
Supporting I/O-Intensive Workloads on the Cell Architecture
M. Mustafa Rafique, Ali R. Butt, and Dimitrios S. Nikolopoulos∗

Virginia Tech

ABSTRACT

Recent advent of the asymmetric multi-core processors such
as Cell Broadband Engine (Cell/BE) has popularized the
use of heterogeneous architectures in High-End Comput-
ing. Data and I/O intensive workloads have largely been
ignored in this domain. We take the first steps in sup-
porting I/O intensive workloads on Cell and deriving some
guidelines for optimizing the execution of I/O workloads
on heterogeneous architectures. We explore various perfor-
mance enhancing techniques for such workloads on an actual
Cell/BE system. Among the techniques we explore, an asyn-
chronous prefetching-based approach, which uses the Pow-
erPC core of the Cell/BE for file prefetching and decentral-
ized DMAs from the synergistic processing cores (SPE’s),
improves the performance for I/O workloads that include
an encryption/decryption component by 30.2%, compared
to I/O performed näıvely from the SPE’s.

1. INTRODUCTION
Recent advent of the Cell Broadband Engine (Cell/BE)

processor [1] attests to the potential of emerging asym-
metric multi-core architectures for accelerating applications
that require high-performance computation on streaming
data [2]. This work explores the use of the Cell/BE in
I/O-intensive applications. With modern high-performance
computing applications generating and processing exponen-
tially increasing amounts of data, the parallel processing
capabilities, on-chip data transfer bandwidth, and compu-
tation/DMA overlap mechanisms of the Cell/BE render it
a viable platform for high-performance I/O.

So far, there is little understanding of how I/O opera-
tions interact with the architecture of the Cell/BE. The
implications of such Cell/BE characteristics as asymmetry,
DMA/computation overlap, and software management of
disjoint address spaces, on the I/O software stack have not
been explored. We address these important questions and
make the following contributions: (i) A study of the I/O
path in the current Cell/BE operating system and runtime
environment; (ii) An exploration of alternative I/O meth-
ods on the Cell architecture; (iii) An investigation of data
prefetching techniques for improving I/O performance on
the Cell/BE; and (iv) An evaluation and recommendation of
appropriate methods for handling I/O intensive workloads.

2. MOTIVATION AND BACKGROUND
We are concerned with the implementation of efficient

I/O schemes for data-intensive applications on asymmet-
ric multi-core processors. Applications typically offload
compute-intensive kernels to the specialized cores of these
processors, exploiting hardware capabilities such as SIMD
units to accelerate the processing of streaming data. Clearly,
such capabilities are relevant to I/O-intensive applications
with significant data processing components such as encryp-
tion and compression.

∗{mustafa, butta, dsn}@cs.vt.edu

An important design consideration for the I/O subsystem
on asymmetric multi-core processors is the distribution of
the I/O processing path between heterogeneous cores. Cur-
rent designs run the operating system on the commodity
“host” cores of the processor (e.g. the PowerPC PPE of the
Cell) and route I/O requests made from the “accelerator”
cores (e.g. the SPE’s of the Cell) through the host cores.
While this approach simplifies system software it imposes
bottlenecks during parallel I/O from the accelerator cores.

In contrast to conventional processors, asymmetric multi-
core processors delegate more control of the memory hier-
archy to software. Cell exposes the local store of each ac-
celerator core directly to software, through a DMA mech-
anism, which further enables overlap of multiple DMA re-
quests with computation on each core. This capability ex-
tends naturally to the I/O subsystem, which should prop-
erly stage data from the disk, to off-chip memory, to on-chip
memory, so that the non-overlapped data transfer latency is
minimized. The design space for data staging in the I/O sys-
tem involves tuning of the unit of data transfer between lay-
ers of the memory hierarchy, synchronous and asynchronous
prefetching algorithms, and synchronization and communi-
cation mechanisms between host cores and accelerator cores
to coordinate I/O requests.

3. I/O IMPROVING TECHNIQUES
In this section, we present and evaluate a number of I/O

improving techniques for the Cell/BE architecture. For
our evaluation, we use different I/O workloads executed on
a Sony Play Station 3 (PS3). The PS3 is a hypervisor-
controlled platform. It has 6 active SPE’s with 256 KB local
storage, 256 MB of main memory of which about 200 MB
is directly accessible to the OS, and a hard disk of 60 GB.
Although Cell/BE has 8 SPE’s, on the PS3, one SPE is
reserved for running the hypervisor and another SPE is de-
activated. Accesses to storage devices, including the disk,
are routed through the hypervisor with dedicated hypercalls
and their completion is communicated to the OS through
virtual interrupts. Due to the proprietary nature of the PS3
hypervisor, it is not possible to assess its imposed overhead
on accesses to storage devices for the purpose of this work.

Available I/O bandwidth: To determine the I/O
bandwidth available in our test machine, we first measured
the time it takes to read a large file (2 GB) in block sizes of
4 KB and 16 KB, both at the PPE and a SPE. We observed
that the read time at the SPE is similar to that at the PPE
(4966 ms). Moreover, using a larger block size has negligi-
ble effect at PPE, but provides better throughput (8.9%) at
SPE. We note that the improved SPE throughput is due to
the matching of the block size with the 16 KB DMA request
size of our test machine. Further, the average observed I/O
throughput is reduced by 6.4% for the same amount of data
when we repeated this test on all the six SPE, because of
increased contention for the EIB, compared to the case of
using a single SPE.

Workload: In the next set of experiments, we used a



Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5

Read at PPE - 1057 1509 1039 1310
Read at SPE 693 351 389 - -
DMA read at SPE - - - 87 172
Process at SPE 2458 2499 2558 2347 2504
DMA write at SPE - - - 524 923
DMA wait at SPE - - - - 0.12
Write wait at PPE - - - - 1221
Write at SPE 2245 2098 2400 - -
Write at PPE - - - 1607 1455
Total 6397 6794 6258 6008 4468

Table 1: Average timing breakdown (in msec.) of various tasks for

different I/O schemes.

Scheme 1 Scheme 5

Read at 1 SPE 426 -
Read at PPE - 2381
DMA read at 1 SPE - 494
Process at 1 SPE 1052 859
DMA write at 1 SPE - 317
DMA wait at 1 SPE - 26
Write wait at PPE - 213
Write at 1 SPE 1412 -
Write at PPE - 1381
Total (6 SPE’s) 3965 3640

Table 2: Average timing breakdown (in

msec.) when all 6 SPE’s are used.

workload that reads a file, encrypts it with a 256-bit key,
and writes the result back to the disk. We also vectorized
the computation phase of our workload to achieve 42.1% bet-
ter performance on SPE’s compared to the non-vectorized
version. We chose a 64 MB file as input so that the entire
file can be kept in the 200 MB available memory and any
side-effects due to buffer caching are removed.

Effect of file caching: All system calls on the Cell/BE
including I/O calls from the SPE’s are handled by the PPE.
This implies that once a file (or portion of a file) is accessed
by the PPE it may be in memory when the file is subse-
quently accessed from a SPE or the PPE, and the later ac-
cesses can be serviced quickly. We confirmed this empirical
observation by first flushing any cache by reading a large
file, and then repeatedly reading the file both at the PPE
and SPE. We found that a read at SPE is 82.9% faster, on
average, if it follows a read for the same data at the PPE.

File caching techniques: Next, we explored five
schemes for doing prefetching to improve I/O performance
of our workload. Table 1 shows the results.

In Scheme 1, our base case, all the workload tasks are
performed on the SPE. We still utilize the PPE, though, to
invoke the tasks as a single program on the SPE.

In Scheme 2, PPE first pre-reads the entire file causing it
to be brought in memory. Then the program from Scheme 1
is executed as before. We observe that although the Read

at SPE for this Scheme is much faster, the time it takes to
read the file at the PPE is 52.5% longer compared to Read

at SPE in Scheme 1. We believe this is due to the PPE
flooding the I/O controller queue, and lack of overlapping
opportunities between computation and I/O in a sequential
read compared to the read and process cycle of Scheme 1.

In Scheme 3, a separate thread prefetches the file in mem-
ory. The SPE still runs the program of Scheme 1. Simul-
taneous prefetching and processing can remove the bottle-
neck faced in Scheme 2. The prefetching thread improves
SPE I/O implicitly by bringing data in memory before it
is requested by the SPE. A lagging thread does not pose a
synchronization issue because in this case the SPE requests
will be serviced from the disk, which in turn will make the
thread read the file faster and get ahead of the SPE. Re-
sults for this Scheme show that although the I/O times for
individual steps increased, better I/O computation overlap-
ping resulted in an overall improvement of 7.9%, compared
to Scheme 2.

In Scheme 4, we explicitly prefetch the file at the PPE
and give the SPE the address of memory where the file data
is available. The SPE program is modified to not do direct
I/O, rather use DMA on the addresses provided by the PPE.

Results show that the DMA read at SPE takes 75.2% and
77.6% less time than Read at SPE in Scheme 2 and Scheme 3,
respectively. However, the synchronous reading of file causes
the overall times to not improve as much: 11.6% and 4.0%
compared to Scheme 2 and Scheme 3, respectively.

In Scheme 5, we also use a prefetching thread at the PPE,
but instead of the implicit approach of Scheme 3, we use ex-
plicit DMA transfers between the PPE and the SPE. To
ensure that the prefetching thread on the PPE and the pro-
cessing thread on the SPE are properly synchronized we em-
ploy a “shared” status location in main memory to exchange
information regarding what portions of the file have been
read (processed), with the “sharing” enabled via repetitive
DMA’s. Results show that Scheme 5 achieves 30.2%, 28.6%,
and 25.6% improvement in overall performance compared to
Scheme 1, Scheme 3, and Scheme 4, respectively.

Scalability test: Next, we extended Scheme 5 to use all
the 6 available SPE’s, and compared it with a scaled ver-
sion of Scheme 1. The workload size for Scheme 1 is set to
10.67 MB (64/6) per SPE to give a total of 64 MB. Similarly,
for Scheme 5, the workload is evenly distributed among the
6 SPE’s, and the PPE performs all the I/O. Table 2 show
the results. The reduced file-reading time at each SPE is
due to each SPE processing only a fraction of the file. Over-
all, Scheme 5 performs better (8.2%) than the approach of
Scheme 1, even when all available SPE’s are used.

4. CONCLUSION
We investigated the use of Cell/BE architecture for sup-

porting I/O intensive workloads involving significant com-
putation components, such as encryption. We observe that
the current operating system facilities for performing I/O
directly on SPE’s are limited, and do not provide judicious
use of the available resources. A particular concern is that
currently, I/O on SPE’s is redirected to the PPE, hence
creating a central bottleneck. We have presented an asyn-
chronous prefetching-based approach that shows promising
results. However, we argue that a fundamentally better ap-
proach would be to extend SPE support libraries with I/O
functionality, thus removing the dependence on the PPE,
simplifying the SPE program design for I/O intensive work-
loads, and improving overall performance.

5. REFERENCES
[1] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell

Broadband Engine Architecture and its First
Implementation – A performance view. IBM Journal of
Research and Development, 51(5):559–572, 2007.

[2] B. Gedik, R. Bordawekar, and P. S. Yu. Cellsort: High
performance sorting on the cell processor. In Proc. VLDB,
2007.


