node-2 has 15 tasks. The uneven
task scheduling can also cause unbalanced load among the
cluster.

These experiments show that, a Spark application may
require varying resources even within the application life
cycle. The tasks therein also have varying characteristics.
Moreover, the resource heterogeneity amplifies the challenge
of matching resources to appropriate tasks. RUPAM aims to
manage this heterogeneity in an efficient manner.

III. DESIGN

In this section, we first describe the architecture of RUPAM.
Then, we detail the heterogeneity-aware scheduling of RUPAM.

A. System architecture

Figure 4 shows an overview of the RUPAM architecture,
and highlights key components in addition to the original
Spark cluster and the interactions therein. The goal of RU-
PAM is to match the best resource with a Spark task, given
a heterogeneous resource pool allocated to the application.
Note that RUPAM is a task-level scheduler that works with
any application-level and job-level schedulers such as Mesos,
YARN, or Spark standalone scheduler. In this work, we
showcase RUPAM atop Spark standalone scheduler.

RUPAM has three major components: Resource Monitor
(RM), Task Manager (TM), and Dispatcher. RM is in

Task Manager

Resource

Monitor

Spark Cluster

Task

Monitor

I/O Bandwidth

Network Speed

Memory Utilization

CPU Utilization

Extended Heartbeat

Task Appraiser

Task Queue

CPU

MEM

I/O

NET

GPU

Resource Queue

CPU

MEM

I/O

NET

GPU

I/O Usage

Network Usage

Memory Usage

CPU Usage

Task Reporting

Dispatcher

Periodic
Reporting

Task Reporting on Task Completion

Task
Assignment

Task DB

Adding Nodes on Task Completion

Tasks

Fig. 4: RUPAM system architecture.

charge of real-time resource monitoring of the system. It has
a central Monitor running in Spark master and a distributed
Collector running on each Spark worker node. The Collector
reports resource usage such as CPU, memory, network, I/O,
and GPU on each node, and the Monitor collects and records
the information from the nodes. RM can be extended to
collect more information based on the resource capabilities,
e.g., NVM devices. TM tracks the tasks resource usage to
determine any resource bottlenecks for a task. Dispatcher
component implements the main logic flow of RUPAM such as
determining the size of executor to launch per node, number
of tasks to launch on a specific node, matching a task to a
suitable node, and scheduling tasks based on multiple factors.

RM starts when Spark is initiated on a cluster. When
an application is submitted, Spark instantiates a cen-
tralized application-level resource scheduler that can be
CoarseGrainedScheduler for Spark standalone mode, and Ex-
ternalClusterManager for external resource managers. In the
meantime, the Spark task scheduler (TaskScheduler) is also
launched to take control of task life cycles. When tasks are
submitted to TaskScheduler, it queues the tasks and waits for
the resource scheduler to release a node. Then TaskScheduler
schedules a task for a given resource based on locality. Here
RUPAM launches TM and Dispatcher instead of TaskSched-
uler. Instead of scheduling tasks based on locality alone, TM
keeps track of resource utilization of each task and decides
its crucial characteristics. The information is then used by
Dispatcher to schedule task to suitable resources based on
both resource characteristics of tasks and nodes.

B. Real-time resource and task monitoring

The dynamic scheduling mechanism of RUPAM relies
on real-time resource monitoring and task characterization.
Specifically, when a node becomes available for running a
task, RUPAM should be able to assign a task that has matching
performance characteristics to the resource characteristics of
the node (Section II-B2 showed tasks in the same stage with
different resource bottlenecks). For instance, if the node is
equipped with large amount of memory, a task requiring large

memory capacity should be assigned to the node. However, the
resource utilization of a node does not stay the same. Available
resources can change as tasks are launching and finishing
in the node. It is crucial to keep the most updated resource
utilization for each node. Moreover, the resource bottleneck of
the same task may change along with the status of the node it
is executed on. For example, a task may have a bottleneck on
CPU when executed on a node with poor CPU clock speed,
but the same task may spend a large amount of time shuffling
data over the network when it is executed on a powerful node
(to remedy the CPU bottleneck) in the next iteration. The
resource contention among tasks in a node can also affect such
characteristics. Hence, it is also important to keep track of task
characteristic in the entire life cycle to decide the best node
for a given task with trade-offs. To this end, RM monitors
resource utilization of each node real-time to provide updated
utilization metrics, and TM keeps track of each task as the
application executes and collects the statistics when the task
finishes.

1) Resource monitoring: Spark adopts a master-slave de-
ployment architecture. When a Spark worker launches, it
registers itself with Spark master using a message including its
ID, IP address, CPU cores, and memory. With this information,
Spark master can later on launch executors with certain CPU
cores and memory on each worker. To tolerate node failure,
Spark master requires a simple heartbeat acknowledgement
message to each worker periodically to decide whether a node
is healthy. RUPAM takes advantage of this mechanism, and
piggy-backs real-time resource monitoring data on the heart
beats, thus providing scalable monitoring without introducing
extra communication overhead. To consider heterogeneous
hardware configurations in the cluster, RUPAM supports multi-
dimensional resource characterization and availability report-
ing. Table I (left side) shows a list of supported monitoring
metrics. For static properties such as SSD and maximum
network bandwidth, collector only sends the information once
when registering to the master. For real-time properties, RU-
PAM collects the information periodically via our extended
heartbeat messages. We consider CPU frequency as a dynamic
value due to the workload-aware energy saving features in
modern CPUs. In addition, RUPAM can be easily extended to
support other resource types.

RM records all of the collected information from the nodes
and later on pass to the Dispatcher. Since every node has
different types of resources as listed in Table I, the key
challenge is how to organize the metrics for different nodes
as the system scales. To this end, RUPAM again leverages an
existing object of executorDataMap inside Spark to reduce
memory overhead. After receiving the heartbeat messages
from the collectors, RM first stores all of the information
in the executorDataMap object. However, just keeping the
information does not help decide appropriate nodes for given
tasks. Multi-dimensional resource availability complicates this
process. To help Dispatcher figure out the best node for each
resource category, RUPAM uses one priority queue for each
resource type (“Resource Queue” in Figure 4), i.e., CPU, GPU,

Node metrics Description Task metrics Description

cpuFreq CPU clock frequency. computeTime Time the task spent on computation (including
serialization and deserialization).

gpu The number of idle GPUs in the machine. gpu Whether the task uses GPUs.
ssd The disk that Spark uses for intermediate data

storage is an SSD device or not.
peakMemory The maximum memory size used by the task

during execution.
netBandwith The bandwidth of the network. shuffleRead Time the task spent on reading shuffle data.
freeMemory Size of free memory in the node. shuffleWrite Time the task spent on writing shuffle data to the

disk.
cpuUtil CPU load of the node. optExecutor The executor where the task has the lowest run-

time by far.
diskUtil The I/O load of the node. historyResource The history resource bottlenecks that TM has

determined for this task.
netUtil The network load of the node.

TABLE I: The node metrics that RM monitors on each node (left) and the task metrics that TM monitors (right).

network, storage, and memory. Each queue is sorted with
capacity in descending order (most powerful/capable/capacity
first) and associated utilization in ascending order (least used
first). In order not to overwhelm the memory usage by keeping
these queues, we only insert a record whenever a node is
ready to execute a task. Based on our observation, instead
of making bulk scheduling when all nodes become available,
Spark detects whether a node is ready for tasks with heartbeat
messages and immediately schedules a task whenever a subset
of nodes are available. It then blocks incoming messages until
tasks are scheduled, before going to the next round of making
offers. As a result, RUPAM only needs to sort out the small
subset of nodes in a single round, and all of the queues can
be emptied before the next round of offers. In this way, we
keep the size of our resource queues in check and associated
sorting time complexity low. This minimizes the overhead of
RUPAM.

2) Task monitoring: To select an appropriate task for a
given node with certain capabilities, RUPAM also needs to
determine the task characteristics. To this end, TM monitors
the resource usage of tasks for every application and records
the information. RUPAM uses a task characteristics database
(DBtask char) to store the task metrics based on the observa-
tion that data centers usually run the same application on input
data with similar patterns periodically [31], [34]. Table I (right
side) shows the task metrics that RUPAM maintains. Once tasks
are submitted to TM, RUPAM first searches for the task in
DBtask char and retrieves its characteristics. To separate tasks
with different resource needs in a stage, TM also keeps a
queue for each resource type (“Task Queue” in Figure 4). As
stated earlier, these queues will be reset when current tasks
finish and before a new task wave arrives. Algorithm 1 gives
a detailed view of the steps TM takes to determine resource
bottlenecks. Here, Res factor is a parameter that decides
the sensitivity to resource bottlenecks. For example, a task
is considered compute-bound if it spends 2× more time than
shuffle operation. Users can adjust the sensitivity, and RUPAM
will modify the frequency of task re-characterization and re-
scheduling accordingly.

If there is no record for a task in DBtask char, i.e., this

is the first time the task has been submitted, RUPAM first
checks the current stage of the task. If it is in map stage
(ShuffleMapTask), RUPAM considers it to be bounded by all
types of resources and thus enqueue it in all queues. A task in
a reduce stage (ResultTask) is considered to be network bound,
since a reduce task typically first reads data from shuffling
and then sends the results back to the Spark driver program;
activities that are all network intensive (this assumption can
be relaxed by TM for later iterations.). When a task finishes,
RUPAM combines the task metric information from Spark and
records the information in DBtask char for future use, i.e.,
future task iterations and job runs.

For tasks that use special accelerators such as GPUs, TM
checks with RM to see if any GPU is used during the task
execution period, and marks all the tasks in the same stage
to be GPU tasks. This is because the tasks in the same stage
usually perform the same computation. The TM updates the
task metrics in DBtask char whenever a task finishes. This
is because the same task may show different resource usage
when executing in a different environment as discussed earlier.
This ensures that RUPAM has the most updated information for
its decision making. However, this also creates the challenge
of how to manage the overhead of frequent DBtask char

accesses. To address this, RUPAM creates a helper thread for
accessing DBtask char. All DBtask char write requests are
queued and served by the helper thread. For read requests,
the helper thread first checks the queue to see if the task has
written to the database yet, and if it has, the request is served
from the enqueue requests if any before accessing the database.

C. Task scheduling

We model the problem as the scheduling of n tasks onto m
parallel machines. Our objective is to minimize the total pro-
cessing time of all tasks for all machines, Tmax = max(Ti =∑
∀j pj), where pj denotes the processing time of a task

j. Tmax represents the maximal makespan among machines,
which is equivalent to the makespan in parallel machines or
the total processing time of all tasks for all machines. In order
to capture the different hardware capability, capacity of nodes,
and data locality, we assume that the processing time of the

Algorithm 1: Task characterization procedure
Input: taskSet, computeT ime, gpu, shuffleRead,

shuffleWrite, Res factor
1 begin
2 for each task in taskSet do
3 if gpu then
4 pendingGpuTasks.enqueue(task);
5 end
6 else if computeT ime > Res factors×

max(shuffleRead, shuffleWrite) then
7 pendingCpuTasks.enqueue(task);
8 end
9 else if

shuffleRead > Res factor × shuffleWrite
then

10 pendingNetTasks.enqueue(task);
11 end
12 else
13 pendingDiskTasks.enqueue(task);
14 end
15 end
16 end

task j on each machine i, pi,j , varies across machines. Our
goal is to minimize Tmax = max(Ti =

∑
∀j pi,j) under the

following constraints:

∀i,
∑
j

xr
i,j ≤ Cr

i

∀i, j, xi,j ∈ 0, 1,

where Cr
i denotes the capacity of resource r on machine

i, and xi,j = 1 if and only if a task j is scheduled on the
machine i. If the resource r is not available on the machine i,
Cr

i = 0, which prevents task j from mapping to machine i.
The relevant underlying theoretical problem that applies to

our conditions is is unrelated parallel machine scheduling [28],
for which obtaining optimal solution has been shown to be NP-
hard [4], [6], [16]. The most popular solution to this problem
is list scheduling algorithm, a greedy algorithm that maps
tasks to available machines without introducing idle times,
if it is not needed (e.g., dependencies between tasks.) Since
list scheduling provides a practical solution with a reasonably
good theoretical bound [28], RUPAM adopts a heuristics based
on the greedy algorithm.

Specifically, the TM determines resource bottleneck for
each task, and passes it to Dispatcher for scheduling. The
Dispatcher waits for underlying node(s) to be available. Com-
bined with the task metrics from TM and node information
from RM, Dispatcher is able to match a task to a node.
There are several factors that RUPAM needs to consider for
heterogeneous resource aware scheduling:

• hardware capability/capacity of nodes (e.g. w/wo SSDs,
w/wo GPUs);

• resource consumption for each task;
• resource contention for each resource in a node;
• number of tasks running in the same node; and
• data locality.

Algorithm 2: Task scheduling algorithm
Input: taskSet, speculativeTaskSet

1 begin
2 {res, node} ←dequeue_node_rr;
3 task ←schedule_task(taskSet, res, node);
4 if task is null then
5 /*check stragglers*/
6 task ←schedule_task(speculativeTaskiSet,

res, node);
7 end
8 end
9 Function schedule_task(pendingTasks, res, node)

10 taskList←get_tasks_with_res(res,
pendingTasks); taskWithBestLoc← null;

11 for each task in taskList do
12 if task.peakMemory > node.freeMemory then
13 /*the task has been identified to

bottlenecked by all of the 5
resources and the history shows
running on node yields best
performance.*/

14 if task.historyResource.size = 5 and
task.optExecutor = node then

15 return task;
16 end
17 else if task.get_locality(node) =

PROCESS_LOCAL then
18 return task;
19 end
20 else if task.get_locality(node)>

taskWithBestLoc.get_locality(node)
then

21 taskWithBestLoc← task;
22 end
23 end
24 end
25 return taskWithBestLoc;

1) Scheduling policy: Data locality based scheduling miti-
gates performance degradation due to network transfers, but is
unable to capture resource and task heterogeneity as discussed
earlier. In contrast, RUPAM uses multi-dimensional character-
istics for scheduling. The Dispatcher matches the task with
the right resources with the help of “Task Queue” and “Re-
source Queue”. Algorithm 2 describes the steps Dispatcher
takes to schedule tasks. After RM populates the “Resource
Queue”, RUPAM dequeues one node from each resource queue
at a time in a round-robin fashion to make sure no task
with a single resource type is starved. Since the first node
dequeued from a specific priority queue will have the highest
capacity/capability and the least utilization of the available
resource type, Dispatcher goes over the tasks in the queue
of that resource type, makes sure that the node has enough
free memory to launch the task, and finally find the task with
the best locality to that node in the order of PROCESS_LOCAL
(data is inside the java process), NODE_LOCAL (data is on the
node), RACK_LOCAL (data is on the node in the same rack)
and ANY (data on a node in a different rack). This heuristic
greedily finds a node N with the best capability and lowest
contention for a resource R, and then schedules to N a task
T , that had R as the bottleneck in its previous run, and now N

offers the best locality for T . RUPAM does not try to find the
optimal scheduling strategy for each task, as that may cause a
huge scheduling delay and will be counterproductive. Instead,
RUPAM tries different node assignments for a task, e.g., with
well-endowed CPUs or better I/O throughput, and records the
node where the task has achieved the best performance. This
node is used to schedule the task, even if the task has some
bottleneck for say CPU on that node. This “locking” of a task
to the node on which it gives the best observed performance,
also prevents moving tasks back and forth between nodes due
to temporary fluctuations in the task characteristics.

2) Resource allocation: Spark launches executors with a
fixed number of cores and memory, and considers a node
to be available if there are free cores in the node. This
static configuration is inefficient. First, in a heterogeneous
environment, nodes have different memory size and number
of cores. RUPAM schedules tasks beyond this size limitation,
i.e., based on the resource availability for each node. For
example, RUPAM changes the executor size when necessary so
that different nodes will have executors with different memory
sizes. Second, determining the number of task slots based
on the number of CPU cores in a node is not accurate. For
example, a node with no free CPU cores may only have 10%
CPU utilization if all tasks assigned the node are I/O bound.
On the other hand, a node that only has one task may be
using 100% of the CPU. In this case, scheduling more CPU
intensive tasks will cause resource contention and slowdown
the application progress. To this end, RUPAM treats a node to
be available as long as it has enough resources to execute a
task. The usage of priority queue makes sure that the node
that is dequeued has the least utilization for such a resource.
By over-committing a node that has some idle resources and
matching the node with the right task, RUPAM can overlap
tasks with different resource demands. For instance, a node
that has all cores that are occupied by CPU intensive tasks,
may have idle GPUs. It will be the first node in the GPU
priority queue, and RUPAM can use it to run a GPU-friendly
task. Thus making more efficient use of available resources.
Such resource overlapping is possible because Spark often
launches tasks from different stages at the same time whenever
possible (as long as there are no data dependencies between
the stages).

3) Straggler and task relocation: To remedy the possible
suboptimal decisions Dispatcher may make, RUPAM also
works with recently introduced Spark speculative execution
system to launch copies of stragglers in available nodes. The
Spark speculative execution system monitors the current run-
time of the tasks. When the number of tasks completed reaches
a threshold (default 75% of total tasks), the system searches
the tasks that take more time than a factor (1.5× by default)
of mean execution time of finished tasks and mark them as
stragglers. A copy of the stragglers will be executed in the
next available node to compete with the original copy. Besides
the standard stragglers detected by Spark, RUPAM also detects
resource stragglers due to the heterogeneous environment. For
this purpose, we change the checkSpeculatableTasks()

Name CPU
(GHz)

Memory
(GB)

Network
(GbE) SSD GPU #

thor 3.2 16 1 Y N 6
hulk 2.5 64 1 N N 4
stack 2.4 48 1 N Y 2

TABLE II: Specifications of Hydra cluster nodes.

function in Spark to consider resource usage when marking
tasks as stragglers. For example, BLAS application is designed
atop underlying libraries that either use CPU (OpenBLAS)
or GPU (NVBLAS) for acceleration [37]. Although such
task would be marked as GPU tasks in RUPAM, RUPAM
does not wait until GPU nodes are available to execute the
tasks, instead it will also schedule such tasks to available
nodes with powerful and idle CPU. Whichever version finishes
first will continue, while the unfinished version is aborted
and the resources freed. On the other hand, memory is a
crucial resource because OutOfMemory error can cause the
application to abort. In the case when the OS rejects the JVM
memory allocation request, the whole JVM can be killed by
the OS, which is then followed by a catastrophic failure of
the Spark worker. To prevent such a scenario, RUPAM also
takes an aggressive approach to detect memory stragglers.
First, whenever RM detects a node that has low free memory,
it sends a message to TM and by examining the currently
running tasks, TM marks the task that has the highest memory
consumption as straggler, and terminates the task in the node.
After marking a task as a straggler, a copy of the task is
sent to TM, and it analyzes the task metrics to determine the
bottleneck and enqueues it to the “Task Queue” again. The
Dispatcher can then again assign the task to a node that has
appropriate idle resources for the task.

IV. EVALUATION

We evaluate RUPAM using a local heterogeneous cluster,
Hydra, consisting of 12 nodes with three types of resources
as Table II, namely thor, hulk, and stack. Each thor node
has an 8-core AMD FX-8320E processor, and a 512 GB
Crucial SSD. However, these nodes have the lowest memory
capacity of 16 GB each. The hulk machines have 32-core
AMD Opteron Processor 6380. The hulk machines have the
highest memory capacity of 64 GB each and a high network
bandwith of 10 GbE. Finally, stack machines have 16-core
Intel Xeon E5620 CPUs and a moderate memory size of
48 GB. Each stack nodes is equipped with an NVIDIA
Tesla C2050 GPU. All nodes besides thor have a 1 TB
Seagate HDD device as storage. We have 6 thor nodes, 2
stack nodes, and 4 hulk nodes in our cluster. We set up
Spark 2.2 with one master node and 12 worker nodes with
the master running on a node that is also a worker. We set
the executor memory size to 14 GB to accommodate the thor
machines in our cluster for default Spark setup. We evaluate
RUPAM using a variety of applications (Table III) covering
graph, machine learning applications, SQL, and TeraSort from
SparkBench [21]. For our evaluation, we also utilize a widely-
used GPU-intensive application employed in machine learn-

Workload Input size (GB)

Logistic Regression (LR) 60
TeraSort 40
SQL 35
PageRank (PR) 0.95 (500K vertices)
Triangle Count (TC) 0.95 (500K vertices)
Gramian Matrix (GM) 0.96 (8K*8K matrix)
KMeans 3.7

TABLE III: Studied workloads and input sizes.

SysBench stack hulk thor

CPU (sec)/latency (ms) 10.14/4.63 10.06/2.23 2.16/1.73
I/O read (MB/s) 63.87 148.92 236.69
I/O write (MB/s) 6.21 52.58 134.18
Network (Mbits/s) 809 934 813

TABLE IV: Hardware characteristics benchmarks.

ing algorithms, Gramian Matrix calculation [37]. Note that
Gramian Matrix and KMeans utilize GPUs for acceleration.

A. Hardware capabilities

To study the hardware capabilities of each machine group
in our heterogeneous cluster, we first use SysBench [19] to
benchmark the CPU and I/O performance of a node from
each group. We also use Iperf [1] to determine the real
network bandwidth between the workers and the master nodes.
Table IV shows the results. For CPU tests, we use the default
CPU test workload from SysBench that calculates 20 K prime
numbers using all available cores. We record the time in
seconds and latency in milliseconds. We can see that thor
machines perform the best and are 5× faster than stack
and hulk machines. Thor also has the lowest latency. Hulk
machines performs slightly better than stack machines. We
also run the default I/O tests with a 10 GB file, using direct
I/O to avoid memory cache effect. We observe that the thor
machines have the best read and write performance, given
it has the attached SSDs. Finally, we use Iperf with master
node (stack1) set as the server, and test the UDP (protocol
used in Spark) performance from different set of machines.
Since all machines are connected through a 1 GbE network,
the results are similar for all the machines. In a large-scale
environment, more complicated network topology would result
in a more disparate network bandwidth availability among
node in different subnets.

B. Overall performance

In our first set of tests, we study the overall performance
impact of RUPAM. For a fair comparison, we also enable spec-
ulative task execution (via spark.speculation) for default
Spark in these tests. We run all workloads five times and clear
DBtask char after each run, and record the average execution
time and 95% confidence interval under both default Spark
and RUPAM. The workloads include both compute intensive
(KMeans, GM, etc.) and shuffle intensive (SQL, TeraSort, etc.)
applications. Some workloads, such as PR, are memory inten-
sive such that default Spark fails with memory error in some
runs. Figure 5 shows the results. We observe that all workloads

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

LR TeraSort

SQL
PR TC GM Kmeans

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
) Spark

RUPAM

Fig. 5: Overall performance of studied workloads under default Spark
and RUPAM.

experience performance improvement under RUPAM, with an
average of 37.7% over default Spark. This is because RUPAM
selects a node that offers the best resource for a task of each
type of workload, while Spark only considers data locality,
PR yields the highest speedup of 2.65×. This is due to the
memory error failure and recovery during the execution (which
also causes the large error bar for PR with default Spark).
In contrast, RUPAM finishes without memory errors due to
the dynamic executor memory configuration based on each
node’s memory capacity as well as the memory usage aware
task scheduling policy discussed in Section III-C. KMeans also
achieves a 2.49× speedup, but GM only shows a negligible
1.4% performance improvement. This is because GM only
has one iteration of computation, which makes it difficult for
RUPAM to test and determine an appropriate resource for the
workload, while KMeans’ five iterations enable RUPAM to
better match tasks with suitable resources. The behavior is
also observed for other workloads with only one iteration such
as SQL (per query) and TeraSort, which only have moderate
speedups of 1.19× and 1.32×, respectively. Workloads with
multiple iterations (PR, LR, TC, KMeans) have an average
speedup of 2.31×. This shows that RUPAM performs better
when there are multiple iterations in a workload due to the log
based task characterization of RUPAM. The more iterations an
application has, the better matching RUPAM can achieve for
the application.

In order to have a clearer view of the relationship between
the performance of RUPAM and the number of iterations of a
workload, we experiment further with LR. Here, we use the
same input size but alter the times of regression to vary the
number of iterations of the workload. We record the speedup
of RUPAM compared to default Spark in Figure 6. We can see
that as the number of iteration increases, the speedup achieved
by RUPAM also increases, up to 3.4×. Note that regardless of
iterations, RUPAM is able to match or outperform the default
Spark scheduler, thus making is a desirable approach for all
types of applications.

C. Impact on locality

RUPAM attempts to find the task whose requirements best
match a node’s resource, as well as will achieve the best data
locality on the node. However, it is possible that a node N
that offers the best locality (NODE_LOCAL and ANY) will affect

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 3 6 9 12 15 18

S
p
e
e
d
u
p

Fig. 6: Speedup of LR under RUPAM wrt. default Spark with
increasing number of workload iterations.

a task T ’s performance significantly when considering other
resources beside locality, and thus, unlike default Spark N
will not be picked by RUPAM for running T . In our next
test, we record the number of tasks that are scheduled by
RUPAM on a node with different locality than a node chosen by
default Spark. We use this number as a measure of RUPAM’s
impact on preserving data locality similar to default Spark.
Table V shows the results. Note that all workloads have zero
RACK_LOCAL tasks. We can see that for all workloads, default
Spark has more PROCESS_LOCAL tasks than RUPAM. This is
expected, as Spark aims to schedule task with the best data
locality available for a node. For some workloads, such as
TeraSort and TC, Spark has more total number of tasks than
RUPAM. This is due to the fail and retry of some tasks with the
out-of-memory error under Spark when they are scheduled to a
node with less memory capacity and high memory contention.
In such cases, Spark still strives to allocate tasks with the
best data locality, so we still observe a lower number of
NODE_LOCAL and ANY tasks under such scenario. However,
RUPAM has more tasks with poorer data locality for such
workloads because RUPAM relocates tasks to a node with
higher memory capacity and lower contention. Thus, RUPAM
trade-offs locality for better matching resources in such cases,
with the goal to achieve higher end-to-end performance (in this
even task completion and error avoidance). As the goal of any
big data platform is faster time to solution, and not preserving
locality for the sake of it, such trade-offs are justified and
necessary.

D. Performance breakdown

In our next experiment, we select three representative
workloads for each category—LR (machine learning), SQL
(database), and PR (graph)—and study the breakdown of
performance into five categories: compute, garbage collection
(GC), network shuffle, disk shuffle (read and write), and
scheduler delay. Figure 7 shows the results. We find that
all selected workloads have improved compute times, which
underscores RUPAM’s ability to schedule compute-intensive
tasks to nodes with better computational power and less CPU
utilization to reduce contention (Section III-C). For the LR
workload, we observe less GC overhead for RUPAM, but
similar or higher GC overhead for PR and SQL, respectively.
Combined with Figure 8(b), we see that SQL consumes the

Workload PROCESS NODE ANY

Spark RUPAM Spark RUPAM Spark RUPAM

LR 295 292 12 15 0 0
TeraSort 2490 1803 339 188 30 12
PR 13800 13785 16 33 134 132
TC 2052 3924 612 1605 556 949
SQL 492 480 0 0 1 13
GM 512 256 64 320 0 0
Kmeans 2004 2259 95 101 10 0

TABLE V: Number of tasks with different locality level under default
Spark and RUPAM.

largest amount of memory among the three studied workloads.
Furthermore, SQL has only one iteration per SQL query with
no data that needs to be preserved across queries, but involves
a lot of shuffle operations for data join, so GC is triggered
often to free space for shuffle. Moreover, RUPAM increases
the memory usage up to the node capacity compared to a
conservative configuration of Spark, thus resulting in JAVA
spending more time to search the whole JVM memory space
for GC, resulting in a big GC overhead compared to default
Spark. On the other hand, LR has moderate memory usage
and intermediate data needs to be kept across iterations. In
this case, larger memory capacity provided by RUPAM is
able to cache more data compared with the static memory
configuration of default Spark where more GC operations are
triggered for LRU cache management. Thus, RUPAM entails
less GC operations and experiences a lower GC overhead.

For SQL workload, RUPAM yields a high shuffle overhead
than Spark. This is because SQL only has one iteration
and RUPAM simply treats the tasks to be general without
specific resource bottleneck as described in Section III-B2.
Moreover, RUPAM achieves worse data locality compared to
Spark as shown in Section IV-C, which result in worse
shuffle performance. For other workloads, such overhead is
mitigated by the performance improvement due to correct
characterization of tasks. From Table V, we see that for LR,
RUPAM has 15 NODE_LOCAL tasks and 0 ANY tasks, while
Spark has 12 NODE_LOCAL tasks and 0 ANY tasks. Thus, we
do not observe much shuffle overhead over network, but we
observe a higher shuffle overhead from disk for Spark than for
RUPAM. This is because although RUPAM has similar number
of NODE_LOCAL tasks to Spark, RUPAM schedules the I/O
intensive tasks to nodes with SSDs. On the other hand, we
see that RUPAM has 13 ANY tasks but Spark only has 1. This
creates the larger shuffle network overhead of RUPAM. PR
has a similar number of ANY tasks, but RUPAM has twice the
number of NODE_LOCAL tasks than Spark. However, here again
we observe similar shuffle disk overhead of RUPAM due to the
I/O task scheduling of RUPAM.

Finally, we observe that although RUPAM takes more steps
for task scheduling, by tracking resource and task monitoring,
and using the simple heuristic, the resulting scheduler delay
under RUPAM is moderate compared to default Spark.

Discussion: We carefully select the input data size to fully
saturate the capacity of the scale of our setup, such that the

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Compute
GC Shuffle-net

Shuffle-disk

Scheduler

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

Spark
RUPAM

(a) LR

 1

 10

 100

 1000

 10000

Compute
GC Shuffle-net

Shuffle-disk

Scheduler

Spark
RUPAM

(b) SQL

 0.001

 0.01

 0.1

 1

 10

 100

 1000

Compute
GC Shuffle-net

Shuffle-disk

Scheduler

Spark
RUPAM

(c) PR

Fig. 7: Performance breakdown of selected workloads under default Spark and RUPAM. Note that y-axis is log-scaled.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50 100 150 200

SQL-Spark
SQL-RUPAM

LR-Spark
LR-RUPAM

PR-Spark
PR-RUPAM

(a) CPU User (%)

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

SQL-Spark
SQL-RUPAM

LR-Spark
LR-RUPAM

PR-Spark
PR-RUPAM

(b) Memory Used (GB)

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

SQL-Spark
SQL-RUPAM

LR-Spark
LR-RUPAM

PR-Spark
PR-RUPAM

(c) Network Packets (MB/s)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 5 10 15 20 25 30 35 40 45

SQL-Spark
SQL-RUPAM

LR-Spark
LR-RUPAM

PR-Spark
PR-RUPAM

(d) Disk Utilization (KB/s)

Fig. 8: Average system utilization of the nodes with selected workloads under default Spark and RUPAM.

task would execute without crashes under default Spark. All
task slots are filled during the experiments. We expect that
bigger data size would generate more tasks to be scheduled
in the queue. With the same hardware configuration, RUPAM
continues to strategically assign tasks based on real-time
resource consumption of both tasks and the underlying nodes,
while Spark’s static task slot-based scheduling policy can
cause suboptimal scheduling decision and resource contention.
Though speculative execution can ease the problem, more
frequent launching and relaunching of tasks also increase the
scheduling overhead.

E. Impact on system utilization

In our final test, we investigate how RUPAM impacts re-
source utilization. We repeat the previous experiment (with
LR, SQL, and PR) and measure the average utilization of CPU,
memory, network, and disk I/O of the 12 nodes in our cluster.
Figure 8 shows the results. We see that for CPU utilization,
RUPAM shows a lower average CPU user percentage compared
with default Spark. This is because RUPAM takes the real-
time CPU utilization into consideration when assigning tasks,
which can help balance CPU load and reduce CPU contention.
The same trend can also be observed for network and disk
I/O utilization. However, for memory, RUPAM shows a higher
usage than default Spark for all workloads. This is because
default Spark takes a static global configurable memory size
for launching the executors on each worker node. In our setup,
we have to accommodate the node with the smallest memory
size in order to launch the executors without memory errors.
However, RUPAM is able to launch executors with different
memory sizes on different nodes with different memory ca-
pacity. Thus, RUPAM yields a higher overall/average memory
usage.

Next, to test RUPAM’s impact on the resource load balance,
we also calculate the standard deviation of the resource uti-
lization among the nodes in the cluster during the execution of
workloads. To get a clear view, Figure 9 only shows the result
for PR. However, the other workloads show similar patterns.
Here we omit the results for memory usage due to the RUPAM’s
design of using all available memory of the node. We observe
from the figure that, in general, RUPAM shows a lower standard
deviation of CPU utilization than default Spark. For network
and disk I/O, Spark shows spikes, while RUPAM keeps a low
and stable standard deviation. This is because PR performs
heavy shuffle operations in the late stages, and stresses the
use of network and disk. The low standard deviation among
the nodes of RUPAM shows that RUPAM scheduling is able to
dispatch tasks to nodes with less contention on the resources
and balance the resource utilization among the nodes in a
cluster, while Spark scheduler only considers data locality
and may cause an unbalanced workload and contention on
individual nodes, which results in a higher standard deviation
in utilization among the nodes.

V. RELATED WORK

Rolling server upgrades is a common practice in large scale
clusters and data centers, which inherently make the systems
more heterogeneous [20], [24]. Thus, extensive work [5],
[14], [17], [25], [26], [29], [30], [32] has been conducted for
sharing heterogeneous clusters among multiple applications
in both cloud environments and local clusters. These works
focus on multi-tenancy environment and allocate resources
in a heterogeneous environment to an application based on
application types. In contrast, RUPAM monitors and captures
the diverse task and hardware characteristics, and thus aims
to create a fine-grained resource scheduler with the aim to

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200

PR-Spark PR-RUPAM

(a) CPU User (%)

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

PR-Spark PR-RUPAM

(b) Network Packets (MB/s)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

PR-Spark PR-RUPAM

(c) Disk Utilization (KB/s)

Fig. 9: Standard deviation of system utilization among the nodes with selected workloads under the default Spark and RUPAM.

improve performance for individual tasks instead of just at
application level (as applications can have tasks with varying
demands). The design of RUPAM is orthogonal to works on
heterogeneous resource management, and can co-exist and
benefit from them as a second-level scheduler.

Scheduling optimization for MapReduce jobs in hetero-
geneous environment is also extensively studied both for
Hadoop [3], [7], [10], [12], [34], [36], [41] and Spark [39].
Here, techniques such as straggler detection via progress rate
and time estimation for better schedule and reschedule tasks
are used. These approaches rely on application monitoring
to make reactive scheduling decisions. In contrast, RUPAM
considers task characteristics as well as resource heterogeneity
and utilization when scheduling a task. RUPAM also adopts
the idea of reactive scheduling as needed to avoid suboptimal
decisions. Another aspect is taken up by works such as [3], [5],
[8], [13], [27], which consider the resource utilization when
scheudling tasks. However, heterogeneous cluster scheduling
that considers multiple resources is a hard problem, both in
theory [15] and practice [3], [16], [22]. The challenges here
stem from the dynamic interactions between processes (or
tasks) within a single application such as synchronization,
load balancing, and the inter-dependency between processes;
and the dynamic interactions between applications such as the
interleaving resource usages with other collocated independent
workloads [38]. To reduce the complexity of the problem,
these works focus on dominant resource optimization per a
stage and assumes all tasks in the same Map/Reduce stage
share the same resource characteristics. In contrast, RUPAM
considers resource usage pattern for each task and adopts a
heuristic to reduce complexity and thus improve performance.
Tetris [16] proposes to pack multiple resources in a cluster
for scheduling tasks. It applies the heuristics for the multi-
dimensional bin packing algorithm. However, Tetris works
with YARN in a homogeneous environment and assumes
that tasks of a job have the same resource requirements to
reduce the search space. In contrast, RUPAM takes a step
further to consider both heterogeneous cluster resources and
heterogeneous tasks, within Spark’s own task scheduler.

VI. CONCLUSION

In this paper, we present RUPAM, a heterogeneity-aware
task scheduling system for big data platforms. RUPAM goes

beyond just using data locality for task scheduling, and also
factors in both task-level resource characteristics and un-
derlying hardware characteristics including network, storage,
and out-of-core accelerators in addition to the extant CPU
and memory. RUPAM adopts a self-adaptable heuristic for
scheduling tasks based on the collected metrics without loss of
data locality. Experiments with an implementation of RUPAM
atop Spark shows an overall performance improvement by up
to 62.3% compared to the extant Spark task scheduler. In our
future work, we plan to explore machine learning techniques
to further fine-tune, enhance, and adapt RUPAM to dynamic
workloads and heterogeneous hardware.

ACKNOWLEDGMENTS

This work is sponsored in part by the NSF under the
grants: CNS-1405697, CNS-1422788, and CNS-1615411. This
research also used resources of the OLCF at the Oak Ridge
National Laboratory and this manuscript has been authored by
UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Gov-
ernment retains and the publisher, by accepting the article
for publication, acknowledges that the United States Gov-
ernment retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

REFERENCES

[1] iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https:
//iperf.fr. [Online; accessed 12-Dec-2017].

[2] Apache Hadoop. http://hadoop.apache.org, 2017. [Online; accessed 12-
Dec-2017].

[3] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar.
Tarazu: optimizing mapreduce on heterogeneous clusters. In ACM
SIGARCH Computer Architecture News, 2012.

[4] M. K. Ahsan and D.-b. Tsao. Solving resource-constrained project
scheduling problems with bi-criteria heuristic search techniques. Journal
of Systems Science and Systems Engineering, 12(2):190–203, Jun 2003.

[5] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual
machines for managing sla violations. In Integrated Network Manage-
ment, 2007. IM’07. 10th IFIP/IEEE International Symposium on, pages
119–128. IEEE, 2007.

[6] W. Chen, Y. Xu, and X. Wu. Deep reinforcement learning
for multi-resource multi-machine job scheduling. arXiv preprint
arXiv:1711.07440, 2017.

http://energy.gov/downloads/doe-public-access-plan
https://iperf.fr
https://iperf.fr
http://hadoop.apache.org

[7] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou. Improving perfor-
mance of heterogeneous mapreduce clusters with adaptive task tuning.
IEEE Transactions on Parallel and Distributed Systems, 28(3):774–786,
March 2017.

[8] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. Hug: Multi-resource
fairness for correlated and elastic demands. In NSDI, 2016.

[9] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’14’, pages 127–144, New York, NY, USA,
2014. ACM.

[10] Z. Fadika, E. Dede, J. Hartog, and M. Govindaraju. Marla: Mapreduce
for heterogeneous clusters. In Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International Symposium on, pages
49–56. IEEE, 2012.

[11] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: Guaranteed job latency in data parallel clusters. In Proceedings
of the 7th ACM European Conference on Computer Systems, EuroSys
’12, pages 99–112, New York, NY, USA, 2012. ACM.

[12] R. Gandhi, D. Xie, and Y. C. Hu. Pikachu: How to rebalance load in
optimizing mapreduce on heterogeneous clusters. In USENIX Annual
Technical Conference, pages 61–66, 2013.

[13] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In NSDI, volume 11, pages 24–24, 2011.

[14] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Choosy: Max-min
fair sharing for datacenter jobs with constraints. In Proceedings of the
8th ACM European Conference on Computer Systems, pages 365–378.
ACM, 2013.

[15] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 5:287–326, 1979.

[16] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. In Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14’, page 455, New
York, NY, USA, 2014. ACM.

[17] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-grained
resource sharing in the data center. In NSDI, volume 11, pages 22–22,
2011.

[18] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, I. Goiri, S. Krishnan, J. Kulkarni, and
S. Rao. Morpheus: Towards automated slos for enterprise clusters.
In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 117–134, Savannah, GA, 2016. USENIX
Association.

[19] A. Kopytov. SysBench. http://imysql.com/wp-content/uploads/2014/10/
sysbench-manual.pdf.

[20] G. Lee. Resource allocation and scheduling in heterogeneous cloud
environments. University of California, Berkeley, 2012.

[21] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura. Sparkbench: A
comprehensive benchmarking suite for in memory data analytic platform
spark. In Proceedings of the 12th ACM International Conference on
Computing Frontiers, CF ’15’, pages 53:1–53:8, New York, NY, USA,
2015. ACM.

[22] S.-H. Lim, J.-S. Huh, Y. Kim, G. M. Shipman, and C. R. Das. D-
factor: a quantitative model of application slow-down in multi-resource
shared systems. ACM SIGMETRICS Performance Evaluation Review,
40(1):271–282, 2012.

[23] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker. Monotasks:
Architecting for performance clarity in data analytics frameworks. In
Proc. SOSP, 2017.

[24] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
distributed, low latency scheduling. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, pages 69–84. ACM,
2013.

[25] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé. Resource-Aware Adaptive Scheduling for
MapReduce Clusters, pages 187–207. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[26] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R.
Das. Modeling and synthesizing task placement constraints in google
compute clusters. In Proceedings of the 2nd ACM Symposium on Cloud
Computing, 2011.

[27] B. Sharma, T. Wood, and C. R. Das. Hybridmr: A hierarchical
mapreduce scheduler for hybrid data centers. In IEEE 33rd International
Conference on Distributed Computing Systems (ICDCS), 2013.

[28] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel
machines on-line. SIAM journal on computing, 24(6):1313–1331, 1995.

[29] Z. Tan and S. Babu. Tempo: robust and self-tuning resource management
in multi-tenant parallel databases. Proceedings of the VLDB Endowment,
9(10):720–731, 2016.

[30] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kandemir, and
C. R. Das. Phoenix: A constraint-aware scheduler for heterogeneous
datacenters. In The 37th IEEE International Conference on Distributed
Computing Systems, 2017.

[31] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma,
R. Murthy, and H. Liu. Data warehousing and analytics infrastructure
at facebook. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10’, pages 1013–1020,
New York, NY, USA, 2010. ACM.

[32] C. Tian, H. Zhou, Y. He, and L. Zha. A dynamic mapreduce scheduler
for heterogeneous workloads. In 2009 Eighth International Conference
on Grid and Cooperative Computing, pages 218–224, Aug 2009.

[33] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 5. ACM, 2013.

[34] A. Verma, L. Cherkasova, and R. H. Campbell. Aria: Automatic resource
inference and allocation for mapreduce environments. In Proceedings of
the 8th ACM International Conference on Autonomic Computing, ICAC
’11’, pages 235–244, New York, NY, USA, 2011. ACM.

[35] A. Verma, L. Cherkasova, and R. H. Campbell. Profiling and evaluating
hardware choices for mapreduce environments: An application-aware
approach. Performance Evaluation, 79:328 – 344, 2014. Special Issue:
Performance 2014.

[36] B. Wang, J. Jiang, and G. Yang. Actcap: Accelerating mapreduce
on heterogeneous clusters with capability-aware data placement. In
Computer Communications (INFOCOM), 2015 IEEE Conference on,
pages 1328–1336. IEEE, 2015.

[37] L. Xu, S.-H. Lim, A. R. Butt, and R. Kannan. Scaling up data-parallel
analytics platforms: Linear algebraic operation cases. In Proceedings of
the 2017 IEEE International Conference on Big Data, 2017.

[38] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux: Precise online
qos management for increased utilization in warehouse scale computers.
In ACM SIGARCH Computer Architecture News, 2013.

[39] H. Yang, X. Liu, S. Chen, Z. Lei, H. Du, and C. Zhu. Improving
spark performance with mpte in heterogeneous environments. In 2016
International Conference on Audio, Language and Image Processing
(ICALIP), pages 28–33, July 2016.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, page 2. USENIX Association, 2012.

[41] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
Osdi, volume 8, page 7, 2008.

[42] X. Zhang, Z. Chen, L. Zhao, A. P. Boedihardjo, and C. T. Lu. Traces:
Generating twitter stories via shared subspace and temporal smoothness.
In 2017 IEEE International Conference on Big Data (Big Data), pages
1688–1693, Dec 2017.

[43] X. Zhang, L. Zhao, A. P. Boedihardjo, C. Lu, and N. Ramakrishnan.
Spatiotemporal event forecasting from incomplete hyper-local price data.
In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, CIKM 2017, Singapore, November 06 - 10,
2017, pages 507–516, 2017.

[44] X. Zhang, L. Zhao, Z. Chen, A. P. Boedihardjo, J. Dai, and C. T. Lu.
Trendi: Tracking stories in news and microblogs via emerging, evolving
and fading topics. In 2017 IEEE International Conference on Big Data
(Big Data), pages 1590–1599, Dec 2017.

http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf

