
Supporting Data-Intensive Applications on Accelerator-Based Distributed Systems
M. Mustafa Rafique (student), Ali R. Butt, and Dimitrios S. Nikolopoulos

Virginia Tech.

E-mail: {mustafa, butta, dsn}@cs.vt.edu

Problem Statement. Multi-core processors can now pack-

age several general-purpose processors (GPPs) (e.g. x86,

PowerPC) and computational accelerators (e.g. SIMD pro-

cessors and GPUs), yielding highly power-efficient and cost-

efficient designs, with performance exceeding 100 Gflops.

These asymmetric accelerator-based processors are rapidly

becoming commodity components for high-performance

computing, and this trend makes them a viable substitute of

less cost-effective alternatives in large-scale clusters. How-

ever, the state of knowledge on the use of accelerator-based

multi-core processors on large-scale clusters, specially for

data-intensive applications, is limited. Current approaches

for designing and programming on such clusters are either

ad hoc or specific to an installation [1], thus posing several

challenges when applied to general setups. First, the effects

of alternative workload distributions between GPPs and ac-

celerators are not well understood. Second, accelerators have

limited capabilities for managing external system resources,

such as communication and I/O devices, thus requiring sup-

port from GPPs and special consideration while designing

the resource management software. Finally, suitable pro-

gramming models that adapt to the varying capabilities of the

accelerator-type components have not been developed, forc-

ing application writers to micro-manage resources and use

platform-specific programming techniques.

Approach. We address these challenges by designing and

evaluating alternative asymmetric, accelerator-based cluster

configurations for supporting data-intensive applications. We

characterize our configurations based on the general-purpose

computing and system management capabilities of the accel-

erators. More specifically, we consider three classes of accel-

erators: (i) Self-managed well-provisioned accelerators, hav-

ing high compute density, and on-chip capabilities to self-

manage I/O and communication. The computational power

of the GPP and the amount of available memory is assumed

to be sufficient for self-management. Moreover, the tight cou-

pling of accelerators and GPPs enables fast communication

between the two types of cores. (ii) Resource-constrained

well-provisioned accelerators, having high compute density

but insufficient on-chip general-purpose computing capabil-

ity and/or memory for self-managing I/O. These capabili-

ties are provided by an external, dedicated, general-purpose

node, which acts as a driver for the accelerators, imposing

slower communication paths between the two. (iii) Resource-

constrained shared-driver accelerators, similar to the previ-

ous case, however, they share their drivers with several accel-

erators, to yield a more cost-efficient design.

We envision four asymmetric clusters configurations for

data-intensive applications (Figure 1). Conf I consists of self-

managed well-provisioned accelerators connected directly to

the cluster manager. Conf II consists of resource-constrained

well-provisioned accelerators. Here, each driver is a pow-

erful resource with large memory and GPP processors dedi-

cated to supporting I/O capabilities to an individual resource-

constrained accelerator. The manager distributes the input

data to the driver nodes in large chunks, which stream it to

the attached accelerators. However, a single manager may not

match the data demands of many accelerators simultaneously.

Conf III addresses this by using a hierarchical setup. Finally,

Conf IV captures an asymmetric system that may employ a

mix of the above configurations as needed.

We develop a MapReduce [3] based programming model

that hides the architectural asymmetry while exploiting the

computational density of the accelerators. Our design uses a

dynamic data streaming approach and uses adaptive resource

scheduling that factors in the performance and capabilities

of asymmetric components, striving to overlap completely

I/O and communication latencies. Our framework imple-

ments data transfers and workload scheduling transparently,

and adapts the parameters of data streaming and task schedul-

ing dynamically, thereby relieving programmers of some sig-

nificant programming effort.

Evaluation. We evaluated our framework under four config-

urations (Figure 1), using eight Sony PS3s, a manager node,

and an 8-node cluster with x86 multi-core processor nodes to

serve as drivers. We experimented with a number of typical

MapReduce applications [2], to study the effect of the various

design alternatives. Figure 2 and 3 show the execution time

for Linear Regression and Word Count benchmarks, respec-

tively, with increasing input size. All four resource configu-

rations scale well with input size for these applications. Our

evaluation reveals that our framework exhibits better memory

utilization and enables efficient handling of large data sets as

compared to a static MapReduce design. Overall we have ob-

served that Conf IV offers the best choice: it economizes on

the number of drivers, yet provides performance comparable

to Conf II. We also studied how our framework scales with

increasing number of resources, and observed the scaling to

be almost linear for all studied benchmarks with an increas-

ing number of compute nodes, up to the point where network

bandwidth between the manager, drivers and accelerators is

saturated. These results show the promise of our design for

use in asymmetric clusters, and we intend to continue explor-

ing and developing the model into a more generic and adapt-

able framework.

References
[1] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin,

and J. C. Sancho. Entering the Petaflop Era: The Architecture and Per-
formance of Roadrunner. In Proc. SC, 2008.

[2] M. de Kruijf and K. Sankaralingam. MapReduce for the Cell B.E. Archi-
tecture. Technical Report TR1625, Department of Computer Sciences,
The University of Wisconsin-Madison, Madison, WI, 2007.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. USENIX OSDI, 2004.

M

M
Node

Manager

D
Node
Driver

C
Compute

Node

C

C

C

..
.

(a) Conf I: Self-managed well-provisioned acceler-
ators.

D C

D C

..
.

M

C

C

..
.

C

(b) Conf II: Resource-constrained well-
provisioned accelerators.

MD

C

C

C

...

D

C

C

C

..
.

C C C

D

...

(c) Conf III: Resource-constrained shared-driver accelerators.

M

D C

D

C

C

C

..
.

C

(d) Conf IV:Mixed accelerators.

Figure 1: Possible resource configurations in asymmetric clusters.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Input Size (MB)

Conf I
Conf II
Conf III
Conf IV

Figure 2: Linear Regression execution time with in-

creasing input size.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
.)

Input Size (MB)

Conf I
Conf II
Conf III
Conf IV

Figure 3: Word Count execution time with increasing

input size.

