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Abstract

Cloud object stores are increasingly becoming the de

facto storage choice for big data analytics platforms,

mainly because they simplify the management of large

blocks of data at scale. To ensure cost-effectiveness of

the storage service, the object stores use hard disk drives

(HDDs). However, the lower performance of HDDs af-

fect tenants who have strict performance requirements

for their big data applications. The use of faster storage

devices such as solid state drives (SSDs) is thus desir-

able by the tenants, but incurs significant maintenance

costs to the provider. We design a tiered object store for

the cloud, which comprises both fast and slow storage

devices. The resulting hybrid store exposes the tiering

to tenants with a dynamic pricing model that is based on

the tenants’ usage and the provider’s desire to maximize

profits. The tenants leverage knowledge of their work-

loads and current pricing information to select a data

placement strategy that would meet the application re-

quirements at the lowest cost. Our approach allows both

a service provider and its tenants to engage in a pricing

game, which our results show yields a win–win situation.

1 Introduction and Motivation
To make data analytics easy to deploy and elastically

scale in the cloud while eliminating redundant data copy-

ing cost, cloud providers typically let their tenants run

Big Data processing jobs on vast amount of data stored in

object stores. For example, AWS [8], Google Cloud [4]

and OpenStack [10] provide their own Hadoop to object

store connectors that allow tenants to directly use object

stores as a replacement of HDFS [26]. Moreover, com-

mercial Big Data platforms such as Amazon EMR [1]

and Azure HDInsight [5] go a step further and directly

employ object stores as the primary storage technology.

Cloud-based object stores use low-cost HDDs as the

underlying storage medium. This is because the price

gap between HDDs and SSDs continue to be signif-

icant [9], especially for datacenter-scale deployments.

Object stores have traditionally been used as data dumps

for large objects such as backup archives and large-

volume pictures or videos; use cases where SSDs would

incur a high acquisition as well as maintenance cost [24],

e.g., premature device replacement. Nevertheless, re-

cent research has shown that SSDs can deliver signifi-

cant benefits for many types of Big Data analytics work-

loads [13, 15, 16, 18], which are thus driving the need

for adopting SSDs. Newer technology on this front

is promising, but does not adequately address the cost

and performance trade-offs. For example, while the

newer 3-bit MLC NAND technology promises to de-

liver higher SSD densities and potentially drive down

the acquisition cost, it has taken a major toll on SSD en-

durance [14, 23, 28], which raises the maintenance costs.

Tiered storage is used in many contexts to balance the

HDD–SSD cost and benefits by distributing the work-

load on a hybrid medium consisting of multiple tiers [15,

17, 20, 27]. Data analytics applications are particu-

larly amenable to such tiered storage deployments be-

cause of the inherent heterogeneity in workload I/O pat-

terns. The choice of tiers depends on tenants’ workloads

and the performance benefits achieved by using spe-

cific tiers. A growing class of data analytics workloads

demonstrate different unique properties [13], which can-

not be satisfied by extant heat-based tier allocation ap-

proaches [15, 17, 20, 27]. To this end, we propose an

innovative tiered object store that exposes tiering control

to tenants by offering the tiers under dynamic pricing.

Thus, the tenants can meet their price–performance ob-

jectives by partitioning their workloads to utilize differ-

ent tiers based on their application characteristics.

In this paper, we argue that traditional HDD-based ob-

ject stores are inefficient. (1) From the cloud tenants’

perspective, an HDD-based object store cannot effec-

tively meet their requirements (e.g., deadlines) due to the

relatively slow I/O performance of HDDs. (2) From the

cloud provider’s perspective, an HDD-only object store

does not provide any pricing leverage, which reduces

profitability. A faster tier can provide a higher quality-

of-service (QoS), which can be strategically priced to in-

crease profits. Hence, a hybrid HDD–SSD approach is

desirable for both cloud providers and tenants.

To verify our argument, we conducted a trace-driven

simulation study by replaying two 250-job snippet traces

from Facebook’s Hadoop production traces [12]. We

set the HDD tier price as $0.0011/GB/day—average of

the Google Cloud Storage price of $0.00087/GB/day

and the Google Cloud’s HDD persistent block storage

price of $0.0013/GB/day—and the SSD tier price as

$0.0044/GB/day, i.e., 4× the HDD price. Note that

we have chosen to use per-day pricing for our study

as the granularity of our proposed price adjustment is

one day (§3). trace 1 consumes 12 TB data and gen-

erates 4.7 TB output, while trace 2 consumes 18 TB

data and generates 8.2 TB output. For the hybrid storage

tiering case (HDD+SSD), the tenant places jobs in differ-
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Figure 1: Tenant workload runtime for trace 1 and

trace 2, and provider’s profits under different configurations.

ent tiers with a desired workload completion deadline of

105 hours. For this purpose, we use Algorithm 1 that es-

sentially tries to optimize the tier allocation to meet the

deadline while minimizing the cost (§2.2).

Figure 1 shows the results, from which we make

three observations. (1) Workloads with HDD-only config.

cannot meet the tenant-defined deadline and the cloud

provider earns the lowest profit. (2) With HDD+SSD tier-

ing config., both workloads are able to meet the deadline,

while the cloud provider sees significantly more profit

(trace 2 has larger input and output datasets and hence

yields more profit). This is because the tenant places

part of the workloads on the SSD tier, which is more

expensive than the HDD tier. (3) SSD only config. im-

proves performance, but with marginally higher profit,

compared to HDD+SSD. This is mainly due to HDD+SSD’s

tiering optimization. This experiment demonstrates that

through object storage tiering both the cloud provider

and tenants can effectively achieve their goals.

Cloud providers have a multitude of device options

available for deploying object storage infrastructure, in-

cluding HDDs with different RPMs, SATA and PCIe

SSDs and the emerging SCM devices, etc. These options

offer different performance–price trade-offs. For exam-

ple, each device type offers different cost/GB and, in case

of SSDs and SCMs, different endurance. In a tiered setup

comprising such a variety of storage choices, estimating

price points while keeping maintenance costs under con-

trol is a challenge. Moreover, while the cloud providers

encourage tenants to use more SSDs to increase their

profits, they want to keep SSDs’ wear-out in check – if

tenant workloads are skewed towards SSDs due to high

performance requirements, providers run the risk of SSD

wear-out earlier than expected, which ends up increasing

management costs and decreasing overall profits.

To remedy the above issue, we introduce a dynamic

pricing model that providers can leverage to mitigate ad-

ditional costs and increase overall operating profits for

providers. The dynamic pricing model has two objec-

tives: (1) to balance the price-increasing and SSD wear-

out rate by exploiting the trade-off between high rev-

enue versus high operational costs (e.g., replacing SSDs)

for high profit; (2) to provide an effective incentiviz-

ing mechanism to tenants so that the tenants can meet

their goals via object store tiering in a more cost-efficient

fashion. Generally, storage tiering has been looked at

from just one entity’s perspective. In contrast, the nov-

elty of this work lies in the leader/follower game theo-

retic model that we adopt, where the objectives of cloud

provider and tenants are either disjoint or contradictory.

We take the first step towards providing a cloud-provider-

driven game-theoretic pricing model through object stor-

age tiering. Yet another unique aspect of our storage

tiering approach is handling of the lack of information

available to the players (cloud, tenants). In extant tiering

solutions adopted in private datacenters, data placement

decisions are generally made by administrators who have

detailed information about the systems involved. This is

not true in public cloud space, where information about

many aspects or details may be missing. Thus, not only

the motivations different from the private deployments

for providers and tenants in a public cloud, but they also

have to make decisions based on partial information.

Specifically, we makes the following contributions in

this paper. (1) We design a leader/follower gaming

model with the goal to maximize cloud provider’s profit.

The provider makes the pricing decisions by estimat-

ing tenants’ storage capacity demand distribution among

different tiers; driven by the prices, tenants employ a

simulated annealing based tiering solver to guide ob-

ject storage tiering for maximizing their utility. (2) We

demonstrate through trace-driven simulations that our

novel object storage tiering pricing mechanism can de-

liver increased profit for the cloud provider and poten-

tially achieve win–win for both the provider and tenants.

2 Model Design
We design a leader/follower cloud pricing framework

with the objective of maximizing a cloud provider’s

profit. We model the object storage tiering for tenants

and dynamic pricing for the provider, and capture the

provider–tenant interactions. In our model, the game is

played in two steps. First, the cloud provider (leader)

makes the pricing decisions (§2.1) based on predictions

of tenants’ demand on storage resources. Second, given

prices of different storage resources, a tenant (follower)

makes tiering decisions based on her own requirements

(§2.2), and the strategy is represented by the tenant’s stor-

age tiering specification, i.e., which jobs use what tier.

While the tenants can see the price changes by the

provider, they are unaware of the actual reasons for the

changes. Even if the tenants understood the reasons,

multi-tenancy prevents modeling of the provider’s be-

havior. Hence, in our formulation tenants can only pre-

dict the provider’s price movements based on historical

data. Similarly, the provider is not aware of explicit ten-

ant requirements, and only garners information from the

requested storage capacity and the writes operations (PUT
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Notation Description

F set of all tiers in object store

capacity(n,s) total capacity of tier s in time slot n

f(n,s) fraction of data placed on tier s in time slot n

w(n,s) writes in GB on tier s in time slot n

provider p(n,s) price of tier s in time slot n (decision var)

a HDD class

b SSD class

α1,β1,α2,β2 model parameters

θ parameter used to constraint SSD’s price

J set of all analytics jobs in a workload

szi dataset size of job i

tenant xi tier used by job i (decision var)

ci capacity provisioned for job i (decision var)

α3,β3 model parameters

Table 1: Notations used in the provider and tenant models.

requests are tracked for accounting purposes [6]). Thus,

the provider also only uses historical information about

these aspects to predict tenant demand. Consequently,

both the tenants and the provider models adopted in our

game are purposefully “myopic” controls for predicting

only the next time slot, and not beyond that in the future.

2.1 Provider Model
We model the provider cost as follows. Assuming that

the fraction of the cost that comes from SSDs wear-out is

t < 1,1 the cost can be modeled as: cost = 1
t
· pssd

endurance
·w,

where pssd is the market price of one SSD, endurance is

the endurance lifespan of the particular SSD, and w is the

amount of data written to the SSD in GB. Table 1 lists

all the notations used in our provider and tenant mod-

els. The pricing decision making process can be modeled

as a non-linear optimization problem that maximizes the

profit defined by Equation 1.

max pro f it = ∑
i

(

∑
f

(capacity f · f(i, f ) · p(i, f ))− costi

)

(1)

s.t. f ′(n+1,b) = α1 · f(n,b)−β1 · (p′(n+1,b)− p(n,b)) (2)

f ′(n+1,a) = 1− f ′(n+1,b) (3)

f(n,b) = α1 · f(n−1,b)−β1 · (p(n,b)− p(n−1,b)) (4)

f(n,a) = 1− f(n,b) (5)

w′(n+1,b) = α2 ·w(n,b)+β2 · ( f ′(n+1,b)− f(n,b)) (6)

w(n,b) = α2 ·w(n−1,b)+β2 · ( f(n,b)− f(n−1,b)) (7)

∀i : w(i,b) ≤Li (8)

∀i,s : 0≤ capacityi · f(i,s) ≤ Ls (9)

∀i : pmin,b ≤ p(i,b) ≤ θ · p(i,a) , where θ > 1 (10)

∀i,s : f(i,s) ≤ 1 where i ∈ {n,n+1}, s ∈ F (11)

In a time slot n, we predict the SSD demand proportion

for the next time slot n+ 1 with Equation 2, which de-

pends on the difference between the predicted SSD price

for n+ 1 and the calculated SSD price for n. The pre-

dicted HDD demand proportion is determined by Equa-

tion 3. Similarly, Equation 4 and 5 define the predicted

1We choose to use a fixed t for simplicity; in real world, there are

numerous factors that come into play and t may not be a constant.

SSD and HDD demand proportion for n, respectively,

and Equation 11 enforces the proportion range.

Equation 6 predicts the amount of data that will be

written to SSDs, which is determined by the difference

of predicted SSD demand proportion in time slot n+ 1

to that in time slot n. If the SSD demand is predicted

to increase, it implies that the amount of data that will

be absorbed by the SSD tier will also increase. Equa-

tion 8 defines the SSD tier data writing constraint, which

ensures that the expected amount of data written to the

SSD tier will not exceed the threshold that is calculated

based on accumulated historical statistics. The factor in-

directly controls the value adaptation of decision vari-

ables p(n,b) and p′(n+1,b). The storage capacity limit in

the cloud datacenter is defined by Equation 9. We as-

sume HDD prices p(n,a) and p(n+1,a) are fixed, and SSD

prices are constrained in a range given by Equation 10.2

2.2 Tenant Model
The data placement and storage provisioning at the ten-

ant side is modeled as a non-linear optimization problem

as well. The goal is to maximize tenant utility as defined

by Equation 12.

max utility =
1

(T ·$)
(12)

s.t. ∀i ∈ J : ci ≥ szi (13)

T =
J

∑
i=1

(

xi,c[si],R̂,L̂i

)

+ penalty(data migrated)

≤ deadline , where xi ∈ F (14)

$ =
F

∑
s=1

(

c[s] ·
(

p(n,s) ·
⌈

T/60

⌉)

)

(15)

where ∀s ∈ F,
{

∀i ∈ J, s.t. xi ≡ f : c[s] = ∑ci

}

,

p′(n+1,b) = α3 · p(n,b)+β3 · p(n−1,b) (16)

The performance of the tenant’s workload is modeled

as the reciprocal of the estimated completion time in

minutes (1/T ) and the cost includes mainly the storage

costs. The cost of each storage service is determined by

the workload completion time (storage cost is charged

on a hourly basis) and capacity provisioned for that ser-

vice. The overall storage cost is obtained by aggregating

the individual costs of each tier in the object store (Equa-

tion 15). Equation 13 defines the capacity constraint,

which ensures that the storage capacity (ci) provisioned

for a job is sufficient to meet its requirements for all the

workload phases (map, shuffle, reduce). Given a specific

tiering solution, the estimated total completion time of

the workload is defined by Equation 14, and constrained

by a tenant-defined deadline. Equation 16 is the price

predictor at the tenant side. The predicted price value

can also be supplied as a hint by the cloud provider. The

function penalty(.) serves as a penalty term that the ten-

2We plan to include IOPS per client in our future pricing models.
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Algorithm 1: Tiering solver.

Input: Job information matrix: L̂ , Analytics job model matrix:

M̂ , Runtime configuration: R̂, Initial solution: P̂init .

Output: Tiering plan P̂best
1 begin

2 P̂best ←{}
3 P̂curr ← P̂init

4 exit← False

5 iter← 1
6 tempcurr ← tempinit

7 Ucurr ←Utility(M̂ ,L̂ , P̂init )
8 while not exit do

9 tempcurr ←Cooling(tempcurr)
10 for next P̂neighbor in AllNeighbors(L̂ , P̂curr) do

11 if iter > itermax then

12 exit← True

13 break
14 Uneighbor ←Utility(M̂ ,L̂ , P̂neighbor)
15 P̂best ←U pdateBest(P̂neighbor , P̂best )
16 iter++
17 if Accept(tempcurr , Ucurr , Uneighbor) then

18 P̂curr ← P̂neighbor

19 Ucurr ←Uneighbor

20 break

21 return P̂best

ant takes into account in terms of performance loss (e.g.,

longer completion time) while deciding tiers.

We devise a simulated annealing based algorithm [13]

(Algorithm 1) for computing tenants’ data partitioning

and job placement plans. The algorithm takes as input

workload information (L̂ ), compute cluster configura-

tion (R̂), and information about performance of analytics

applications on different storage services (M̂ ) as defined

in Table 1. P̂init serves as the initial tiering solution that

is used to specify preferred regions in the search space.

The results from a simple greedy algorithm based on the

characteristics of analytics applications (e.g., the four de-

scribed in §3) can be used to devise an initial placement.

3 Preliminary Results
We have used trace-driven simulations to demonstrate

how our cloud–tenant interaction models perform in

practice. We use the production traces collected from

a 3,000-machine Hadoop deployment at Facebook [12].

The original traces consist of 25,428 Hadoop jobs; we

chose to use a snippet of 1,750 jobs to simulate a 7-day

workload. The workload runs on a cloud object store

with built-in tiering mechanism that tenants can control.

We set the time slot for our models to one day.

We assign to our workload, in a round-robin fashion,

four analytics applications that are typical components of

real-world analytics [12, 29] and exhibit diversified I/O

and computation characteristics. Sort, Join and Grep are

I/O-intensive applications. The execution time of Sort is

dominated by the shuffle phase I/O. Grep spends most of

its runtime in the map phase I/O, reading input and find-

ing records that match given patterns. Join represents an

analytic query that combines rows from multiple tables

and performs the join operation during the reduce phase,
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Figure 2: Dynamic pricing by the provider and the tenant’s

response for two 7-day workloads. The dotted horizontal line

represents the daily write limit Li. The variation in Li is too

small to be discernible at this scale.

making it reduce intensive. KMeans is an iterative CPU-

intensive clustering application that expends most of its

time in the compute phases of map and reduce iterations.

Figure 2 shows price variation by the cloud provider’s

model based on the amount of data written by the tenant

to the SSD tier on a per-day basis. The HDD price is

fixed, while the SSD price is dynamically adjusted on a

daily basis for dynamic pricing (the pricing is the same

as for Figure 1). Under static pricing, the provider sets

a static price and tenants periodically run Algorithm 1,

whereas under dynamic pricing, the provider and tenants

interact. The per-day write limit Ln is dynamically ad-

justed based on the amount of writes from the tenant side

(though not discernible in the figure). Figure 2(a) shows

the price changes for a 7-day trace, with a different work-

load running on each day. We observe that as the amount

of writes by the tenant on SSD tier increases above the

write limit, the cloud provider begins to adjust the SSD

price. The tenant’s model will adjust the tiering strategy

to either put more data in the HDD tier or pay more for

the SSD tier in the case of a strict deadline requirement.

Since, each day has a different workload and hence a dif-

ferent deadline. For example, from day 4, the tenant,

with the goal of maximizing the tenant utility, allocates

fewer jobs to the SSD tier. Once the SSD writes are re-

duced below the threshold, the provider lowers the SSD

tier price to incentivize the tenant to use more of the SSD

resource on the next day. The tenant responds to this

change on day 7, where the workload deadline is stricter

than the previous 2 days.

Figure 2(b) shows the price changes for a 7-day pe-

riod with the same single-day trace replayed every day.

This trace shows stronger correlation between per-day
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Figure 3: Cloud profit and tenant utility averaged over 7

days. static low, static medium and static high mean a

low, medium, and high static SSD price, respectively. Cloud

profit and tenant utility are normalized wrt. static high.

SSD writes from the tenant and the SSD price from the

provider. This workload exhibits the same specifications

every day (e.g. dataset size, a relaxed deadline, etc.), thus

the daily writes on the SSD tier remain stable under static

pricing. However, the dynamic pricing model can effec-

tively respond to the spike in the amount of writes on the

first day and adjust the SSD price accordingly. Given the

increased SSD price, the tenant tries to reduce their mon-

etary cost by migrating more jobs to the cheaper HDD

tier, while still meeting the deadline. When the provider

lowers the SSD price in response, the tenant increases

their use of SSD, prompting the provider to increase the

SSD price again. This interaction of the tenant and the

provider results in an average of 2.7 TB/day SSD writes

compared to an average of 7 TB/day under static pric-

ing (with 0% deadline miss rate for both cases). The

test demonstrates that our dynamic pricing model can

adaptively adjust the SSD pricing based on the amount

of data written to the SSD tier to maintain high profits

while keeping the SSD wear-out under control by keep-

ing write loads to SSD in check.

In our next test, we examine the impact of different

SSD pricing models on provider profit and tenant util-

ity, i.e., the cloud–tenant interaction. Figure 3 shows

the results. We choose three static prices for SSDs: low

(the minimum SSD price that we use: $0.0035/GB/day),

medium ($0.0082/GB/day), and high (the maximum

SSD price, $0.0121/GB/day). We also compare static

prices with our dynamic pricing model. As observed in

Figure 3(a), dynamic pricing yields the highest provider

profit as it increases the price based on SSD writes from

the tenant. Both static low and medium high yield sim-

ilar profits that are 32.6% lower than that gained under

dynamic pricing. This is because static medium results

in more jobs placed on the HDD tier, which lowers the

tenant cost while causing longer workload completion

time. static low is not able to generate enough profit

due to the very low price, while under static high the

tenant solely migrates all the jobs to the HDD tier, thus

resulting in low profit.

Next, we examine the tenant utility in Figure 3(b).

With static low SSD price, the tenant utility is 17.1%

higher than that achieved under dynamic pricing. How-

ever, this would result in significantly shortened SSD

lifetime (by as much as 76.8%), hence hurting the cloud

profit in the long term. With static high SSD price, the

tenant utility is reduced by 17.1% compared to that of dy-

namic pricing, as the tenant shifts most jobs to the HDD

tier. static medium SSD price yields slightly higher ten-

ant utility as compared to static high but still 13.1%

lower than that seen under dynamic pricing. This is be-

cause the tenant has to assign some jobs to the faster SSD

tier in order to guarantee that the workload does not run

for too long. Dynamic pricing, on the other hand, main-

tains the tenant utility at a reasonably high level (higher

than both static medium and static high but slightly

lower than static low), while guaranteeing that the SSD

lifetime constraints are met. This demonstrates that our

dynamic pricing model can effectively achieve a win–

win for both the cloud provider and tenants.

4 Related Work
Storage Tiering Recent research [16, 18] demon-

strates that adding a SSD tier for serving reads is bene-

ficial for HDFS-based HBase and Hadoop. Existing im-

plementations of cloud object stores provide mechanisms

for tiered storage. OpenStack Swift supports storage tier-

ing through Storage Policies [7]. Ceph, which exposes an

object store API, has also added tiering support [2]. Our

work focuses on providing insights into the advantages

of dynamically priced tiered object storage management

involving both cloud providers and tenants.

Cloud Pricing Researchers have also looked at cloud

dynamic pricing [19, 21, 25]. CRAG [3] focuses on solv-

ing the cloud resource allocation problems using game

theoretical schemes, while Londono et al. [22] propose

a cloud resource allocation framework using colocation

game strategy with static pricing. Ben-Yehuda et al. [11]

propose a game-theoretic market-driven bidding scheme

for memory allocation in the cloud. We adopt a simpli-

fied game theoretic model where the cloud providers give

incentives in the form of dynamic pricing and tenants

adopt tiering in object stores for achieving their goals.

5 Conclusion
We show that by combining dynamic pricing with cloud

object storage tiering, cloud providers can increase their

profits while meeting the SSD wear-out requirements,

and tenants can effectively achieve their goals with a rea-

sonably high utility. We demonstrate this win–win situa-

tion via real-world trace-drive simulations. In our future

work, we plan to explore different tiering algorithms and

best dynamic pricing models in multi-tenant clouds.
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6 Discussion Points

While a lot of research has looked at the technical as-

pects of building clouds, their impact and their use by the

tenants, we believe the current cloud pricing mechanism

(especially for storage services) is vague and lacks trans-

parency. In this work, we have attempted to reconcile the

economic principles of demand and supply with the tech-

nical aspects of storage tiering through dynamic pricing

to showcase the benefits for both the cloud provider as

well as the tenants.

We believe that our paper will lead to discussion on

the following points of interest: (1) The need for revis-

iting pricing strategies in established hybrid storage de-

ployments and practices. Since storage tiering is a well-

studied area, we believe that the paper will lead to hot

discussion on how the paradigm shift is happening, and

why the extant approaches and ideas need to be revisited.

A particular point of interest in the context of tiering is

that the objectives of different players are often times in

conflict. (2) Issues such as how useful can our pricing

“knob” be for the cloud provider to shape tenant behavior

to suit the provider requirements, and at what granular-

ity should the proposed price variations be implemented,

are part of our future work and would make for a produc-

tive discussion. (3) The role of flash and other emerging

technologies in cloud-based object stores.

An unexplored issue is tenant behavior modeling. Our

preliminary results assume a smart tenant using models

described in §2. However, in reality, tenants can have

very different behaviors and utility functions. Further-

more, we have not looked at multi-tenancy in detail. For

instance, a “naive” or “rogue” tenant that performs a lot

of SSD writes without considering their utility can cause

the cloud to increase the price of SSDs, thus affecting

the utility of other well-behaved tenants. Another open

aspect of our current work is investigating the game theo-

retic results of our model. These include the behavior of

provider’s profit and the tenant’s utility when the system

reaches equilibrium and the comparison of these objec-

tives under Nash and Stackelberg equilibria.

Furthermore, prices of SSDs are falling. Even though

the gap between HDD and SSD prices is still wide today,

in the future with increase in NAND flash production,

improvement in flash yields, lithographic improvements

such as 3D stacking, etc., can reduce the price difference,

resulting in SSDs becoming the de facto storage medium

in cloud environments. From the tenant side, while re-

searchers have shown the merit of using SSDs (e.g., in

interactive HBase workloads [16]), their use in batch-

oriented analytics workloads is just starting. Indeed, in

another research work [13], we have shown through real

experiments on Google Cloud that SSDs can provide

great benefits especially when considering heterogeneity

in cloud storage services, enforcing our belief that our

future hybrid object store prototyping efforts will yield

desirable win–win solutions.
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