FlexiCache: A Flexible Interface for Customizing Linux File System Buffer Cache

Replacement Policies
Pavan Konanki and Ali R. Butt
Virginia Tech., Blacksburg, VA 24061
{kpavan, butta@cs.vt.edu

Recently, there has been a growing trend towards desigdiveyaed file system buffer cache replacement algorithnis suc
as ARC [1], PCC [2], and LIRS [3]. These algorithms performatmipetter than standard caching algorithms available in
modern operating system kernels. Given the availabilitumth advanced caching algorithms and the potential fogdew)
better algorithms, it is highly desirable to replace thendtad caching policy. Since the performance of many regentl
developed replacement algorithms is dependent on thecaiplh access patterns, a single caching policy cannoféetiet
for the wide range of applications that are run on modern atpey systems. Furthermore, delegating the respongyilofit
cache management to the application developers immensgiplicates the development process for typical applioatio
It would be useful to have a repertoire of caching policiesha kernel and to allow the operating system to choose the
one that best suits the needs of the currently running agics. In addition, as pointed out in [4], the performante o
caching algorithms must be studied in the context of all &l storage subsystems. Unfortunately, the intertwinefied
page and buffer cache in the Linux kernel makes incorpanatfonew caching policies an excruciating task, and requires
in-depth scrutiny of the code as it may threaten the stglwfithe kernel. To address these issues, we propose FlexiCac
flexible interface to the existing page and buffer cache mament mechanism. FlexiCache allows easy modificationeof th
replacement policy and provides a simple and powerful méarinplementing new caching policies.

The key idea of FlexiCache is to utilize a modular design #ilmwvs modification of the cache replacement policy by
exposing a well-defined interface, while hiding metadatanteaance and the mechanics of cache management such as
allocation, fetch, and eviction of blocks. FlexiCache coisgs a set of functions that the cache management subsystem
would utilize when, for example, it needs to evict or prefetcset of blocks from the cache or when the cache management
daemon needs to be invoked. A new cache replacement algarih be easily integrated with the kernel by simply utiligin
the FlexiCache interface.

As an illustration, consider incorporating the ARC [1] pylin the kernel. In the current setup this task is error pras
requires careful and extensive modification to the kerndecdn contrast, by using FlexiCache we would only need tadefi
the ARC-specific data structures and implement the funstibat define the eviction policy. Once the functions dedldne
the FlexiCache interface are implemented (using a smallataf code), the kernel can invoke them to use the ARC policy.
Thus, FlexiCache enhances the modularity and flexibilitthefcache management subsystem, and allows us to implement
various cache replacement policies as easily replaceabipanents within the kernel. Furthermore, it would alsadlitate
research in designing advanced caching algorithms.

Our implementation of FlexiCache has three phases. In thegdhiase, we analyzed the Linux 2.6 kernel code and
identified the portions of code that require modificationrtedrporate FlexiCache in the kernel. In the second phasereve
designing a set of functions through which the cache managesubsystem can utilize different caching policies. €hes
functions constitute the FlexiCache interface. CurrerilgxiCache provides an interface through which a cacholigy
can specify blocks to fetch into or evict from the cache. lditdn, FlexiCache supports specification of a set of cache
cleanup functions that are invoked periodically. We badithat designing the interface to support a multitude ofaeginent
policies, while still keeping the mechanics of the cachealbig is a challenging research problem. In the third and final
phase, we plan to study how FlexiCache would affect the pexdace of the kernel.

References
[1] N. Megiddo and D. S. Modha. ARC: A Self-tuning, Low OvedteReplacement Cache. Bnoc. USENIX FAST, March 2003.
[2] C. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-lehpattern classification in buffer caching. Pnoc. USENIX OSDI, December 2004.

[3] S. Jiang and X. Zhang. LIRS: an efficient low inter-refese recency set replacement policy to improve buffer cagréopnance. InProc. ACM
S GMETRICS, June 2002.

[4] A.R.Butt, C. Gniady, and Y. C. Hu. The performance impaickernel prefetching on buffer cache replacement algorith InProc. ACM SGMET-
RICS, June 2005.



