
Sizing Buffers of IoT Edge Routers

Jamal Ahmad Khan
Department of Computer Science,

Virginia Tech
Blacksburg, VA
jamal93@vt.edu

Muhammad Shahzad
Department of Computer Science,
North Carolina State University

Raleigh, NC
mshahza@ncsu.edu

Ali R. Butt
Department of Computer Science,

Virginia Tech
Blacksburg, VA
butta@vt.edu

ABSTRACT

In typical IoT systems, sensors and actuators are connected to small

embedded computers, called IoT devices, and the IoT devices are

connected to one or more appropriate cloud services over the inter-

net through an edge access router. A very important design aspect

of an IoT edge router is the size of the output packet buffer of its

interface that connects to the access link. Selecting an appropriate

size for this buffer is crucial because it directly impacts two key

performance metrics: 1) access link utilization and 2) latency. In

this paper, we calculate the size of the output buffer that ensures

that the access link stays highly utilized and at the same time, sig-

nificantly lowers the average latency experienced by the packets.

To calculate this buffer size, we theoretically model the average

TCP congestion window size of all IoT devices while eliminating

three key assumptions of prior art that do not hold true for IoT

TCP traffic, as we will demonstrate through a measurement study.

We show that for IoT traffic, buffer size calculated by our method

results in 50% lower queuing delay compared to the state of the art

schemes while achieving similar access link utilization and loss-rate.

CCS CONCEPTS

• Networks→ Routers;

KEYWORDS

IoT, Edge Routers, Buffers

ACM Reference Format:

Jamal Ahmad Khan, Muhammad Shahzad, and Ali R. Butt. 2018. Sizing

Buffers of IoT Edge Routers. In EdgeSys’18: 1st International Workshop on

Edge Systems, Analytics and Networking , June 10–15, 2018, Munich, Germany.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3213344.3213354

1 INTRODUCTION

In typical IoT systems, IoT devices obtain measurements from sen-

sors and send them to appropriate cloud services over the internet

using a suitable application layer protocol such as CoAP, MQTT,

XMPP etc. While some IoT application layer protocols, such as

CoAP, use UDP, several others, such as MQTT and XMPP, use TCP

as their transport layer protocol. Our focus in this paper are the

IoT systems that use TCP.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

EdgeSys’18, June 10–15, 2018, Munich, Germany

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5837-8/18/06. . . $15.00
https://doi.org/10.1145/3213344.3213354

The IoT devices access the internet through an edge access router.

Due to several differences between conventional and IoT networks,

such as in terms of traffic type, medium access protocols, and device

heterogeneity, vendors have already started developing edge routers

tailored for IoT, such as Cisco’s 829 router [1] and Norton Core

Router [2].

A key design aspect of an edge router is the size of the output

packet buffer of its interface that connects to the access link, i.e.,

the internet. Selecting an appropriate size of the output buffer is

crucial because it directly impacts two key performance metrics

of the IoT system: 1) access link utilization (i.e., the percentage of

time the link is under use at full capacity), and 2) latency (i.e., the

time a packet takes to go from sender to receiver). If the buffer is

under-provisioned, i.e., the size is too small, the access link utilization

decreases because TCP in IoT devices takes an intermittent pause on

experiencing packet losses and buffer drains quickly, which mean

that the access link stays idle until the devices resume sending

packets. If the buffer is over-provisioned, the latency experienced

by the packets increases because during an intermittent increase

in the number of packets arriving at the edge router, the packets

that arrive are trying to enter when the buffer already has a large

number of packets. Hence, they experience large queueing delays.

The lower access link utilization and higher queuing delays can

lead to decrease in the throughput and/or increase in the power

consumption of the IoT devices.

Increasing the access link utilization is important because IoT sys-

tems lease access link bandwidths from internet service providers

and this bandwidth is expensive, especially for systems deployed in

remote locations, such as $1,200 per sensor for a cellular-based soil

moisture measuring system [4]. Reducing the latency is important

for real-time IoT systems, such as smart power grids: a small in-

crease in latency may cause violations of service level agreements

and result in significant financial and functional losses [16].

In this paper, our objective is to calculate the size of the output

buffer of IoT edge routers that ensures that the access link utilization

stays high and at the same time, the average latency experienced

by the packets stays low.

2 LIMITATIONS OF PRIORWORK

Although researchers have previously proposed methods to calcu-

late optimal buffer sizes for routers in conventional networks, the

assumptions that the prior works make about the TCP traffic and

the network characteristics, do not hold true in IoT systems. There-

fore, the problem of buffer sizing must be revisited for IoT. Next,

we describe the three important assumptions, either or all of which

are made by prior schemes, and explain why they do not hold true

in IoT systems.

EdgeSys’18, June 10–15, 2018, Munich, Germany Jamal Ahmad Khan, Muhammad Shahzad, and Ali R. Butt

The first assumption is that the TCP congestion window size of

each sender follows a uniform sawtooth time-series [5, 9, 13, 14].

The sawtooth shape results from the famous additive-increase &

multiplicative-decrease congestion avoidance method of TCP. A

uniform sawtooth time-series is a sawtooth time-series wherein

any given crest or trough has the same value as any other crest or

trough, respectively. For the sawtooth time-series of a TCP flow

to be uniform, that flow must never experience more than one

packet drop at a time, and the packet drop should happen exactly

when the congestion window size attains the same value as its

value at the time of the previous most recent packet drop. While

we observed from our experiments (described in Section 3) that

the congestion window sizes of IoT devices make sawtooth time-

series, the sawtooth time-series are never uniform. The reason

being that the TCP flows mostly experience variable number of

consecutive packet drops and packet drops do not always occur

at a fixed value of the congestion window size. This assumption

leads to under-provisioning of the buffer in some schemes [9] and

over-provisioning in others [5, 15].

The second assumption is that the TCP flows of the majority of

the devices are long flows, i.e., the flows are persistent and always

stay in congestion avoidance mode [5, 9, 13, 14]. This isn’t true

for IoT systems because IoT devices are often resource constrained

and thus, terminate their TCP connections and sleep soon after

transmitting the current data. Hence, the flows are short flows,

i.e., they are either non-persistent, or in slow start mode, or both.

Consequently, the TCP traffic generated by a typical IoT system

contains a good mix of both long and short flows. It is imperative

to remove this assumption as well because it leads to the over-

provisioning of the output buffer because by treating short flows

as long flows, the amount of total traffic theoretically expected to

arrive at the edge router is greater than the amount of traffic that

actually arrives.

The third assumption is that the traffic arriving at the router can

be smoothed by asking the senders to pace their TCP traffic, i.e.,

instead of sending all packets allowed by the congestion window

in a single burst, space the packets out over an entire round trip

time (RTT) [6–8, 10]. While smoother non-bursty traffic resulting

from TCP pacing reduces the buffer size required to keep the access

link utilization high, and thus reduces the latency, unfortunately,

TCP pacing is not suitable for the energy-constrained IoT systems

because it requires the IoT devices to stay awake the entire time.

This requirement is contrary to one of the primary goals in the

design of energy-constrained IoT systems, viz., keep the IoT devices

asleep for as long as possible by performing sensing/actuation

and data transmission/reception as quickly as possible. A caveat

worth mentioning here is that when any TCP traffic reaches the

internet core, it automatically gets paced on the core links due to

the significantly larger bandwidths of the core links compared to

the access links. Consequently, the TCP traffic arriving at the core

routers is already well paced [8]. However, the difference in the

bandwidth of the access link, and the bandwidth of the channel

between the IoT devices and the IoT edge router, is small and hence,

such automatic pacing does not occur.

3 EXPLORATORY STUDY

In this section, we present our observations from two sets of ex-

periments that show that the first two assumptions of prior work,

described in Section 2, indeed do not hold in IoT traffic. We do

not study the third assumption as it is not an assumption about

the traffic characteristics due to TCP’s congestion control mecha-

nism, rather it is about traffic properties due to the way the senders

schedule packets.

Assumption 1 – Uniform Sawtooth:We took 15 Raspberry Pi 3s

and installed Raspbian on them with a modified Linux kernel (ver.

4.9). We placed a printk statement in the net/ipv4/tcp_input.c
to log the value of the snd_cwnd variable, i.e., the congestion win-

dow size. We physically connected these 15 Raspberry Pi 3s to a

server through a NETGEAR FS750T2 switch for which all ports

were configured to operate full duplex at 10Mbps, as shown in Fig-

ure 1. We deployed an application layer process on each Raspberry

Pi that initiates a TCP connection with a broker server and pumps

data into that connection using MQTT protocol.

Server

Rasp. Pi # 1

Rasp. Pi # 2

Rasp. Pi # 15

Figure 1: The setup used to study assumption 1 of prior art

Figure 2 plots the TCP congestion windows over time for three

randomly chosen Raspberry Pis. We observe from this figure that

although all three time-series follow a sawtooth pattern, the saw-

tooth is not uniform due to the variable number of packet drops

experienced by the TCP flows at different time instants. This is

contrary to the assumption made by several prior schemes, such as

[5, 9, 13, 14].

Time

C
on

ge
st

io
n

W
in

do
w

 S
iz

e

Figure 2: Congestion windows

of 3 Raspberry Pis

20 25 30 35 40 45 50 55
0

15

30

45

60

Number of Flows

Sh
or

t F
lo

w
s

(%
)

Figure 3: Percentage of short

flows in IoT traffic

Assumption 2 – Negligible Short Flows: To study the validity

of the second assumption, we performed NS-3 [3] simulations. We

could not use Raspberry Pis in this case because the number of

IoT devices needed to study this assumption is rather large. We

simulated the same topology as shown in Figure 1 with varying

number of IoT devices from 10 to 55 using access link bandwidth of

40Mbps, one way link-latency between IoT devices and server of

20.02 ms, and MTU of 1500 bytes. We programmed the application

Sizing Buffers of IoT Edge Routers EdgeSys’18, June 10–15, 2018, Munich, Germany

layer process on each simulated IoT device to generate packets

with exponentially distributed inter-arrival times such that the

aggregate rate at which the data arrived at the switch was equal

to the access link bandwidth. Each IoT device generated a single

flow at a time. Note that the IoT devices, especially the ones that

are constrained by energy, go to sleep mode and terminate their

TCP connections if their corresponding application layer processes

do not provide data within a certain time-window. We kept this

time fixed at twice the inter-arrival time of packets. Any flow that

terminates while it is still in TCP’s slow-start mode is considered

a short flow; all other flows are considered long flows. We ran

our simulator multiple times using a different number of devices

during each run and measured how many flows generated by the

IoT devices turned out to be short flows. Figure 3 shows a bar chart

of the percentage of short flows observed. We observe from this

figure that this percentage is large for any number of IoT devices,

which is contrary to the assumption made by several prior schemes,

such as [5, 9].

On a final note, we emphasize that while the the preliminary

measurement study presented above was done using NS-3 simu-

lations and Raspberry Pis in lab environment, the traffic that we

used is representative of the traffic generated by real IoT devices.

In future, we plan to conduct a similar measurement study using

traces from real IoT deployments.

4 BUFFER SIZE CALCULATION

Most IoT devices connect to their corresponding destination cloud

service, as shown in Figure 4. Note that there are two access links,

one that connects the IoT edge router to the internet and the other

that connects the data center hosting the cloud service to the in-

ternet. “Today, the core of the internet is over-provisioned with

high speed links that experience little congestion” [12]. Thus, it is

the access link that is the bottleneck, and it needs carefully sized

output buffer at the IoT edge router. In this section, we derive an

expression to calculate the minimum size of the output buffer that

keeps the access link highly utilized.

IoT Access
Link

Capacity = C

IoT Edge Router

Internet

IoT Device 1

IoT Device 2

IoT Device n

Data Center
Data

Center
Access
Link

Local links with
capacity > C

Figure 4: Block diagram of a typical IoT implementation

Fraction of Flows with a Given Number of Dropped Packets:

Let n represent the number of flows that are sending packets to

the IoT edge router during a given congestion event. Let PT be

the random variable that represents the total number of packets

that arrive at the router during the congestion event out of which,

the router drops l packets. Let fi represent the ith flow, where

1 ≤ i ≤ n, and Pfi be the random variable that represents the

number of packets of this ith flow that arrive at the router during

the congestion event. LetDfi be the random variable for the number

of packets of flow fi that the router drops during the congestion

event. The random variable Dfi follows a binomial distribution

Dfi ∼ Binom(l ,Pfi /PT).

In typical IoT deployments, all devices perform the same sens-

ing/actuation tasks and are also often deployed by the same vendor.

Consequently, the sizes of their flows follow identical distributions.

This implies that the distribution of the number of packets of any

given flow arriving at the router during the given congestion event

is the same across all flows, i.e., ∀i, j ∈ [1,n],Pfi = Pfj , which in

turn means that ∀i, j ∈ [1,n],Dfi = Dfj during that congestion

event. Therefore, we represent the number of packets of any given

flow among the n flows arriving at the router during the congestion

event with random variable P and the number of packets that the

router drops of any given flow among then flows during the conges-

tion event with random variableD. Following from the distribution

of Dfi , the random variable D also follows a binomial distribution

D ∼ Binom(l ,P/PT). As the total number of packets that arrive at

the router during the congestion event is the sum of the number of

packets of all flows that arrive at the router during the congestion

event, PT =
∑n
i=1 P = nP. Consequently, we can represent the

distribution of D as D ∼ Binom(l , 1/n).
LetId be the indicator random variable for any given flowwhose

value is 1 if the given flow experiences a drop of exactly d pack-

ets. Let Nd be the random variable that represents the fraction

of all flows that experience a drop of exactly d packets. Thus,

Nd =
∑n
i=1 Id/n = Id . As Id is a bernoulli random variable,

E[Id] = Pr {Id = 1} = Pr {D = d}. Applying the expectation op-

erator on the expression of Nd and substituting the expression

for the distribution of D in it, we get the following equation to

calculate the expected fraction of all flows that experience a drop

of exactly d packets during a congestion event, where 0 ≤ d ≤ l .

E[Nd] =
(
l

d

) (
1

n

)d (
1 − 1

n

)l−d
(1)

Average Congestion Window Size after a Congestion Event:

LetWb represent the average size of the congestion window across

all n flows right before the congestion event started. Similarly, let

W
(ξ)
a represent the average size of the congestion window across

all n flows ξ RTTs after the start of the congestion event. During the
congestion event, on average, the fraction of flows that experience

a drop of d packets will be E[Nd]. As a TCP Reno sender reduces

its congestion window size by 50% on detecting each packet drop

and as a TCP Reno sender detects only one packet drop per RTT, all

flows that experience a drop of d packets will reduce their window

sizes by a factor of 2d after d RTTs since the start of the congestion

event. Note that, on average, E[N0] fraction of all n flows will

not experience any packet drops, and will therefore increase their

window sizes. If a flow that experiences no packet drop during the

congestion event is in slow start phase, it will double its window size

within one RTT. Similarly, if a flow that experiences no packet drop

during the congestion event is in congestion avoidance phase, it

will increase its window size by the maximum segment size (MSS)

within one RTT. Let α represent the expected fraction of flows

among the n TCP flows that are long flows, i.e., are in congestion

avoidance phase. Thus, the fraction of short flows, i.e., the flows

in the slow start phase, is 1 − α . Hence, the average congestion

window size across all flows approximately ξ RTTs after congestion
event’s start is:

EdgeSys’18, June 10–15, 2018, Munich, Germany Jamal Ahmad Khan, Muhammad Shahzad, and Ali R. Butt

W
(ξ)
a =

(
α(Wb + ξMSS) + (1 − α)2ξ−1Wb

)
E[N0]+

ξ∑
d=1

Wb

2d
E[Nd] (2)

The term
(
α(Wb + ξMSS) + (1 − α)2ξ−1Wb

)
× E[N0] captures

the increase in the congestion window size contributed by the

flows that did not experience packet drops. It explicitly takes into

account the contributions from both long flows and short flows

separately by using the terms α(Wb + ξMSS) and (1 − α)2ξ−1Wb ,

respectively. The term
∑ξ

d=1
Wb

2d
E[Nd] captures the decrease in

the average congestion window size contributed by the flows that

experienced packet drops. It also takes the contributions from both

long flows and short flows into account because on experiencing a

packet loss, both types of flows reduce the sizes of their congestion

windows by 50% every RTT.

Output Buffer Size: LetC represent the capacity of the bottleneck

access link. Thus, the maximum aggregate bandwidth achievable

by all IoT devices isC . LetT represent the average RTT experienced

by the packets minus any queueing delay in the router’s output

buffer. Immediately before the congestion event starts, the buffer

must be full (otherwise, the congestion event would not have oc-

curred). Furthermore, at this time instant, the total amount of data

sent by all IoT devices that is still unacknowledged is nWb . This

unacknowledged data is either residing in the buffer of the router or

accommodated by the delay bandwidth productCT . Let B represent

the size of the output buffer. Thus,

nWb = B +CT ⇒ Wb = (B +CT)/n (3)

Just under one RTT since the start of the congestion event, the

TCP flow of any IoT device whose packets were dropped either

times-out or receives triple duplicate ACKs, and thus detects a

packet drop. On detecting the drop, TCP halves the congestion

window size of that flow. As the window size limits the number

of unacknowledged packets in the network, the flow is allowed to

have a larger number of unacknowledged packets, before a packet

drop compared to after the drop is detected. Thus, the flow has

more unacknowledged packets than it is currently allowed, and

it must pause while it waits for the ACKs for those packets. As

our objective is to keep the access link fully utilized, the output

buffer must not go empty while some flows are paused. As we are

interested in the minimum size for the output buffer, we consider

the case when new packets start to arrive at the same moment

when the last byte is drained from the buffer. As the sending rate

of a TCP flow is equal to the ratio of its window size to the RTT

its packets experience, the average sending rate of all n TCP flows

ξ RTTs after the congestion event is nW
(ξ)
a /T . To keep the access

link fully utilized, at the moment the last byte drains out of the

buffer, the smallest value of this average sending ratenW
(ξ)
a /T must

equal the bandwidth of the access link C . The expected value of

the number of RTTs at which the smallest value of this average

occurs is ξ =
∑l
d=0

dE[Nd] = l
n . This is intuitive because after l/n

RTTs since the congestion event, on average, half the flows that

had stopped increasing their amounts of outstanding packets have

recovered from their respective losses and have started to increase

their congestion windows. Thus,

nW
(l/n)
a /T = C ⇒ W

(l/n)
a = CT /n (4)

Substituting the values of Wb and W
(l/n)
a from Eqs. (3) and (4),

respectively, into Eq. (4) and solving for B, we get the following
closed form solution to calculate the buffer size B.

B =
CT

[
1 −Ψ − E[N0]

[
(1 − α)2 l

n − α
]]

− αlMSSE[N0]

Ψ + E[N0]
[
(1 − α)2 l

n − α
] (5)

whereΨ=
∑l/n
d=1

(l
d

) (1
n

)d (
1 − 1

n

)l−d
2d

and E[N0]=
(
1 − 1

n

)l
.

We have used Reno as a case study and the study can be extended

to use different congestion control algorithms. The change required

will be in the modeling of the change of congestion window in

equation . In particular the growth and reduction characteristics

of the congestion window would change. The rest of the changes

should easily follow.

Parameter Selection: To calculate the value of buffer size B using

Eq. (5), we need the values of the following six parameters: 1)

C: bandwidth of the access link, 2) n: number of flows , 3) MSS:

maximum segment size, 4) T : average round trip time minus any

queuing delays, 5) α : percentage of long flows among the n TCP

flows, and 6) l : number of packets dropped by the edge router

during a congestion event. The value of C is a constant in any

given IoT system and the value of n depends on the number of

IoT devices and the number of flows each IoT device generates at

any given time. Both these values are provided by the network

administrator. The value of MSS is defined by TCP. The value of T
is dictated by the internet and can be measured by simply timing

pings over a few days. The values of α and l , in this work, have

been empirically calculated. In our future work, we plan to develop

theoretical models to calculate these two parameters.

5 EXPERIMENTAL EVALUATION

While no prior work exists on calculating buffer sizes for IoT edge

routers, we still compare our buffer sizing scheme with [5], [9], and

[11]. For all of the experiments, we used the topology shown in

Figure 1 for three minutes of simulated time on NS-3 with different

number of IoT devices using access link bandwidth of 40Mbps, MTU

of 1500 bytes, one way latency from the IoT devices to the edge

router of 20μs, and one way latency from the edge router to the

server of 20ms. The application layer process on each simulated IoT

device generated a single flow whose packets had exponentially

distributed inter-arrival times, where the rateR at which the process

sent packets to the TCP layer was different in different experiments.

To produce traffic of γ Mbps on the physical link from an IoT device

to the edge router, the application layer process sends messages of

size MTU − 40 bytes to the TCP layer at the rate of R = �x/MTU�.
The 40 bytes are to accommodate TCP/IP headers.

Buffer Size vs. Link Utilization and Latency: To empirically

study how the buffer size affects the access link utilization and

the latency experienced by the packets, we ran our NS-3 simula-

tions using n = 40 devices, where each device produced traffic of

γ = 1Mbps. Thus, the aggregate traffic was approximately 40Mbps,

which is equal to the bandwidth of the access link. We ran our

simulations multiple times, where in each simulation, we used a

different buffer size in the range [2 × MTU, 2 × CT /√n], where
CT /√n is the buffer size proposed in [5].

Sizing Buffers of IoT Edge Routers EdgeSys’18, June 10–15, 2018, Munich, Germany

Figure 5 plots the average utilization of the access link for differ-

ent buffer sizes when all flows are long and also when 25% of the

flows are short. We observe that as the buffer size increases, the

link utilization increases because the buffer holds more data and

thus goes empty less frequently when some IoT devices pause after

experiencing a packet drop. One might conclude that to keep the

link utilization high, one could simply over-provision the output

buffer. This would be problematic, especially for the latency sensi-

tive applications, because the increase in buffer size increases the

queuing delay experienced by the packets, as shown in Figure 6.

5 10 15 20 25 30 35 40 45
Buffer Size (kB)

90

92

94

96

98

100

Li
nk

 U
til

iz
at

io
n

(%
)

0% short flows
25% short flows

Figure 5: Size vs. Utilization

5 10 15 20 25 30 35 40 45
Buffer Size (kB)

20

23

26

29

32

En
d-

to
-E

nd
 D

el
ay

 (m
s)

0% short flows
25% short flows

Figure 6: Size vs. Delay

Comparison of Buffer Sizes: Next, we compare the buffer size

calculated by our scheme using Eq. (5) with the buffer sizes calcu-

lated by [5],[9] and [11]. Figures 7 and 8 plot the buffer sizes for

number of flows ranging from n = 10 to 100 for two different IoT

traffics, one containing 0% short flows and the other containing 25%

short flows, respectively. We observe that as the percentage of short

flows changes, the buffer sizes calculated by [5] and [9] change

because both [5] and [9] calculate the buffer size based on only the

number of long flows in the traffic. While the size calculated by [11]

does not change as the percentage of short flows changes because

it calculates the size based the total number of flows, irrespective

of whether they are long or short.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Flows

0

100

200

300

400

B
uf

fe
r S

iz
e

(k
B

)

Our 100% long flows
[5] 100% long flows
[9] 100% long flows
[11] 100% long flows

Figure 7: 0% short flows
We make three more observations from Figures 7 and 8. First,

as the number of IoT devices increases, the buffer sizes calculated

by Eq. (5) as well as by [5] and [9] decrease. This is because with

the larger number of IoT devices, when TCP flows of some devices

pause after experiencing packet drops, there is a higher probability

that at any given time instant, TCP flows of some other IoT devices

will be sending data to the IoT edge router and keeping the link

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Number of Flows

0

100

200

300

400

B
uf

fe
r S

iz
e

(k
B

)

Our 25% short flows
[5] 25% short flows
[9] 25% short flows
[11] 25% short flows

Figure 8: 25% short flows
utilized. Note that after a certain value of the number of flows,

[9] starts increasing the buffer size. This is because after a certain

number of flows, it shifts the goal from maximizing link utilization

to minimizing loss-rate.

Second, as the percentage of short flows increases, the buffer

size calculated by our scheme decreases because when a short flow

experiences a packet drop, due to its smaller congestion window

size, it pauses for a shorter duration compared to when a long flow

experiences a packet drop. Note that in conventional networks, the

duration of pause depends on both RTT and congestion window

size. However, in the case of IoT deployments, the RTTs of all

devices are very similar, and therefore, the duration of pause is

primarily dictated by congestion window size.

Third, the buffer sizes calculated by [5], [9] and [11] in the pres-

ence of short flows are larger compared to the buffer sizes calculated

by Eq. (5), because [5] and [9] consider only the number of long

flows and thus, implicitly assume that all flows will pause for longer

durations, which leads to over-provisioning the buffer. Hence, prior

schemes over provision the buffer sizes by several times in com-

parison to ours which implies that they can keep the access link

utilization higher, but at the cost of a significantly larger latency.

Comparison of Link Utilization, Latency, Loss, & Goodput:

For comparison of link utilization, latency, packet loss rate, and

goodput among the schemes, we performed NS-3 simulations where

each IoT device produced traffic ofγ = 40
n Mbps on the physical link,

where n represents the total number of flows. Hence the link was

congested, regardless of the number of flows. We varied the number

of IoT devices from 20 to 55 and generated two different sets of IoT

traffics, one containing no short flows and the other containing 25%

short flows. The later set of IoT traffic is more important because

IoT devices generate more short flows.

Figure 9(a) plots the percentage change in the average link uti-

lization of our scheme compared to prior schemes for traffic that

contained no short flows (only long flows). We observe that the

link utilizations resulting from the buffer sizes calculated by [5],

[9] and [11] are slightly lower compared to our scheme because the

buffer sizes calculated by our scheme are slightly larger than prior

schemes. Figure 9(b) plots the percentage change in the average

link utilization for traffic that contained 25% short flows. As prior

schemes significantly over estimate the buffer sizes in the presence

of short flows, the link utilizations for them are slightly higher

compared to our scheme.

While prior schemes achieve slightly higher link utilization for

IoT traffic that contained 25% short flows, this higher utilization

comes at the cost of significantly higher latency. Figures 10(a) and

10(b), which plot the percentage change in average queueing delay

experienced by the packets, highlight this fact. We observe that

for the traffic with 25% short flows, which is more representative

EdgeSys’18, June 10–15, 2018, Munich, Germany Jamal Ahmad Khan, Muhammad Shahzad, and Ali R. Butt

20 25 30 35 40 45 50 55
Number of Flows

-15

-10

-5

0

5

10

15

%
 C

ha
ng

e
in

 L
in

k
U

til
iz

at
io

n Change relative to [5]
Change relative to [9]
Change relative to [11]

(a) 0% short flows

20 25 30 35 40 45 50 55
Number of Flows

-15

-10

-5

0

5

10

15

%
 C

ha
ng

e
in

 L
in

k
U

til
iz

at
io

n Change relative to [5]
Change relative to [9]
Change relative to [11]

(b) 25% short flows

Figure 9: Change in link utilization by our scheme

20 25 30 35 40 45 50 55
Number of Flows

-100

-75

-50

-25

0

25

50

75

100

%
 C

ha
ng

e
in

 D
el

ay

Change relative to [5]
Change relative to [9]
Change relative to [11]

(a) 0% short flows

20 25 30 35 40 45 50 55
Number of Flows

-100

-75

-50

-25

0

25

50

75

100

%
 C

ha
ng

e
in

 D
el

ay

Change relative to [5]
Change relative to [9]
Change relative to [11]

(b) 25% short flows

Figure 10: Change in in delay by our scheme

of IoT, the buffer sizes calculated by prior schemes increase the

queuing delay by an average of 50% compared to our scheme. Such

large queueing delays deteriorate the performance of realtime and

streaming IoT applications. Finally if we look at the subfigures in

Figures 11 , which plot the change in the packet loss rate, we see

that the results are almost the same. Thus, we conclude that our

scheme reduces the buffer size significantly, which leads to 50%

lower queueing delay for IoT traffic with negligible impact on the

remaining 2 performance metrics, i.e., link utilization, and loss rate.

6 CONCLUSION

In this paper, we have presented a theoretical method to calculate

the size of the output buffer for IoT edge routers. We have identified

three key assumptions of prior art and shown through both real

world experiments and NS-3 simulations that they do not hold true

20 25 30 35 40 45 50 55
Number of Flows

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

%
 C

ha
ng

e
in

 P
ac

ke
t-L

os
s

R
at

e Change relative to [5]
Change relative to [9]
Change relative to [11]

(a) 0% short flows

20 25 30 35 40 45 50 55
Number of Flows

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

%
 C

ha
ng

e
in

 P
ac

ke
t-L

os
s

R
at

e Change relative to [5]
Change relative to [9]
Change relative to [11]

(b) 25% short flows

Figure 11: Change in loss-rate by our scheme

in IoT traffic. Our results show that for IoT traffic, [5], [9] and [11]

over-estimate the buffer size by at least 2×, due to which, flows

experience over 50% higher queuing delay compared to when using

the buffer size calculated by our scheme. In our future work, we

plan to extend our measurement study and evaluations using traces

from real-world IoT deployments, and update our scheme based on

any important observations we make.

ACKNOWLEDGMENTS

This work is sponsored in part by the NSF under the grants: CNS

1565314, CNS 1405697, CNS 1615411, and CNS 1616273. The authors

would also like to thank the anonymous reviewers for their valuable

feedback and suggestions.

REFERENCES
[1] Cisco 829 Industrial Integrated Services Routers. http://www.cisco.com/c/en/us/

products/routers/829-industrial-router/index.html.
[2] Norton Core Router. https://us.norton.com/core.
[3] NS-3: a discrete-event network simulator. https://www.nsnam.org/.
[4] Remote control: LoRa offers a cheaper link to the IoT. http://www.reuters.com/

article/us-tech-communications-lora-idUSKCN10E2TE.
[5] Appenzeller et al. 2004. Sizing Router Buffers. SIGCOMM CCR 281–292.
[6] Beheshti et al. 2008. Experimental Study of Router Buffer Sizing. In IMC. 197–210.
[7] Beheshti et al. 2008. Obtaining High Throughput in Networks with Tiny Buffers.

In Workshop on QoS. 65–69.
[8] Beheshti et al. 2006. Buffer sizing in all-optical packet switches. In Optical Fiber

Communication Conference. 3 pp.–.
[9] Dhamdhere et al. 2005. Buffer sizing for congested Internet links. In Joint Confer-

ence of the IEEE Comp. and Comm. Societies.1072–1083.
[10] Enachescu et al. 2005. Part III: Routers with Very Small Buffers. SIGCOMM CCR

35, 3, 83–90.
[11] Gorinsky et al. 2007. Simulation Perspectives on Link Buffer Sizing. SIMULATION

83, 3 (2007), 245–257.
[12] Kurose et al. 2016. Computer networking: a top-down approach. Vol. 7.
[13] R. Morris. 1997. TCP Behavior with Many Flows. In ICNP. 205–211.
[14] R. Morris. 2000. Scalable TCP congestion control. In INFOCOM.
[15] Villamizar et al. 1994. High Performance TCP in ANSNET. SIGCOMM CCR 24, 5,

45–60.
[16] Wan et al. 2013. Power-aware cloud computing infrastructure for latency-

sensitive internet-of-things services. In UKSim. 617–621.

