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Abstract
The growing variety of data storage and retrieval needs
is driving the design and development of an increasing
number of distributed storage applications such as key-
value stores, distributed file systems, object stores, and
databases. We observe that, to a large extent, such ap-
plications would implement their own way of handling
features of data replication, failover, consistency, clus-
ter topology, leadership election, etc. We found that 45–
82% of the code in six popular distributed storage ap-
plications can be classified as implementations of such
common features. While such implementations allow for
deeper optimizations tailored for a specific application,
writing new applications to satisfy the ever-changing re-
quirements of new types of data or I/O patterns is chal-
lenging, as it is notoriously hard to get all the features
right in a distributed setting.

In this paper, we argue that for most modern storage
applications, the common feature implementation (i.e.,
the distributed part) can be automated and offloaded, so
developers can focus on the core application functions.
We are designing a framework, ClusterOn, which aims
to take care of the messy plumbing of distributed stor-
age applications. The envisioned goal is that a developer
simply “drops” a non-distributed application into Clus-
terOn, which will convert it into a scalable and highly
configurable distributed application.

1 Introduction
The big data boom is driving the development of inno-
vative distributed storage systems aimed at meeting the
increasing need for storing vast volumes of data. We ex-
amined the number of representative storage systems that
have been implemented/released by academia in the last
decade, and found a steady increase in such systems over
recent years. Figure 1 highlights the trend of innovating
new solutions for various and changing storage needs.1

These new storage systems/applications2 share a set of
features such as replication, fault tolerance, synchroniza-
tion, coordination, and consistency. This implies that a

1We only count papers that implement a full-fledged storage sys-
tem. USENIX FAST is not included as it solely covers storage. Given
the very large number of systems available in the industry, and gen-
eral lack of details about the inner workings, we only studied systems
proposed by academia.

2We use “systems/applications” interchangeably throughout.
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Figure 1: Number of storage systems papers in SOSP, OSDI,
ATC, and EuroSys conferences in the last decade (2006–2015).

Key-value store Object store DFS

Redis HyperDex Berkeley DB Swift Ceph HDFS

Total #LoC 41760 20691 159547 43375 187144 112510

Table 1: Total LoC in the 6 studied storage applications.

great portion of these features are overlapped across vari-
ous such applications. Furthermore, implementing a new
application from scratch imposes non-trivial engineering
efforts in terms of numbers of lines of code (LoC) or
person-year. Table 1 gives the LoC3 of 6 popular dis-
tributed storage applications in three categories. Cor-
respondingly, Figure 2 shows the LoC breakdown. An
interesting observation is that all of the six applications
have a non-trivial portion of LoC (45.3%–82.2%) that
implements common functionalities such as distributed
management. While LoC is a major indicator for the en-
gineering effort involved, it is by no means definitive or
comprehensive enough. The engineering effort required
at different stages of development also includes the fun-
damental difficulties of bundling management compo-
nents as well as increased maintenance cost (e.g., bug
fixing) as the codebase size increases. It would be highly
desirable and efficient if the common features across var-
ious storage applications can be “reused”.

One may argue that different storage solutions are de-
veloped to meet certain needs, and thus are specialized.
In this paper, however, we posit that storage management
software, not the application developers, should imple-
ment all the messy plumbings of distributed storage ap-
plications. We argue that there is a strong need for such
a modularized framework that provides a thin layer to re-
alize the common functionalities seen in distributed stor-
age applications. On one hand, such a framework will
significantly reduce the complexities of developing a new
storage application. On the other hand, a modularized

3We count the LoC on a per-file basis, excluding source code of the
client side and the testing framework.



1 vo id Put ( S t r key , Obj v a l ) {
2 i f ( t h i s . master ) :
3 Lock ( key )
4 HashTbl . i n s e r t ( key , v a l )
5 Unlock ( key )
6 Sync ( master . s l a v e s )
7 }
8
9 Obj Get ( S t r key ) {

10 i f ( t h i s . master )
11 Obj v a l = Quorum( key )
12 Sync ( master . s l a v e s )
13 r e t u r n v a l
14 }
15
16 vo id Lock ( S t r key ) {
17 . . . // Acqu i r e l o c k
18 }
19
20 vo id Unlock ( S t r key ) {
21 . . . // Re l e a s e l o c k
22 }
23
24 vo id Sync ( R e p l i c a s p e e r s ) {
25 . . . // Update r e p l i c a s
26 }
27
28 vo id Quorum( S t r key ) {
29 . . . // S e l e c t a node
30 }

1 vo id Put ( S t r key , Obj v a l ) {
2 i f ( t h i s . master ) :
3 zk . Lock ( key ) // zookeepe r
4 HashTbl . i n s e r t ( key , v a l )
5 zk . Unlock ( key ) // zookeepe r
6 Sync ( master . s l a v e s )
7 }
8
9 Obj Get ( S t r key ) {

10 i f ( t h i s . master )
11 Obj v a l = Quorum( key )
12 Sync ( master . s l a v e s )
13 r e t u r n v a l
14 }
15
16 vo id Sync ( R e p l i c a s p e e r s ) {
17 . . . // Update r e p l i c a s
18 }
19
20 vo id Quorum( S t r key ) {
21 . . . // S e l e c t a node
22 }

1 #i n c l u d e <v s y n c l i b>
2
3 vo id Put ( S t r key , Obj v a l ) {
4 i f ( t h i s . master ) :
5 zk . Lock ( key ) // zookeepe r
6 HashTbl . i n s e r t ( key , v a l )
7 zk . Unlock ( key ) // zookeepe r
8 Vsync . Sync ( master . s l a v e s )
9 }

10
11 Obj Get ( S t r key ) {
12 i f ( t h i s . master )
13 Obj v a l = Vsync . Quorum( key )
14 Vsync . Sync ( master . s l a v e s )
15 r e t u r n v a l
16 }

1 vo id Put ( S t r key , Obj v a l ) {
2 HashTbl . i n s e r t ( key , v a l )
3 }
4
5 Obj Get ( S t r key ) {
6 r e t u r n HashTbl ( key )
7 }

(a) Vanilla (b) Zookeeper-based (c) Vsync-based (d) ClusterOn-based

Table 2: An example of different approaches to developing a distributed KV store. In case of (a) vanilla, LoC of Lock, Unlock,
Sync, and Quorum is not shown. Similarly, LoC to implement Lock and Unlock recipe for ZooKeeper is not shown. Vsync is
available in C# and requires use of proper APIs but for the sake of simplicity and consistency we assume a C++ language grammar.
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Figure 2: LoC breakdown of the 6 studied storage applica-
tions. Core IO component includes the core data structure
and protocol implementation. Management component in-
cludes implementations of replication/recovery/failover, con-
sistency models, distributed coordination and metadata ser-
vice. Etc includes functions providing configurations, authen-
tications, statistics monitoring, OS compatibility control, etc.
Management and Etc are the components that can be general-
ized and implemented in ClusterOn.

framework enables more effective and simpler service
differentiation management on the service provider side.

Table 2 shows 4 snippet implementations of the core
functions for a simple key-value (KV) store. To im-
plement everything from scratch ((a) Vanilla), the
application developer has to create his own concur-
rency control functionality (Lock(), Unlock()), and
consistency and quorum management logic (Sync(),
Quorum()). Using a mature distributed coordination sys-
tem such as Zookeeper [9] ((b) Zookeeper-based) re-
duces the LoC from 30 to 22, implying reduction of
the overall developer efforts. Similarly, the third op-
tion ((c) Vsync-based) calls a library such as Vsync [3]
that provides coordinating actions to support KV storage
(DHT storage), etc. By linking and interfacing with the
library, the engineering effort is further reduced. One
caveat of using a system such as Zookeeper or a library
such as Vsync is that, the developers needs to familiarize

themselves with these systems or libraries to use them
appropriately in their own application code.

We envision a framework where developers only need
to implement the needed core functionality, and com-
mon features/management etc. is automatically pro-
vided, akin to User Defined Functions in the popular
MapReduce framework. To this end, we propose Clus-
terOn, a framework that takes a non-distributed core ver-
sion (which we call datalet) of a storage application, adds
common features and management, and finally morphs
the code into a scalable distributed application. Ta-
ble 2(d) ((d) ClusterOn-based) gives a simplified ex-
ample of the ClusterOn usecase. ClusterOn is motivated
by the observations we made earlier that modern stor-
age applications share a great portion of functionality.
By providing a transparent and modularized distributed
framework that provides configurable services such as
replication, fault tolerance, and consistency, ClusterOn
hides the inherent complexities of developing distributed
storage applications.

This paper makes the following contributions. We
quantitatively analyze various distributed storage appli-
cation and show that they have repetitive source code that
implements common features found across these appli-
cations. As a novel solution, we present the design of
ClusterOn, which provides these features to reduce the
engineering effort required for development of new dis-
tributed applications.

2 Related Work
Products related to Mesos [1] and Kubernetes [2] ecosys-
tem such as Chronos4 and Marathon5 let applications

4https://github.com/mesos/chronos
5https://github.com/mesosphere/marathon
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(a) ClusterOn architecture.
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{
    “Replication”: “3;rack-aware”,
    “Topology”: “master-slave”,
    “Consistency”: “strong”,
    “Application”: “kvstore”,
}
Example bootstrap.json
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(b) ClusterOn deployment process.

Figure 3: ClusterOn architecture. MDS: metadata server. Figure 3(b) shows an example about how to use ClusterOn for service
deployment. Service provider deploys the non-distributed application developed by application developer in ClusterOn based on a
JSON formatted bootstrap configuration file.

scale horizontally by running more instances (Chronos
is a job scheduler that supports complex job topologies
whereas Marathon handles hardware or software failures
to ensures that an app is “always on”). ClusterOn differs
in that it provides rich replication and consistency sup-
port, which can handle more complex parallelism pat-
terns. Zookeeper [9] has been extensively used for dis-
tributed coordination. EventWave [5] elastically scales
inelastic programs in clouds. We expect ClusterOn to
have a more profound effect than the above systems.
Rather, ClusterOn focuses on simplifying the develop-
ment of storage systems by providing general support
of distributed management. Application developers sim-
ply offload components such as replication, consistency,
and coordination to ClusterOn. Furthermore, ClusterOn
is completely transparent in that it does not require de-
velopers to familiarize themselves with any APIs, hence,
further reducing the development complexities.

A large body of research has been focused on improv-
ing the performance of some kind of data-intensive appli-
cations by enhancing the design of underlying data stor-
age and coordination software that provide services such
as replication, consistency, and fault tolerance [4, 10, 12,
13]. However, unlike ClusterOn, such works do not pro-
vide a generic framework for supporting a vast variety of
storage applications.

Vsync [3] is a library for building scalable high-
assurance services and can be used for replication of
data in the cloud. Unlike ClusterOn, to use Vsync, ap-
plication developers have to learn and work with the
Vsync API to derive its full benefits (as shown in Ta-
ble 2). Coign [8] automatically partitions a program into
a distributed setup by performing static code analysis and
binary-level partitioning. In contrast, ClusterOn is non-
intrusive and more scalable, as it seamlessly scales out a
non-distributed application instead of partitioning it.

3 Design Goals
Minimize overhead The key to realizing ClusterOn is
to minimize the framework overhead. ClusterOn lever-
ages a middleware-/proxy-based architecture design to

perform traffic forwarding and distributed management.
While simplifying the application development and low-
ering down the maintenance cost, ClusterOn should not
incur too much overhead, which in turn offsets the bene-
fits it brings. This leads to the need of utilizing effective
optimization techniques such as DPDK6 and RDMA7,
which we leave as future work.
More effective service differentiation By modularizing
key components and synthesizing them as a holistic mid-
dleware, ClusterOn, from the storage service provider’s
perspective, should be able to provide more effective
service-level differentiation such as performance QoS
and tunable consistency level automating.
Reusable distributed storage platform Novel opti-
mizations and techniques [7, 12, 13] have been proposed
for existing storage applications. As these applications
do not share source code, it requires non-trivial engineer-
ing efforts to port these improvements from one applica-
tion to another. We envision ClusterOn will be flexible
and extensible enough to support such user-defined fea-
tures as pluggable modules, so that a vast variety of ap-
plications can benefit.

4 ClusterOn Design
Figure 3(a) shows the architecture of ClusterOn. It con-
sists of three major components—(1) application layer,
(2) middleware, and (3) a metadata server.

The application layer includes a homogeneous clus-
ter of datalets. A datalet is a single instance of the ap-
plication (an example datalet is shown in Table 2(d)).
These datalets are the building blocks of constructing
larger distributed applications, although they are com-
pletely unaware that they are running in a distributed set-
ting. Datalets are designed to run on a single node, and
they are only responsible for performing the core func-
tions of an application. For example, a KV store datalet,
in the simplest form, only needs to implement a Get and a
Put interface. When running a single datalet is no longer

6http://dpdk.org.
7http://www.mellanox.com/page/products_dyn?

product_family=79.
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sufficient to handle the load, we can instantiate more of
them. However, for them to work coherently with one
another, the middleware layer is needed to perform the
required coordination.

The middleware layer has 2 main responsibilities:
(1) manages cluster topology, and (2) depending on clus-
ter topology, coordinates network traffic amongst the
datalets. For scalability reasons, the middleware layer
needs to have a distributed set of entities (we call them
proxies) to perform these 2 functions well on behalf of
a distributed set of datalets. In the simplest design, one
could have a one-to-one mapping between a proxy and
a datalet that are symbiotically co-located with all traffic
going into and out of the datalet proxies. Proxies will
communicate with one another depending on the rela-
tionship between the datalets that they proxy within the
cluster topology. For example, in a master-slave topol-
ogy, the master’s proxy will forward all write requests
to the slave’s so the data can be replicated appropriately.
In most cases, a single proxy can handle N instances of
datalets (where N ≥ 1, and N is configurable depending
on the processing capacity of both the proxy and datalet).

Different applications use different protocols for their
communication. ClusterOn’s proxies parse the applica-
tion messages to make decisions such as routing. To sup-
port new applications, there are two basic options: (1) the
HTTP-based REST protocol; and (2) Google’s protocol
buffer. Due to the cost that these two solutions may in-
cur, performance-sensitive applications can select to use
a simple yet generic text/binary-based protocol, which is
also supported by ClusterOn.

The meta-data server is used by the middleware layer
as a persistent store for keeping critical meta-data about
the cluster, e.g., topology information, current load on
datalets, so the network traffic can be appropriately
routed, data can be recovered from a failure, or datalets
autoscaled when appropriate. Clients to the cluster can
also consult the meta-data server for directory services.
This allows clients to more efficiently direct their re-
quest to nodes within the cluster across a wide variety
of topologies. However, this is optional, as proxies can
always redirect requests within themselves to route to the
destination datalet or datalets.

4.1 Middleware Components
A major challenge in designing ClusterOn is to make
sure it can cover various types of distributed applica-
tions, e.g., KV stores, object stores, distributed file sys-
tems, databases, etc. Though these applications are dis-
tributed and share similar modules, they are very differ-
ent in nature. Hence, there is a need for a systematic
approach to classify these applications into different cat-
egories and make sure that ClusterOn supports all those
categories. ClusterOn realizes this by classifying and
supporting these applications on the basis of their under-

lying replication schemes, cluster topology, and consis-
tency model.
Replication module Different applications adopt differ-
ent replication schemes, e.g., SPORE [7] replicates data
at granularity of KV pairs and Redis at node level. File
systems such as GFS [6] and HDFS replicate block-
level data chunks within and across racks to provide bet-
ter fault tolerance. ClusterOn’s replication module sup-
ports a 2-dimensional configuration space: (1) replica-
tion granularity, e.g., key/shard/node-level, and (2) repli-
cation locality, e.g., server/rack/datacenter-local. Clus-
terOn provides a generic module that allows flexible se-
lection of different replication schemes, thus covering a
wide variety of storage application use cases.
Cluster topology manager Cluster topology man-
ager specifies the logical relationship among holders
(datalets) or different replicas. Generally, most dis-
tributed storage applications can be divided in three types
of cluster topologies, namely, (1) master-slave, (2) multi-
master (or active-active), (3) peer-to-peer (P2P), or some
combinations of these. ClusterOn’s cluster topology
manager supports the above three topologies. Master-
slave mode provides chain replication support [11] by
guaranteeing that only one datalet is acting as the master
and all others as slaves while keeping this fact oblivious
to these datalets. Similarly, in the case of active-active
topology, multiple datalets can be concurrently write to
and read from, and this can be coordinated by the corre-
sponding proxies using distributed locks. In case of P2P
topology, ClusterOn controls the management logic that
drives the inter-node communication among the peers.
As consistent hashing is commonly used in a P2P topol-
ogy, ClusterOn can easily calculate who are the immedi-
ate neighbors of a datalet for data propagation and recov-
ery purposes.
Consistency module The role of consistency module is
to support three consistency levels that are commonly
adopted by the modern distributed storage applications,
namely, (1) strong consistency, (2) eventual consistency,
and (3) no consistency. Consistency module is built on
top of Zookeeper and provides support to acquire lock at
granularity of KV pair, block, object, file, or node level.
In the case of strong consistency, each incoming request
to access data is executed after acquiring a lock on the
data. Eventual consistency is supported by first acquiring
lock only on the primary copy of the data and updating
the secondary copies later.

5 Preliminary Evaluation
We are in the process of prototyping ClusterOn using
C++, and are adding support for different kinds of stor-
age applications (object stores and distributed file sys-
tems). In this section, we present our preliminary evalu-
ation of a basic multi-threaded version of ClusterOn used
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Figure 5: Scaling up LevelDB (LDB) based datalet using Clus-
terOn. We interface ClusterOn with LevelDB by implementing
a simple wrapper around LevelDB and a text protocol support-
ing the basic GET and SET commands. We run 100% GET and
SET workloads with 1 million key-value tuples (value size of
1 KB and 10 KB). LevelDB datalets are scaled from 1 instance
to 4, which persist data on an SSD. ClusterOn is configured to
run 4 threads so it does not become the bottleneck. Direct

LDB means direct access to LevelDB instances via network.

to realize a distributed version of two different applica-
tions: an in-memory cache Redis—to quantify the over-
head; and an embedded NoSQL database LevelDB—to
test the basic functionality of scaling up a non-distributed
datalet storage application. We perform experiments on a
relatively small setup. We run ClusterOn co-located with
storage applications as datalets on a single 32 core ma-
chine with 64 GB of DRAM and a SATA SSD. We run
benchmark clients on a different machine with the same
hardware specifications connected via a 10 GbE network.
Each data point is the average of three runs.

Figure 4 quantifies the overhead of ClusterOn by com-
paring it with a baseline case where clients directly talk
with the Redis server, and twemproxy that is a state-
of-the-art Redis proxy. We observe that when batching
64 and 128 requests, ClusterOn outperforms twemproxy
by 1.66×. Note that this is a comparison of data for-
warding feature only, and does not include batch splitting
and hashing etc., which are comparable under both Clus-
terOn and twemproxy. More importantly, ClusterOn’s
throughput approaches that of the Direct Redis setup
with negligible overhead.

In our next test we leverage ClusterOn to scale up a

LevelDB-based datalet application. As shown in Fig-
ure 5, ClusterOn is able to linearly scale up the LevelDB
performance (the 10 KB GET workload hits the SATA
SSD’s effective random read bandwidth, hence the sub-
linear throughput growth).

The results are promising and show the potential of
ClusterOn in providing a lightweight middleware for
serving high performance storage applications.

6 Conclusion
We have shown that distributed storage applications
share a great portion of common functionalities which
can be generalized and abstracted. We propose Clus-
terOn, a modularized framework that provides a thin
layer to realize these functionalities so that the devel-
opment engineering effort can be significantly reduced.
Preliminary results show that ClusterOn incurs negligi-
ble overhead and demonstrate its ability to scale up an
embedded NoSQL database. Adding distributed man-
agement support is the focus of our ongoing research.
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