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Abstract

In federated learning (FL), clients collectively train a global
machine learning model with their own local data. Without
sharing sensitive raw data, each client in FL only sends up-
dated weights to consider privacy and security concerns. Most
of existing FL works focus mainly on improving model ac-
curacy and training time, but only a few works focus on FL
incentive mechanisms. To build a high performance model af-
ter FL training, clients need to provide high quality and large
amounts of data. However, in real FL scenarios, high-quality
clients are reluctant to participate in FL process without rea-
sonable compensation, because clients are self-interested and
other clients can be business competitors. Even participation
incurs some cost for contributing to the FL model with their
local dataset. To address this problem, we propose a novel tok-
enized incentive mechanism where tokens are used as a means
of paying for the services of providing participants and the
training infrastructure. Without payment delays, participation
can be monetized as both providers and consumers, which
promotes continued long-term participation of high-quality
data parties. Additionally, paid tokens are reimbursed to each
client as consumers according to our newly proposed metrics
(such as token reduction ratio and utility improvement ratio),
which keeps clients engaged in FL process as consumers. To
measure data quality, accuracy is calculated in training without
additional overheads. We leverage historical accuracy records
and random exploration to select high-utility participants.

Introduction
To build high-quality machine learning models, a massive
amount of training data needs to be collected from various
clients. With the growing usage of mobile and IoT devices,
these large number of devices have become one of the main
sources of user-generated data. This in turn enables machine
learning models to become better over time. In addition, re-
search institutes, government organizations, and industries
can share their own data with others to build machine learning
models collaboratively to get more complex yet accurate ar-
chitectures. However, management of these locally-generated
data also makes problems because it requires handling of pri-
vate and secure data, which can leak private information (Xu
et al. 2019). Traditional distributed training methods (Abadi
et al. 2016; Chilimbi et al. 2014; Dean et al. 2012) require
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large-scale training data to be moved to a central location
(Deng et al. 2021). However, these traditional approaches
have non-negligible shortcomings, leading to cybersecurity
risks and privacy concerns (Khan et al. 2020). In order to meet
privacy requirements, privacy laws and regulations (Regu-
lation 2018; Act 1996) have been enacted, which prevents
data transfer to a centralized place. Recently, federated learn-
ing (FL) (McMahan et al. 2017) has become important as a
collaborative training approach to prevent the disclosure of
private information because it does not require direct data
transfer. Thus, machine learning models can be trained with
a large number of clients without exposing raw data, which
only sends local updates to a central server, referred to as an
aggregator. In this way, data privacy can be protected because
participating clients in the FL process do not need to send its
own local data to other central locations.

Although FL has shown great potential in promising
privacy-preserved machine learning, problems still exist in
deploying FL. First, successful FL can come from contin-
ued long-term participation and availability of good-quality
dataset (Deng et al. 2021). One of the difficulties lies in data
heterogeneity (McMahan et al. 2017), where each client may
have different data distribution. Unlike traditional distributed
learning, in FL, it is highly possible that data distribution
is not uniform (Li et al. 2020), known as non-Identical In-
dependent Distribution (non-IID data heterogeneity). As a
result, contribution to model update by participating clients
varies significantly according to their participation frequency
and local data quality. Therefore, it is essential for clients
to actively and reliably participate in FL process with high-
quality data. Most existing works on FL (Chai et al. 2020;
Bonawitz et al. 2019; Li et al. 2018) do not provide incen-
tive mechanisms to promote participation of clients because
they assume that clients agreed to share their data voluntarily.
However, without satisfactory rewards that compensate par-
ticipating costs, each client is not willing to participate in FL
process (Zhan et al. 2021; Yu et al. 2020). Especially, clients
with good quality data may be reluctant to share their local
data with others. For achieving good model performance, it is
necessary to incentivize local data owners to contribute large
amounts of high-quality data. This leads us to the main ques-
tion - How can we incentivize data owners with good quality
data to contribute consistently in the training process? Our
work focuses on providing the answer to this question.



While there have been recent works (Deng et al. 2021;
Tang and Wong 2021; Yu et al. 2020) to address incentive
mechanisms for FL, these works give incentives to encour-
age high-quality clients to frequently and reliably participate
in FL process. These works conduct clients selection based
on quality estimation and prediction. However, the existing
research does not address how to promote long-term partic-
ipation of consumers, but only leverages historical quality
records based on loss, instead of directly measuring accuracy.
Besides, these works assume direct monetary transfer where
participating clients exchange budget in a one-to-one manner,
but there may be some delays before each client has enough
budget to pay back (Yu et al. 2020).

In this paper, we propose a tokenized incentive mecha-
nism where tokens are a way of paying for the services of
providing participants and the training infrastructure. A third
organization may provide secure and private aggregation
and communication systems through tokenized FL incen-
tive framework. Then, each client as a consumer should pay
tokens to participate in training process because they can
use the final trained model to generate revenue from com-
mercialization of the model. Tokens can be monetized by
the third organization without delays between training and
commercialization of the trained model, where providers or
consumers can exchange tokens using token-based pricing
model, instead of direct monetary transfer between clients.
Apart from the above-mentioned instant payback, the tok-
enized scheme can provide reasonable incentives to motivate
both continued long-term participation and high-quality data
contribution. Per training round, some of clients can be cho-
sen as providers that train their own local data and send
updates to an aggregator for updating a global model. To
encourage participation of data providers with good quality
data, tokens will be given to the selected providers propor-
tionately according to their contribution to model update. To
promote long-term active participation of providers, tokens
will be given to providers who more frequently participated
in training rounds. Moreover, as an incentive for continued
participation of consumers, paid tokens can be reimbursed to
each consumer when per-round accuracy of the model is not
improved enough compared to expectation.

We summarize our major contributions as follows:
• We present a novel token-based incentive mechanism for

FL systems, where tokens are used to monetize FL-as-
a-Service for participants and the training infrastructure.
Unlike direct monetary transfer, participating providers
are paid back without delays through token-based pricing
model.

• We design a method to incentivize high-quality data
providers and encourage long-term participation, which
gives free tokens using our newly created algorithm based
on their per-round contribution and participation fre-
quency.

• We introduce a reimbursement scheme to promote contin-
ued long-term participation of consumers where tokens
are reimbursed to consumers according to utility1 improve-
ment. To systemize amount of reimbursement tokens, we
1We use the term ‘utility’ to represent a function of the accuracy

propose token reduction ratio and utility improvement
ratio.

• We suggest how to select good providers per round using
both historical accuracy records and random exploration.

• We implement and evaluate the proposed FL incentive
mechanism to demonstrate that the proposed incentive
approach provides reasonable incentives for achieving
better model performance and increasing participation of
high-quality clients.

Background
Federated Learning
With the development of artificial intelligence technologies
and growing size of data in modern applications, distributed
learning methods (Abadi et al. 2016; Chilimbi et al. 2014;
Dean et al. 2012) have been explored and developed to ad-
dress newly created large-scale dataset in our daily life. How-
ever, due to privacy legislation (Regulation 2018; Act 1996),
private data should not be exposed or uploaded to a central
server without any privacy consideration. In recent years,
federated learning (FL) (McMahan et al. 2017) has been pro-
posed to collaboratively train a shared global model without
explicitly sharing their local data with others. The basic con-
cept of FL is to allow multiple clients to locally train the
global model and to update the global model by iteratively
aggregating model updates from these clients. FL system
consists of two main components such as the clients and
the aggregator. Before training starts, eligible clients need
to be registered to a parameter server called the aggregator.
The model training is processed synchronously in rounds
by the aggregator. At the beginning of each training round,
the aggregator randomly selects a subset of clients and dis-
tributes the global model to clients in the subset. Then, each
client trains the model on its own local datasets and sends
local model updates to the aggregator for model aggregation.
Let us assume that N and Dk are the number of clients and
local dataset on client k. In each round t, each client k in-
dependently trains its local model with its own local dataset
Dk for local epochs and updates its model parameters wk

t .
Then, each client k sends its own model weight difference
∆k

t , which is defined as:

∆k
t = wk

t − wk
t−1 (1)

After the aggregator receives the weight difference from all
clients in the subset, the aggregator updates the global model
by the Federated Averaging (FedAVG) algorithm (McMahan
et al. 2017) with the learning rate η as follows:

wt+1 = wt − η
N∑

k=1

1

N
∆k

t (2)

The above steps will be repeated until the trained model
reaches a target accuracy or the number of training rounds
reaches the predetermined round.

of the trained global model, as the previous works (Tang and Wong
2021; Pandey et al. 2020) define.



In practice, FL faces the challenge of data heterogeneity
(Chai et al. 2020). In traditional distributed learning, data is
collected at a central location and the classes of the training
dataset are evenly distributed across clients, called Indepen-
dent Identical Distribution (IID). However, in FL, training
dataset is not uniformly distributed among clients (Li et al.
2020) because training data on a given client depends on the
client’s experience and preference, known as non-Identical
Independent Distribution (non-IID). Thus, contribution to
model performance changes according to discrepancy of data
quality between clients (Zhao et al. 2018).

Incentive Mechanism
Incentive mechanisms have been studied in other areas such
as crowdsensing (Gong and Shroff 2018; Yang et al. 2012),
but these works have not been directly applied to FL area
(Deng et al. 2021). Game theory and auction can be used as
approaches to provide incentives for FL (Khan et al. 2020;
Zhan et al. 2021). Yu et al. (Yu et al. 2020) address FL in-
centives as auctions where the payment to data owners is
determined by the auction mechanism that models cost, con-
tributions, and regret of data owners. FAIR (Deng et al. 2021)
proposes an auction-based incentive mechanism that models
interaction between the clients and the aggregator as reverse-
auction where each client submits bid information and the
aggregator calculates optimal set of clients for maximizing
model performance within limited budget. The Stackelberg
game (Myerson 2013) is one of game theories, which formu-
lates the hierarchical and competitive interactions between a
leader and follower (Jia et al. 2017), where the leader decides
the action predicting follower’s response and the follower
chooses actions based on the leader’s action while maximiz-
ing their own profits. Khan et al. (Khan et al. 2020) addresses
FL incentives as the Stackelberg game to model the competi-
tive interactions between the clients and the aggregator, where
clients focus on maximizing their resource utility while the
aggregator focuses on maximizing the model performance.

Incentivized Federated Learning
In this section, we describe the design of our tokenized incen-
tivization for federated learning (FL). The major idea here
is that tokens are provided based on accuracy improvement
and participation frequency as a means of encouraging re-
liable participation of high-quality data providers. This can
be achieved by designing our system to fulfill the following
objectives:

• Compensating providers proportional to the quality of
their data - Data providers that can contribute more to
the training process (i.e., their participation speeds up
convergence or increases accuracy during training at a
faster rate), must be compensated properly as a means of
reward.

• Incentivizing long-term participation - Apart from good
quality providers, we must also encourage long-term par-
ticipation. We do so by rewarding tokens to clients that
have been selected as providers more frequently. Eventu-
ally, additional tokens will be rewarded to clients which
have participated for longer periods.

Figure 1: Overview of incentivized FL with tokens.

• Reimbursing tokens for lower utility improvements - If the
improvement in model performance is not sufficient after
each training round, we reimburse some of the tokens
since the participants could not get the appropriate value
out of participation.

For the next few subsections, we will further elaborate on
the system design features that enable us to achieve these
goals. We provide stronger definitions of utility, participation
rates, token values, etc. and describe the algorithms that use
them to accomplish the goal of incentivizing participation of
clients such that the overall model performance is improved.

Overall Design
The overall architecture of the proposed tokenized FL incen-
tivization is presented in Figure 1. All clients in the client
pool can act as both consumer and provider. From a con-
sumer’s perspective, each client can benefit from a trained
global model. From a provider’s perspective, each client can
contribute to training the global model. First, if clients want to
participate in FL training process as consumers, they should
buy tokens from a secure institution (e.g., IBM, Google, Ap-
ple) that orchestrates the FL process and provides a frame-
work for FL. We use tokens as a form of credit for providing
incentives to the providers. To the best of our knowledge, this
is the first to use tokenization for offering FL as a service.
Then, clients in the client pool can be chosen by an aggre-
gator as providers. After completing a round of training, the
selected clients receive tokens as incentives according to their
contributions to the model performance. We classify all par-
ticipating clients into two categories of providers: unexplored
providers, and explored providers. At first, all participating
clients do not have accuracy history because these clients are
not trained, and these untrained clients are called unexplored
providers. Then, after training starts, some of clients are se-
lected as providers. The clients train on their local data, and
then send back the local updates and test accuracies to the
aggregator. Thus, these trained clients have their accuracy
history and are then called explored providers.

Unlike existing FL systems, our proposed system includes
additional modules, residing at the aggregator side: token
manager, profiler, and scheduler. The role of the token man-
ager is to collect tokens from consumers and to pay back
these collected free tokens to providers and consumers. The
token manager keeps track of the tokens that have been dis-



Algorithm 1: Accuracy-based provider selection with random
exploration.
Input: n: Total number of providers, L: List of all providers,

E: List of explored providers, U : List of unexplored
providers,Accktest: local test accuracy of client k,NR:
Number of clients to be selected randomly in each
round, NA: Number of clients to be selected based
on accuracy rank in each round, r: Current round

1: Sort all providers in E according to Accktest
2: S = SortDesc([E])
3: R = Ranked list of providers in the sorted list S in de-

scending order
4: Qa = Deterministically selected NA clients for current

round r from E based on their ranks in R
5: B = Number of clients in U
6: if B > NR then
7: Qr = list of NR clients selected randomly from U for

training in current round r, Qr ⊆ U
8: else
9: Qr = list of NR clients selected randomly from L for

training in current round r, Qr ⊆ L
10: end if
11: Qs = Qa + Qr

12: for each data provider i ∈ Qs do
13: if i /∈ E then
14: Add i to E
15: end if
16: if i ∈ U then
17: Remove i from U
18: end if
19: end for
20: return Qs

tributed and collected between consumers and providers. The
token manager issues tokens to providers according to con-
tributions and reimburses tokens to consumers depending
on utility improvement. The profiler monitors accuracy of
all explored providers to measure quality of their local data.
When a group of selected providers finish a round of training,
the profiler requests accuracy from the selected providers.
Then, each selected provider sends its own local accuracy
to the profiler, and the profiler stores the collected local ac-
curacy into history records. Moreover, the profiler measures
the accuracy of the trained global model per round, and then
the measured global accuracy is used for reimbursing tokens
to consumers. In each training round, the scheduler sorts
providers in descending order based on the accuracy history
records and deterministically selects providers. The accuracy
history of each provider is used for selecting high-quality
providers. On top of that, the scheduler also randomly selects
unexplored providers for training. The detailed description of
provider selection and reimbursement scheme will be given
in the following subsections.

Algorithm 2: Incentivized FL training with tokens.
Input: LP : List of all providers, LC : List of all consumers,

R: Total training rounds
1: for each round r = 0 to R - 1 do
2: Token manager collects tokens from consumers for

training in round r
3: Scheduler selects providers for training in round r ac-

cording to both accuracy-based selection and random
exploration (Algorithm 1)

4: Each provider performs local training
5: Each provider sends local update and local accuracy

back to the aggregator
6: Aggregator calculates utility improvement in round r

using a global accuracy
7: Token manager reimburses tokens to consumers ac-

cording to utility improvement (Equation 11)
8: Token manager pays tokens back to the selected

providers according to local accuracy (Algorithm 3)
9: Token manager distributes remaining tokens to all

providers according to participation frequency (Algo-
rithm 4)

10: end for

Provider Selection with Accuracy History and
Random Exploration
Selecting providers out of all participating clients can be
conducted based on both accuracy history and random explo-
ration (Algorithm 1). At the beginning of each round, clients
are sorted based on accuracy history records and half of the
number of selected clients (Qa) are chosen from the explored
clients. The accuracy-based provider selection allows high-
quality providers to contribute to training a global model.
Since local data quality is tracked in real-time by profiling
local accuracy of each provider, the selection scheme can
dynamically adapt to changing data conditions in a timely
manner. Remaining half of the selected clients (Qr) are cho-
sen from the unexplored clients by random exploration. The
random exploration can fairly explore untrained clients and
allow the scheduler to choose high-quality providers among
them in the next selection round. List of selected clients Qs

is combined from both accuracy-based selection (Qa) and
random exploration (Qr). However, when explored clients
are not enough at early rounds, client selection is done by
random selection without accuracy-based selection. After
training of current round r, clients chosen from the unex-
plored clients are moved from list of unexplored providers
(E) to list of explored providers (U ). When all providers
are explored, half of the number of selected clients (Qr) are
still randomly chosen from list of explored providers (E). We
adopt this approach to select from this diverse set of providers
so that overfitting issues are prevented.

Incentivized Federated Training with Tokens
Algorithm 2 gives a detailed procedure of how our proposed
incentive mechanism performs FL training with tokens. At
the beginning of each round, the token manager collects
tokens from consumers and the scheduler selects a set of



Algorithm 3: Token distribution based on local accuracy.
Input: n: Total number of selected providers, L: List of

selected providers, R: Rank of provider s,Accs: Local
accuracy of provider s

1: D = n(n+1)
2

2: Sort the selected providers according to their local accu-
racy Accs

3: S = SortDesc([L])
4: i = rank for current data provider
5: F = Total number of free tokens available
6: i = 0
7: for each data provider s = 0 to S - 1 do
8: Free tokens for s = (n− i)× F

D
i+ +

9: end for

providers from the pool of candidate providers that agree to
participate in that training round. Then, the aggregator sends
a global model to those providers to perform local training.
The tokens paid by consumers are called free tokens (Tfree).
As we mentioned above, these free tokens are collected and
managed by the token manager. After the scheduler chooses
providers by accuracy-based selection and random explo-
ration, each selected provider conducts local training. With
the training completed, the selected providers send back their
own local updates and local accuracy to the aggregator. The
profiler at the aggregator measures a global accuracy and
calculates utility improvement. Utility improvement is pre-
sented as per-round improvement of a global accuracy. Then
the token manger reimburses tokens to consumers according
the utility improvement. The detailed explanation of the re-
imbursement algorithm is given in the next subsection. After
reimbursement, according to their local accuracy (Algorithm
3), tokens are given to the selected providers that conduct lo-
cal training for the current round. Then remaining tokens are
distributed to all providers according to their participation
frequencies (Algorithm 4). In this way, regardless of contribu-
tion for model training, providers are rewarded according to
their continued long-term participation in federated training.

For the next round, clients with high local accuracy records
are chosen by the scheduler for training a global model. The
local accuracy records can be a direct indicator of data quality
of clients. By selecting and rewarding providers with good
data quality, the accuracy of the trained global model can
be improved. On the other hand, providers with bad data
quality are not frequently chosen and therefore less rewards
will be given to them. While loss is an indication of accu-
racy improvement used by previous works (Lai et al. 2021;
Deng et al. 2021), we use accuracy for reimbursement and
scheduling. The previous works use loss because it makes ad-
ditional overheads to measure accuracy from selected clients.
However, we found in our environment that each selected
client already calculates accuracy whenever they conduct
local training. Thus, we directly use accuracy as a metric for
accuracy improvement without additional overheads.

Algorithm 4: Token distribution based on participation fre-
quency.
Input: n: Total number of all providers, L: List of all

providers, R: Rank of provider s, rs: Number of par-
ticipating rounds of provider s

1: D = n(n+1)
2

2: Sort all providers according to the number of their par-
ticipating rounds rs

3: S = SortDesc([L])
4: i = rank for current data provider
5: F = Total number of free tokens available
6: i = 0
7: for each data provider s = 0 to S - 1 do
8: Free tokens for s = (n− i)× F

D
i+ +

9: end for

Reimbursement
To keep consumers continuously engaged in FL process, to-
kens are reimbursed to consumers, depending on utility im-
provement. The general idea here is that more tokens will be
returned when the utility is less improved. Utility improve-
ment is calculated by the profiler module at the aggregator
side. Let us assume that Tret is the reimbursed tokens and
Iutil is the utility improvement. Thus, the number of reim-
bursed tokens Tret is inversely proportional to the utility
improvement Iutil as:

Tret ∝
1

Iutil
(3)

Let us assume that Accr is a global accuracy of cur-
rent round r and Accmax is the maximum global accuracy
achieved until the current round r. The profiler keeps track
of Accr and Accmax during training process. Then the utility
improvement of round r is calculated as:

Iutil = max(0.0,
(Accr −Accmax)

Accmax
) (4)

To calculate reimbursement tokens, we propose the two
following metrics: (1) token reduction ratio Tr, and (2) utility
improvement ratio Ir. Utility improvement ratio Ir is ranged
between 0 and Imax, and token reduction ratio Tr is ranged
between 0 and Tmax, where Imax and Tmax have values
between 0 and 1 as:

Imax ∈ [0, 1] (5)

Tmax ∈ [0, 1] (6)

Ir ∈ [0, Imax] (7)

Tr ∈ [0, Tmax] (8)
Utility improvement ratio Ir and token reduction ratio Tr

are calculated as:

Ir =
Imax −min(Imax, Iutil)

Imax
(9)



Tr = Tmax × Ir (10)

Therefore, the reimbursed tokens Tret is calculated as:

Tret = Tfree × Tr (11)

Tmax and Imax work as knobs to control the amount of
reimbursement tokens. The maximum tokens of reimburse-
ment is limited by Tmax. For example, when Tmax is set
to 1 and Ir is reached to 0, all pre-paid tokens are reim-
bursed to consumers. Since different learning applications
have different learning progress, utility improvement ratio
Ir can be curved by Imax to provide a portion of incentive
compensation. When Imax is set to lower values, utility im-
provement ratio Ir is higher. As a result, less tokens are
reimbursed to consumers, which guarantees reasonable in-
centives to providers in case that learning curve is not steep
enough.

Individual Rationality
Given the incentive mechanism, we can consider incentive
properties such as individual rationality. Unlike the exist-
ing FL incentive studies (Deng et al. 2021; Tang and Wong
2021), we guarantee individual rationality separately for both
consumer and provider perspectives. For the consumer per-
spective, if there is no improvement of utility, whole paid
token will be reimbursed to clients. For the provider perspec-
tive, clients selected for a single training round are rewarded
based on accuracy contribution and participation frequency.
In this way, incentive should be given to clients, as long as
the clients participate in federated training.

Evaluation
Experimental Setup
Testbed Our evaluation testbed is built by deploying 50
clients on a CPU cluster, where each client has its own exclu-
sive CPU core for local training. We implement all codes in
the IBM Federated Learning framework (Ludwig et al. 2020)
version 1.0.6 in our evaluation because it is on the market and
publicly available. Additionally, it is highly modularized as
python-based modules and supports various machine learning
frameworks such as TensorFlow (Abadi et al. 2016), PyTorch
(Paszke et al. 2019), and Keras (Ketkar 2017). In this paper,
the Keras is chosen as a machine learning library that pro-
vides FL model implementation (e.g., model definition and
model update) to the IBM Federated Learning framework.

Model and dataset We use a simple CNN (LeCun et al.
1989) model for evaluating our proposed incentive algorithm.
The CNN model consists of 5 layers: a 3x3 convolution lay-
ers with 32 channels and ReLu activation, a 3x3 convolution
layers with 64 channels and ReLu activation, a MaxPooling
layer of size 2x2, a fully-connected layer with 128 units and
ReLu activation, and a fully-connected layer with 10 units
and ReLu activation. Dropout 0.25 is added between the Max-
Pooling layer and the first fully-connected layer, and dropout
0.5 is added between the first fully-connected layer and the
second fully-connected layer. We use the MNIST dataset (Le-
Cun et al. 1998) for image classification, which consists of 10

classes. For non-IID class distributions, each client has a local
dataset with 2 classes. For different data quality distributions,
we use the following two different kinds of providers with
different data quality levels: a) normal provider: the provider
trains a model on the training dataset with the original un-
changed labels to normally train the model. b) malicious
provider: the provider trains a model on the training dataset
with the incorrect labels to maliciously train the model.

Methodology We use SGD (Robbins and Monro 1951) as
the optimizer for training local data in each local provider. We
train a CNN model on MNIST dataset for total 100 rounds.
We set the number of local epochs to 1. We run experiments
five times and report the averages.

Metrics We measure final model accuracy, the number of
participating rounds, and the total sum of tokens as our met-
rics.

Experimental Results
We evaluate and demonstrate the effectiveness and efficiency
of our proposed incentive mechanism. We compare the per-
formance of the proposed approach with the the Federated
Averaging (FedAVG) algorithm (McMahan et al. 2017) that
is one of the most widely used FL algorithms (Yao, Dou,
and Wen 2021). In this baseline case, the FedAVG randomly
selects clients without considering data quality of participat-
ing providers, and the free tokens are distributed equally to
selected providers per round, regardless of their contribution
to the learning progress.

Figure 2 shows the final model accuracy, the average round
of malicious and normal providers, and the average token of
malicious and normal providers with different noise levels.
The model is trained with 50 providers under different noise
level conditions: a) normal provider: each provider has its
original unchanged training dataset. b) malicious provider:
each provider has corrupted training dataset with random
labels. The noise level refers to the percentage of malicious
providers that have mislabeled data. We consider three noise
levels such as 10%, 20%, and 30%. Each client has 1000
tokens and pays 10 tokens per round to participate in FL
process as a consumer, thus providing 500 new free tokens
in each training round. For all noise levels, 10 clients are se-
lected as providers for training a single round. When a client
is selected as a provider per round, the number of participat-
ing rounds of the client is increased by one. After running
100 rounds, we measure the accuracy, rounds numbers, and
amount of tokens of each provider. Then, we average rounds
numbers and amount of tokens in both groups of providers
(i.e., malicious and normal providers).

The Figure 2a shows accuracy results with different noise
levels. The baseline reaches final model accuracy of 95.0%,
85.5%, and 71.5%, whereas our proposed incentive work
reaches final model accuracy of 93.5%, 87.4%, and 76.8%.
In general, accuracy decreases as noise level increases as
expected, because training with malicious parties has a nega-
tive effect on model training. Our incentive scheme improves
the final accuracy by up to 7.4%, as compared with the the
baseline. Specifically, the accuracy of 20% and 30% noise
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Figure 2: Comparison results for different noise levels on MNIST.
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Figure 3: Comparison results for different provider numbers on MNIST.

levels increases by 2.3% and 7.4%, respectively. This is be-
cause our incentive method selects high-quality providers
more frequently based on accuracy contribution, while low-
quality providers have less chances to be selected. However,
it does not give performance improvement in the case of 10%
noise level. The baseline already reaches very high accuracy
(i.e., 95.0%), and thus there is no room to improve accuracy
by accuracy-based selection scheme. Thus, our incentive ap-
proach is more effective in terms of accuracy in more noisy
environment.

The Figures 2b and 2c show average participating rounds
of malicious and normal providers. Overall, the numbers
of rounds are similar regardless noise levels. In the case
of malicious providers, the baseline shows average rounds
between 20.2 and 21.3, whereas our incentive scheme shows
average rounds between 12.0 and 13.9. Thus, our incentive
scheme reduces average rounds of malicious provider by
up to 40.9%, which indicates that when the data quality of
providers are not good, these providers have much lower
chances to be chosen than high-quality providers by our
accuracy-based selection. In the case of normal providers,
the baseline shows average rounds between 19.7 and 19.9,
while our incentive scheme shows average rounds between
20.7 and 23.4, providing improvement of up to 17.4%.

The Figures 2d and 2e show average tokens of malicious
and normal providers. In the baseline case, there is not a
large difference between malicious and normal providers:
malicious providers have average tokens between 929 and
995, and normal providers have average tokens between 1001
and 1030. On the other hand, our incentive work shows up to
37% of difference between malicious and normal providers:
malicious providers have average tokens between 793 and
926, and normal providers have average tokens between 1008
and 1088. Our incentive scheme reduces average tokens of
malicious providers by up to 14.7% and increases average

tokens of normal providers by up to 5.7%. Thus, it indicates
that low-quality providers have much lower incentives than
high-quality providers.

Figure 3 shows the final model accuracy, the average round
of malicious and normal providers, and the average token
of malicious and normal providers with different provider
numbers. At the beginning of each round, the scheduler mod-
ule at the aggregator chooses providers from the client pool
to perform local training on each provider. In the Figure 3,
we select different numbers of providers (i.e., 10, 12, and 14
providers) among 50 providers per each round and train the
model with the chosen providers, until the predefined number
of rounds (i.e., 100 rounds) is reached. The model is trained
under the above-mentioned different noise conditions such
as normal and malicious providers, but noise level is fixed as
30%. Each consumer pays 10 tokens per round and total 500
free tokens is reimbursed and distributed to consumers and
providers as earlier experiments.

The Figure 3a shows accuracy results with different num-
bers of providers. The baseline reaches final model accuracy
of 71.5%, 75.3%, and 79.3%, whereas our proposed incen-
tive work reaches final model accuracy of 76.8%, 78.1%, and
81.0%. Our incentive scheme improves the final accuracy by
up to 7.4%, as compared to the the baseline. The accuracy
of 10, 12, and 14 providers increases by 7.4%, 3.7%, and
2.1%, respectively. Regardless of numbers of providers, our
incentive method provides better accuracy than the baseline
by selecting high-quality providers more than low-quality
providers.

The Figures 3b and 3c show average participating rounds
of malicious and normal providers. Generally, rounds num-
bers increases as number of providers increases, because
more numbers of clients are chosen for training a single
round. In the case of malicious providers, the baseline shows
average rounds between 20.2 and 28.4, whereas our incentive



scheme shows average rounds between 12.0 and 16.9, reduc-
ing average rounds of malicious provider by up to 40.9%.
In the case of normal providers, the baseline shows average
rounds between 19.9 and 27.8, while our incentive scheme
shows average rounds between 23.4 and 32.8, providing im-
provement of up to 17.8%, as compared with the baseline
approach.

The Figures 3d and 3e show average tokens of malicious
and normal providers. In the baseline case, there is not a
large difference between malicious and normal providers:
malicious providers have average tokens between 916 and
929, and normal providers have average tokens between 1030
and 1035. On the other hand, our incentive work shows up to
48% of difference between malicious and normal providers:
malicious providers have average tokens between 750 and
799, and normal providers have average tokens between 1085
and 1106. Average tokens of malicious providers is reduced
by up to 18.1%, while average tokens of normal providers is
increased by up to 6.9%. This result means that our incentive
approach provides more incentives to high-quality providers
than low-quality providers, regardless of the number of per-
round providers.

We evaluate the scheduling and calculation overhead by
comparing total completion time of the baseline and the in-
centive cases. The average runtime of the baseline approach is
3495 seconds, while the average runtime of the incentive ap-
proach is 3596 seconds. It means that our incentive approach
causes little computation overhead such as 2.9%.

Therefore, our incentive scheme selects high-quality
providers frequently giving more tokens as incentives than
low-quality providers through accuracy-based selection and
random exploration, which allows reasonable rewards and
improves model performance of the trained global model.

Related Work
Some works have proposed to optimize performance in terms
of model accuracy and training time for federated learning
(FL), which mainly focuses on heterogeneity in data distribu-
tion and system resources. McMahan et al., who first termed
FL, suggest FederatedAveraging (FedAvg) using iterative
model averaging (McMahan et al. 2017). Google focuses on
reducing client-to-server communication overheads leverag-
ing lossy compression (Konečnỳ et al. 2016). There have
been works for FL scheduling to address heterogeneity. To
address resource heterogeneity of FL systems, FedCS (Nishio
and Yonetani 2019) drops slow devices to minimize straggler
problems. Bonawitz et al. propose large-scaled FL systems,
which selects more clients (e.g., 130%) than the required
number of clients and throws out slow clients (Bonawitz et al.
2019). Some researchers start to study on both resource and
data heterogeneity for improving performance of FL. Fed-
Prox (Li et al. 2018) addresses resource heterogeneity by
updating partial results and data heterogeneity by adding a
proximal term to provide stable convergence. TiFL (Chai et al.
2020) suggests tier-based parties according training latency
to reduce straggler effect and introduces credits to avoid over-
fitting. Oort (Lai et al. 2021) suggests guided participants
selection based on training latency and importance sampling
to provide trade-off between resource and data heterogeneity.

However, the above-mentioned works assume that participat-
ing clients agreed to share their local data and local resources
voluntarily without reasonable incentives.

Recently, a few works on FL incentive have been pro-
posed. FAIR (Deng et al. 2021) suggests a quality-aware in-
centive mechanism to motivate participation of high-quality
clients. An incentive mechanism for public goods feature
is introduced to maximize the social welfare and achieve
budget balance (Tang and Wong 2021). Another work (Yu
et al. 2020) proposes a context-aware incentive mechanism to
promote participation of high-quality data owners by reduc-
ing temporal mismatch between contributions and rewards.
Above-mentioned works usually focus on how to give incen-
tives to only providers based on quality estimation, but do not
consider how to encourage sustained long-term partitions as
perspectives of both consumers and providers. Furthermore,
these works require direct monetary transfer between parties,
however, there may be some delays before the federation
has enough budget for payment back to each client (Yu et al.
2020). Unlike the above-mentioned studies, our work intro-
duces a token-based incentive mechanism to provide instant
monetization through our own token-based pricing model.
Our work additionally suggests reimbursement to promote
participation of parties as a consumer perspective, as well as
a provider perspective.

Conclusion
In this study, we have proposed a novel tokenized incentive
mechanism for federated learning (FL) that uses tokens to
monetize the contribution of participating clients and the
training infrastructure, which effectively motivates the long-
term participation of high-quality data providers. Unlike ex-
isting studies, we introduce incentivization to both providers
and consumers and profiles data quality using accuracy mea-
surement without additional overheads, instead of using loss
measurement. Through our newly proposed metrics (i.e., to-
ken reduction ratio and utility improvement ratio) based on
utility measurement, clients are reimbursed as consumers.
Through historical accuracy records and random exploration,
high-quality clients are frequently selected as providers with
reasonable rewards. The result shows that our incentive ap-
proach reduces the number of rounds and tokens of malicious
providers by up to 40.9% and 18.1%, while increasing the
number of rounds and tokens of normal providers by up to
17.8% and 6.9%, as compared with the baseline. Thus, our
incentive approach shows up to 48% difference of tokens
between normal and malicious providers, resulting in im-
provement of the final accuracy by up to 7.4%, as compared
with the baseline.
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