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ABSTRACT

Enterprises are increasingly moving their big data analytics
to the cloud with the goal of reducing costs without sacrific-
ing application performance. Cloud service providers offer
their tenants a myriad of storage options, which while flex-
ible, makes the choice of storage deployment non trivial.
Crafting deployment scenarios to leverage these choices in
a cost-effective manner — under the unique pricing mod-
els and multi-tenancy dynamics of the cloud environment
— presents unique challenges in designing cloud-based data
analytics frameworks.
In this paper, we proposeCast, a Cloud Analytics Storage

Tiering solution that cloud tenants can use to reduce mon-
etary cost and improve performance of analytics workloads.
The approach takes the first step towards providing stor-
age tiering support for data analytics in the cloud. Cast

performs offline workload profiling to construct job perfor-
mance prediction models on different cloud storage services,
and combines these models with workload specifications and
high-level tenant goals to generate a cost-effective data place-
ment and storage provisioning plan. Furthermore, we build
Cast++ to enhance Cast’s optimization model by incorpo-
rating data reuse patterns and across-jobs interdependencies
common in realistic analytics workloads. Tests with produc-
tion workload traces from Facebook and a 400-core Google
Cloud based Hadoop cluster demonstrate thatCast++ achieves
1.21× performance and reduces deployment costs by 51.4%
compared to local storage configuration.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Allo-
cation/deallocation strategies; D.4.8 [Operating Systems]:
Performance—Modeling and prediction
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Cloud computing; MapReduce; Big data analytics; Storage
tiering
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Storage Capacity Throughput IOPS Cost
type (GB/volume) (MB/sec) (4KB) ($/month)

ephSSD 375 733 100,000 0.218×375
persSSD 100 48 3,000 0.17×100

250 118 7,500 0.17×250
500 234 15,000 0.17×500

persHDD 100 20 150 0.04×100
250 45 375 0.04×250
500 97 750 0.04×500

objStore N/A 265 550 0.026/GB

Table 1: Google Cloud storage details. ephSSD, persSSD, per-
sHDD and objStore represent VM-local ephemeral SSD, network-
attached persistent SSD and HDD, and Google Cloud object stor-
age, respectively. The performance of persSSD and persHDD scale
with volume capacity, whereas ephSSD volumes are multiples of
375 GB with a maximum of 4 volumes per VM. Tenants can pro-
vision persSSD and persHDD with a per-volume capacity of up to
10, 240 GB. objStore has no storage capacity limit. I/O perfor-
mance of the local and network-attached block volumes is mea-
sured using fio and the performance of objStore is measured
using gsutil. All the measured performance numbers match the
information provided on [6] (as of Jan. 14, 2015).

1. INTRODUCTION
The cloud computing paradigm provides powerful compu-

tation capabilities, high scalability and resource elasticity at
reduced operational and administration costs. The use of
cloud resources frees tenants from the traditionally cumber-
some IT infrastructure planning and maintenance, and al-
lows them to focus on application development and optimal
resource deployment. These desirable features coupled with
the advances in virtualization infrastructure are driving the
adoption of public, private, and hybrid clouds for not only
web applications, such as Netflix, Instagram and Airbnb,
but also modern big data analytics using parallel program-
ming paradigms such as Hadoop [2] and Dryad [26]. Cloud
providers such as Amazon Web Services, Google Cloud, and
Microsoft Azure, have started providing data analytics plat-
form as a service [1, 8, 12], which is being adopted widely.

With the improvement in network connectivity and emer-
gence of new data sources such as Internet of Things (IoT)
endpoints, mobile platforms, and wearable devices, enterprise-
scale data-intensive analytics now involves terabyte- to petabyte-
scale data with more data being generated from these sources
constantly. Thus, storage allocation and management would
play a key role in overall performance improvement and cost
reduction for this domain.

While cloud makes data analytics easy to deploy and scale,
the vast variety of available storage services with differ-
ent persistence, performance and capacity characteristics,



presents unique challenges for deploying big data analytics
in the cloud. For example, Google Cloud Platform provides
four different storage options as listed in Table 1. While
ephSSD offers the highest sequential and random I/O per-
formance, it does not provide data persistence (data stored
in ephSSD is lost once the associated VMs are terminated).
Network-attached persistent block storage services using per-

sHDD or persSSD as storage media are relatively cheaper than
ephSSD, but offer significantly lower performance. For in-
stance, a 500 GB persSSD volume has about 2× lower through-
put and 6× lower IOPS than a 375 GB ephSSD volume. Fi-
nally, objStore is a RESTful object storage service provid-
ing the cheapest storage alternative and offering compara-
ble sequential throughput to that of a large persSSD volume.
Other cloud service providers such as AWS EC2 [5], Mi-
crosoft Azure [4], and HP Cloud [10], provide similar storage
services with different performance–cost trade-offs.
The heterogeneity in cloud storage services is further com-

plicated by the varying types of jobs within analytics work-
loads, e.g., iterative applications such as KMeans and Pager-

ank, and queries such as Join and Aggregate. For example, in
map-intensive Grep, the map phase accounts for the largest
part of the execution time (mostly doing I/Os), whereas
CPU-intensive KMeans spends most of the time performing
computation. Furthermore, short-term (within hours) and
long-term (daily, weekly or monthly) data reuse across jobs
is common in production analytics workloads [18, 15]. As
reported in [18], 78% of jobs in Cloudera Hadoop workloads
involve data reuse. Another distinguishing feature of analyt-
ics workloads is the presence of workflows that represents in-
terdependencies across jobs. For instance, analytics queries
are usually converted to a series of batch processing jobs,
where the output of one job serves as the input of the next
job(s).
The above observations lead to an important question for

the cloud tenants How do I (the tenant) get the most bang-
for-the-buck with data analytics storage tiering/data place-
ment in a cloud environment with highly heterogeneous stor-
age resources? To answer this question, this paper conducts
a detailed quantitative analysis with a range of representa-
tive analytics jobs in the widely used Google Cloud environ-
ment. The experimental findings and observations motivate
the design of Cast, which leverages different cloud storage
services and heterogeneity within jobs in an analytics work-
load to perform cost-effective storage capacity allocation and
data placement.
Cast does offline profiling of different applications (jobs)

within an analytics workload and generates job performance
prediction models based on different storage services. It
lets tenants specify high-level objectives such as maximiz-
ing tenant utility, or minimizing deadline miss rate. Cast

then uses a simulated annealing based solver that reconciles
these objectives with the performance prediction models,
other workload specifications and the different cloud stor-
age service characteristics to generate a data placement and
storage provisioning plan. The framework finally deploys
the workload in the cloud based on the generated plan. We
further enhance our basic tiering design to build Cast++,
which incorporates the data reuse and workflow properties
of an analytics workload.
Specifically, we make the following contributions in this

paper:

1. We employ a detailed experimental study and show,
using both qualitative and quantitative approaches,
that extant hot/cold data based storage tiering ap-
proaches cannot be simply applied to data analytics
storage tiering in the cloud.

2. We present a detailed cost-efficiency analysis of ana-
lytics workloads and workflows in a real public cloud
environment. Our findings indicate the need to care-
fully evaluate the various storage placement and design
choices, which we do, and redesign analytics storage
tiering mechanisms that are specialized for the public
cloud.

3. Based on the behavior analysis of analytics applica-
tions in the cloud, we design Cast, an analytics stor-
age tiering management framework based on simulated
annealing algorithm, which searches the analytics work-
load tiering solution space and effectively meets cus-
tomers’ goals. Moreover, Cast’s solver succeeds in
discovering non-trivial opportunities for both perfor-
mance improvement and cost savings.

4. We extend our basic optimization solver to Cast++

that considers data reuse patterns and job dependen-
cies. Cast++ supports cross-tier workflow optimiza-
tion using directed acyclic graph (DAG) traversal.

5. We evaluate our tiering solver on a 400-core cloud clus-
ter (Google Cloud) using production workload traces
from Facebook. We demonstrate that, compared to
a greedy algorithm approach and a series of key stor-
age configurations, Cast++ improves tenant utility by
52.9% – 211.8%, while effectively meeting the workflow
deadlines.

2. BACKGROUND AND RELATED WORK
In the following, we provide a brief background of storage

tiering, and categorize and compare previous work with our
research.

Hot/Cold Data Classification-based Tiering Recent re-
search [28, 34, 43] has focused on improving storage cost
and utilization efficiency by placing hot/cold data in differ-
ent storage tiers. Guerra et. al.[22] builds an SSD-based
dynamic tiering system to minimize cost and power con-
sumption, and existing works handle file system and block
level I/Os (e.g., 4 – 32 KB) for POSIX-style workloads (e.g.,
server, database, file systems, etc.). However, the cost model
and tiering mechanism used in prior approaches cannot be
directly applied to analytics batch processing applications
running in a public cloud environment, mainly due to cloud
storage and analytics workload heterogeneity. In contrast,
our work provides insights into design of a tiered storage
management framework for cloud-based data analytics work-
loads.

Fine-Grained Tiering for Analytics Storage tiering has
been studied in the context of data-intensive analytics batch
applications. Recent analysis [23] demonstrates that adding
a flash tier for serving reads is beneficial for HDFS-based
HBase workloads with random I/Os. As opposed to HBase
I/O characteristics, typical MapReduce-like batch jobs is-
sues large, sequential I/Os [40] and run in multiple stages
(map, shuffle, reduce). Hence, lessons learned from HBase



tiering are not directly applicable to such analytics work-
loads. hatS [31] and open source Hadoop community [9]
have taken the first steps towards integrating heterogeneous
storage devices in HDFS for local clusters. However, the
absence of task-level tier-aware scheduling mechanisms im-
plies that these HDFS block granularity tiering approaches
cannot avoid stragglers within a job, thus achieving limited
performance gains if any. PACMan [15] solves this slow-
tier straggler problem by using a memory caching policy for
small jobs whose footprint can fit in the memory of the clus-
ter. Such caching approaches are complementary to Cast as
it provides a coarse-grained, static data placement solution
for a complete analytics workload in different cloud storage
services.

Cloud Resource Provisioning Considerable prior work
has examined ways to automate resource configuration and
provisioning process in the cloud. Frugal Cloud File Sys-
tem (FCFS) [39] is a cost-effective cloud-based file storage
that spans multiple cloud storage services. In contrast to
POSIX file system workloads, modern analytics jobs (fo-
cus of our study) running on parallel programming frame-
works like Hadoop demonstrate very different access char-
acteristics and data dependencies (described in Section 3);
requiring a rethink of how storage tiering is done to bene-
fit these workloads. Other works such as Bazaar [27] and
Conductor [44], focus on automating cloud resource deploy-
ment to meet cloud tenants’ requirements while reducing
deployment cost. Our work takes a thematically similar
view — exploring the trade-offs of cloud services — but
with a different scope that targets data analytics workloads
and leverages their unique characteristics to provide storage
tiering. Several systems [14, 37] are specifically designed to
tackle flash storage allocation inefficiency in virtualization
platforms. In contrast, we explore the inherent performance
and cost trade-off of different storage services in public cloud
environments.

Analytics Workflow Optimization A large body of re-
search [45, 35, 21, 36, 33] focuses on Hadoop workflow opti-
mizations by integrating workflow-aware scheduler into Hadoop
or interfacing Hadoop with a standalone workflow scheduler.
Our workflow enhancement is orthogonal and complements
these works as well — Cast++ exploits cloud storage hetero-
geneity and performance scaling property, and uses opportu-
nities for efficient data placement across different cloud stor-
age services to improve workflow execution. Workflow-aware
job schedulers can leverage the data placement strategy of
Cast++ to further improve analytics workload performance.

3. A CASE FOR CLOUD STORAGE TIER-

ING
In this section, we first establish the need for cloud stor-

age tiering for data analytics workloads. To this end, we
characterize the properties of applications that form a typi-
cal analytics workload and demonstrate the impact of these
properties on the choice of cloud storage services. We then
argue that extant tiering techniques, such as hot/cold data
based segregation and fine-grained partitioning within a sin-
gle job, are not adequate; rather a course-grained, job-level
storage service tiering is needed for cloud-based data analyt-
ics.

App. I/O-intensive CPU-intensive

Map Shuffle Reduce

Sort ✗ ✓ ✗ ✗

Join ✗ ✓ ✓ ✗

Grep ✓ ✗ ✗ ✗

KMeans ✗ ✗ ✗ ✓

Table 2: Characteristics of studied applications.

3.1 Characterization of Data Analytics Work-
loads

We characterize the analytics workloads along two dimen-
sions. First, we study the behavior of individual applications
within a large workload when executed on parallel program-
ming paradigms such as MapReduce — demonstrating the
benefits of different storage services for various applications.
Second, we consider the role of cross-job relationships (an
analytics workload comprises multiple jobs each executing
an application) and show how these interactions affect the
choice of efficient data placement decisions for the same ap-
plications.

3.1.1 Experimental Study Setup

We select four representative analytics applications that
are typical components of real-world analytics workloads [18,
46] and exhibit diversified I/O and computation character-
istics, as listed in Table 2. Sort, Join and Grep are I/O-
intensive applications. The execution time of Sort is dom-
inated by the shuffle phase I/O, transferring data between
mappers and reducers. In contrast, Grep spends most of
its runtime in the map phase I/O, reading the input and
finding records that match given patterns. Join represents
an analytics query that combines rows from multiple tables
and performs the join operation during the reduce phase,
and thus is reduce intensive. KMeans is an iterative machine
learning clustering application that spends most of its time
in the compute phases of map and reduce iterations, which
makes it CPU-intensive.

The experiments are performed in Google Cloud using a
n1-standard-16 VM (16 vCPUs, 60 GB memory) with the
master node on a n1-standard-4 VM (4 vCPUs, 15 GB mem-
ory). Intermediate data is stored on the same storage ser-
vice as the original data, except for objStore, where we use
persSSD for intermediate storage. Unless otherwise stated,
all experiments in this section are conducted using the same
compute resources but with different storage configurations
as stated.

3.1.2 Analysis: Application Granularity

Figure 1 depicts both the execution time of the studied ap-
plications and tenant utility for different choices of storage
services. We define tenant utility (or simply “utility,” used

interchangeably) to be
1/execution time

cost in dollars
. This utility metric

is based on the tenants’ economic constraints when deploy-
ing general workloads in the cloud. Figure 1 (a) shows that
ephSSD serves as the best tier for both execution time and
utility for Sort even after accounting for the data transfer
cost for both upload and download from objStore. This is
because there is no data reduction in the map phase and
the entire input size is written to intermediate files residing
on ephSSD that has about 2× higher sequential bandwidth
than persSSD. Thus, we get better utility from ephSSD than
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Figure 1: Application performance and achieved tenant utility on different cloud storage tiers. ephSSD does not offer persistence, so
we account for data transfer time (i.e., input download time from objStore and output upload time to objStore) and break down the
ephSSD runtime into three parts. Applications that run on ephSSD incur storage cost that includes both the cost of ephSSD and objStore.
Applications that run on objStore require either a local ephemeral disk or network-attached persistent disk for storing intermediate
data. For this set of experiments, we used a 100 GB persSSD as intermediate data store. Each bar represents the average from three
runs. Tenant utility is normalized to that of ephSSD.
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Figure 2: Impact of scaling persSSD volume capacity for Sort
and Grep. The regression model is used in Cast’s tiering approach
and is described in detail in §4. These tests are conducted on a
10-VM n1-standard-16 cluster.

persSSD, albeit at a slightly higher cost. On the other hand,
Figure 1 (b) shows that, Join works best with persSSD, while
it achieves the worst utility on objStore. This is due to high
overheads of setting up connections to request data transfers
using the Google Cloud Storage Connector (GCS connector)
for Hadoop APIs [7] for the many small files generated by
the involved reduce tasks. Grep’s map-intensive feature dic-
tates that its performance solely depends on sequential I/O
throughput of the storage during the map phase. Thus,
in Figure 1 (c) we observe that both persSSD and objStore

provide similar performance (both have similar sequential
bandwidth as seen in Table 1) but the lower cost of objStore
results in about 34.3% higher utility than persSSD. Similarly,
for the CPU-bound KMeans, while persSSD and persHDD pro-
vide similar performance, the lower cost of persHDD yields
much better utility as shown in Figure 1 (d).

Performance Scaling In Google Cloud, performance of
network-attached block storage depends on the size of the
volume, as shown in Table 1. Other clouds such as Ama-
zon AWS offer different behavior but typically the block
storage performance in these clouds can be scaled by cre-
ating logical volumes by striping (RAID-0) across multiple
network-attached block volumes. In Figure 2, we study the
impact of this capacity scaling on the execution time of two
I/O-intensive applications, Sort and Grep (we also observe
similar patterns for other I/O-intensive applications). For a
network-attached persSSD volume, the dataset size of Sort is
100 GB and that of Grep is 300 GB. We observe that as the
volume capacity increases from 100 GB to 200 GB, the run

time of both Sort and Grep is reduced by 51.6% and 60.2%,
respectively. Any further increase in capacity offers marginal
benefits. This happens because in both these applications
the I/O bandwidth bottleneck is alleviated when the capac-
ity is increased to 200 GB. Beyond that, the execution time
is dependent on other parts of the MapReduce framework.
These observations imply that it is possible to achieve de-
sired application performance in the cloud without resorting
to unnecessarily over-provisioning of the storage and thus
within acceptable cost.

Key Insights From our experiments, we infer the follow-
ing. (i) There is no one storage service that provides the
best raw performance as well as utility for different data
analytics applications. (ii) For some applications, slower
storage services, such as persHDD, may provide better util-
ity and comparable performance to other costlier alterna-
tives. (iii) Elasticity and scalability of cloud storage services
should be leveraged through careful over-provisioning of ca-
pacity to reduce performance bottlenecks in I/O intensive
analytics applications.

3.1.3 Analysis: Workload Granularity

We next study the impact of cross-job interactions within
an analytics workload. While individual job-level optimiza-
tion and tiering has been the major focus of a number of
recent works [31, 32, 44, 25, 24, 17], we argue that this is
not sufficient for data placement in the cloud for analytics
workloads. To this end, we analyze two typical workload
characteristics that have been reported in production work-
loads [18, 15, 38, 23, 19], namely data reuse across jobs, and
dependency between jobs, i.e., workflows, within a workload.

Data Reuse across Jobs As reported in the analysis of
production workloads from Facebook and Microsoft Bing [18,
15], both small and large jobs exhibit data re-access patterns
both in the short term, i.e., input data shared by multiple
jobs and reused for a few hours before becoming cold, as well
as in the long term, i.e., input data reused for longer periods
such as days or weeks before turning cold. Henceforth, we
refer to the former as reuse-lifetime (short) and the later as
reuse-lifetime (long).

To better understand how data reuse affects data place-
ment choices, we evaluate the tenant utility of each appli-
cation under different reuse patterns. Figure 3 shows that
the choice of storage service changes based on data reuse
patterns for different applications. Note that in both reuse
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Figure 3: Tenant utility under different data reuse patterns. reuse-lifetime (1 hr) represents re-accesses of the same data over a
period of 1 hour and reuse-lifetime (1 week) represents data re-accesses over 1 week. Tenant utility is normalized to that of ephSSD.

cases we perform the same number of re-accesses (i.e., 7) over
the specified time period. For instance, in reuse-lifetime

(1 week), data is accessed once per day, i.e., 7 accesses in
a week. Similarly, data is accessed once every 8 minutes
in reuse-lifetime (1 hr)

1. For ephSSD, the input down-
load overheads can be amortized by keeping the data in the
ephemeral SSD, since the same data will be re-accessed in
a very short period of time. This allows ephSSD to provide
the highest utility for Join (Figure 3 (b)) and Grep (Fig-
ure 3 (c)) for reuse-lifetime (1 hr). However, if the data
is re-accessed only once per day (reuse-lifetime (1 week)),
the cost of ephSSD far outweighs the benefits of avoiding
input downloads. Thus, for Sort (Figure 3 (a)), objStore

becomes the storage service of choice for reuse-lifetime (1

week). For similar cost reasons, persSSD, which demonstrates
the highest utility for individual applications (Figure 1 (b)),
becomes the worst choice when long term re-accesses are
considered. Furthermore, as expected, the behavior of CPU-
intensive KMeans (Figure 3 (d)) remains the same across reuse
patterns with highest utility achieved with persHDD, and the
storage costs do not play a major role in its performance.

Workflows in an Analytics Workload An analytics work-
flow consists of a series of jobs with inter-dependencies. For
our analysis, we consider the workflows where the output
of one job acts as a part of an input of another job. Thus,
a workflow can be abstracted as Directed Acyclic Graph
(DAGs) of actions [3]. Prior research [33, 35] has shown
that not only overall completion times of individual jobs in
a workflow an important consideration, but meeting comple-
tion time deadlines of workflows is also critical for satisfying
Service-Level Objectives (SLOs) of cloud tenants.
Consider the following example to illustrate and support

the above use case. Figure 4(a)2 lists four possible tiering
plans for a four-job workflow. The workflow consists of four
jobs and represents a typical search engine log analysis. Fig-
ure 4(a) (i) and Figure 4(a) (ii) depict cases where a single
storage service, objStore and persSSD, respectively, is used
for the entire workflow. As shown in Figure 4(b), the com-
plex nature of the workflow not only makes these two data
placement strategies perform poorly (missing a hypothetical
deadline of 8, 000 seconds) but also results in high costs com-

1While re-access frequency can vary for different reuse-
lifetimes, we selected these two cases to highlight the changes
in data placement options for the same applications due to
different data reuse patterns.
2We do not show utility results of Pagerank because it ex-
hibits the same behavior as KMeans in §3.1.2.

pared to the other two hybrid storage plans. On the other
hand, both the hybrid storage services meet the deadline.
Here, the output of one job is pipelined to another storage
service where it acts as an input for the subsequent job in
the workflow. If the tenant’s goal is to pick a strategy that
provides the lowest execution time, then the combination ob-

jStore+ephSSD shown in Figure 4(b) provides the best result
amongst the studied plans. However, if the tenant wants to
choose a layout that satisfies the dual criteria of meeting the
deadline and providing the lowest cost (among the consid-
ered plans), then the combination objStore+ephSSD+persSSD

— that reduces the cost by 7% compared to the other tiering
plan — may be a better fit.

Key Insights From this set of experiments, we infer the
following. (i) Not only do data analytics workloads require
use of different storage services for different applications,
the data placement choices also change when data reuse ef-
fects are considered. (ii) Complex inter-job requirements in
workflows necessitate thinking about use of multiple storage
services, where outputs of jobs from a particular storage ser-
vice may be pipelined to different storage tiers that act as
inputs for the next jobs. (iii) Use of multiple criteria by the
tenant, such as workflow deadlines and monetary costs, adds
more dimensions to a data placement planner and requires
careful thinking about tiering strategy.

3.2 Shortcomings of Traditional Storage Tier-
ing Strategies

In this following, we argue that traditional approaches to
storage tiering are not adequate for being used for analytics
workloads in the cloud.

Heat-based Tiering A straw man tiering approach that
considers the monetary cost of different cloud storage medi-
ums is to place hot data on ephSSD; semi-hot data on either
persSSD or persHDD; and cold data on the cheapest objStore.
Heat metrics can include different combinations of access
frequencies, recency, etc. But the performance–cost model
for cloud storage for analytics workloads is more complicated
due to the following reasons. (1) The most expensive cloud
storage tier (ephSSD) may not be the best tier for hot data,
since the ephemeral SSD tier typically provides no persis-
tence guarantee — the VMs have to persist for ensuring that
all the data on ephemeral disks stays available, potentially
increasing monetary costs. ephSSD volumes are fixed in size
(Table 1) and only 4 volumes can be attached to a VM. Such
constraints can lead to both under-provisioning (requiring
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Figure 4: Possible tiering plans for a simple 4-job workflow. Storage medium in parentheses indicates where the input of the job is
stored. For instance, Pagerank 20G (objStore) -> Join 120G (persSSD) means that the input and intermediate data of job Pagerank
is stored on objStore, and the output is placed on persSSD and then consumed by the job Join as input. The output of Pagerank is
386 MB and consists of pageIDs, and hence is not shown being added to the input of Join.

more VMs to be started) and over-provisioning (wasting ca-
pacity for small datasets), in turn reducing utility. (2) Fur-
thermore, analytics applications may derive better utility
from cheaper tiers than their more expensive counterparts.

Fine-Grained Tiering Recently, hatS [31] looked at a tiered
HDFS implementation that utilizes both HDDs and SSDs to
improve single job performance. Such approaches focus on
fine-grained tiering within a single job. While this can be
useful for on-premise clusters where storage resources are
relatively fixed and capacity of faster storage is limited [23],
it provides few benefits for cloud-based analytics workloads
where resources can be elastically provisioned. Furthermore,
maintaining heat metrics at a fine-grained block or file level
may be spatially prohibitive (DRAM requirements) for a big
data analytics workload with growing datasets.
We contend that instead of looking at block or file-level

partitioning, a more coarse-grained approach that performs
job-level tiering, is needed for cloud-based analytics. To il-
lustrate this, in Figure 5 we measure the performance of
Grep under various placement configurations (using default
Hadoop task scheduler and data placement policy) for a
6 GB input dataset requiring 24 map tasks scheduled as
a single wave. As shown in Figure 5(a), partitioning data
across a faster ephSSD and slower persSSD tier does not im-
prove performance. The tasks on slower storage media domi-
nate the execution time. We further vary the partitioning by
increasing the fraction of input data on faster ephSSD (Fig-
ure 5(b)). We observe that even if 90% of the data is on
the faster tier, the performance of the application does not
improve, highlighting the need for job-level data partition-
ing. Such an “all-or-nothing” [15] data placement policy,
i.e., placing the whole input of one job in one tier, is likely
to yield good performance. This policy is not only simple
to realize, but also maps well to both the characteristics of
analytics workloads and elasticity of cloud storage services.

4. CAST FRAMEWORK
We build Cast, an analytics storage tiering framework

that exploits heterogeneity of both the cloud storage and
analytics workloads to satisfy the various needs of cloud
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Figure 5: Normalized runtime of Grep under different HDFS
configurations. All runtime numbers are normalized to ephSSD
100% performance.

tenants. Furthermore, Cast++, an enhancement to Cast,
provides data pattern reuse and workflow awareness based
on the underlying analytics framework. Figure 6 shows the
high-level overview of Cast operations and involves the fol-
lowing components. (1) The analytics job performance es-
timator module evaluates jobs execution time on different
storage services using workload specifications provided by
tenants. These specifications include a list of jobs, the ap-
plication profiles, and the input data sizes for the jobs. The
estimator combines this with compute platform information
to estimate application run times on different storage ser-
vices. (2) The tiering solver module uses the job execution
estimates from the job performance estimator to generate a
tiering plan that spans all storage tiers on the specific cloud
provider available to the tenant. The objective of the solver
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Figure 6: Overview of Cast tiering framework.

is to satisfy the high-level tenants’ goals such as achieving
high utility or reducing deadline miss rates.

4.1 Estimating Analytics Job Performance
The well-defined execution phases of the MapReduce par-

allel programming paradigm [20, 27] implies that the run-
time characteristics of analytics jobs can be predicted with
high accuracy. Moreover, extensive recent research has fo-
cused on data analytics performance prediction [42, 25, 24,
13, 41, 27]. We leverage and adapt MRCute [27] model in
Cast to predict job execution time, due to its ease-of-use,
availability, and applicability to our problem domain.
Equation 1 defines our performance prediction model. It

consists of three sub-models — one each for the map, shuf-
fle, and reduce phases — where each phase execution time
is modeled as #waves× runtime per wave. A wave repre-
sents the number of tasks that can be scheduled in parallel
based on the number of available slots. Cast places all the
data of a job on a single storage service with predictable
performance, and tasks (within a job) work on equi-sized
data chunks. The estimator also models wave pipelining ef-
fects — in a typical MapReduce execution flow, the three
phases in the same wave are essentially serialized, but dif-
ferent waves can be overlapped. Thus, the prediction model
does not sacrifice estimation accuracy. The model simplifies
the predictor implementation, which is another advantage
of performing coarse-grained, job-level data partitioning.

EST
(
R̂,M̂(si, L̂i)
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=

map phase
︷ ︸︸ ︷
⌈
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)
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⌈
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·
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reduce phase

.

The estimator EST (.) predicts job performance using the
information about (i) job configuration: number of map/reduce
tasks, job sizes in different phases; (ii) compute configura-

Notation Description

nvm number of VMs in the cluster

R̂ mc number of map slots in one node
rc number of reduce slots in one node

bwf
map bandwidth of a single map task on tier f

M̂ bwf
shuffle bandwidth of a single shuffle task on tier f

bwf
reduce bandwidth of a single reduce task on tier f

inputi input data size of job i
interi intermediate data size of job i

L̂i outputi output data size of job i
m number of map tasks of job i
r number of reduce tasks of job i

capacity total capacities of different storage mediums
pricevm VM price ($/min)
pricestore storage price ($/GB/hr)

solver J set of all analytics jobs in a workload
Jw set of all analytics jobs in a workflow w
F set of all storage services in the cloud
D set of all jobs that share the same data

P̂ tiering solution

decision vars si storage service used by job i
ci storage capacity provisioned for job i

Table 3: Notations used in the analytics jobs performance pre-
diction model and Cast tiering solver.

tion: number of VMs, available slots per VM; and (iii) stor-
age services: bandwidth of tasks on a particular storage ser-
vice. Table 3 lists the notations used in the model.

4.2 Basic Tiering Solver
The goal of the basic Cast tiering solver is to provide

near-optimal specification that can help guide tenant’s de-
cisions about data partitioning on the available storage ser-
vices for their analytics workload(s). The solver uses a
simulated annealing algorithm [29] to systematically search
through the solution space and find a desirable tiering plan,
given the workload specification, analytics models, and ten-
ants’ goals.

4.2.1 CAST Solver: Modeling

The data placement and storage provisioning problem is
modeled as a non-linear optimization problem that maxi-
mizes the tenant utility (U) defined in Equation 2:

max U =
1/T

($vm + $store)
, (2)

s.t. ci ≥ (inputi + interi + outputi) (∀i ∈ J) , (3)

T =

J∑

i=1

REG
(
si, capacity[si], R̂, L̂i

)
, where si ∈ F , (4)

$vm = nvm · (pricevm · T ) , (5)

$store =

F∑

f=1

(

capacity[f ] ·
(
pricestore[f ] ·

⌈
T
/60

⌉))

(6)

where ∀f ∈ F :
{

∀i ∈ J, s.t. si ≡ f : capacity[f ] =
∑

ci

}

.

The performance is modeled as the reciprocal of the es-
timated completion time in minutes (1/T ) and the costs in-
clude both the VM and storage costs. The VM cost3 is
defined by Equation 5 and depends on the total completion
time of the workload. The cost of each storage service is de-
termined by the workload completion time (storage cost is

3We only consider a single VM type since we focus on storage
tiering. Extending the model to incorporate heterogeneous
VM types is part of our future work.



charged on a hourly basis) and capacity provisioned for that
service. The overall storage cost is obtained by aggregating
the individual costs of each service (Equation 6).
Equation 3 defines the capacity constraint, which ensures

that the storage capacity (ci) provisioned for a job is suffi-
cient to meet its requirements for all the phases (map, shuf-
fle, reduce). We also consider intermediate data when deter-
mining aggregated capacity. For jobs, e.g., Sort, which have
a selectivity factor of one, the intermediate data is of the
same size as the input data. Others, such as inverted index-
ing, would require a large capacity for storing intermediate
data as significant larger shuffle data is generated during
the map phase [16]. The generic Equation 3 accounts for all
such scenarios and guarantees that the workload will not fail.
Given a specific tiering solution, the estimated total comple-
tion time of the workload is defined by Equation 4. Since job
performance in the cloud scales with capacity of some ser-
vices, we use a regression model, REG(si, .), to estimate the
execution time. In every iteration of the solver, the regres-
sion function uses the storage service (si) assigned to a job in
that iteration, the total provisioned capacity of that service
for the entire workload, cluster information such as number
of VMs and the estimated runtime based on Equation 1 as
parameters. After carefully considering multiple regression
models, we find that a third degree polynomial-based cu-
bic Hermite spline [30] is a good fit for the applications and
storage services considered in the paper. While we do not
delve into details about the model, we show the accuracy
of the splines in Figure 2. We also evaluate the accuracy of
this regression model using a small workload in §5.1.

4.2.2 CAST Solver: Algorithms

Algorithm 1: Greedy static tiering algorithm.

Input: Job information matrix: L̂,

Output: Tiering plan P̂greedy
begin

P̂greedy ← {}
foreach job j in L̂ do

fbest ← f1 // f1 represents the first of the
// available storage services in F

foreach storage service fcurr in F do

if Utility(j, fcurr) > Utility(j, fbest) then
fbest ← fcurr

P̂greedy ← P̂greedy ∪ {〈j, fbest〉}
return P̂greedy

Greedy Algorithm We first attempt to perform data par-
titioning and placement using a simple greedy algorithm
(Algorithm 1). The algorithm takes the job information
matrix J as the input and generates a tiering plan as fol-
lows. For each job in the workload, the utility (calculated
using function Utility(.)) is computed using Equation 1 and
Equation 2 on each storage service. The tier that offers
the highest utility is assigned to the job. As astute readers
will observe, while this algorithm is straightforward to rea-
son about and implement, it does not consider the impact
of placement on other jobs in the workload. Furthermore,
as we greedily make placement decisions on a per-job ba-
sis, the total provisioned capacity on a tier increases. Recall
that the performance of some storage services scales with ca-
pacity. Thus, the tiering decisions for some jobs (for which
placement has already been done) may no longer provide
maximum utility. We evaluate the impact of these localized
greedy decisions in §5.1.

Algorithm 2: Simulated Annealing Algorithm.

Input: Job information matrix: L̂ ,

Analytics job model matrix: M̂ ,

Runtime configuration: R̂ ,

Initial solution: P̂init .
Output: Tiering plan P̂best
begin

P̂best ← {}
P̂curr ← P̂init

exit← False
iter ← 1
tempcurr ← tempinit

Ucurr ← Utility(M̂, L̂, P̂init)
while not exit do

tempcurr ← Cooling(tempcurr)
for next P̂neighbor in AllNeighbors(L̂, P̂curr) do

if iter > itermax then
exit← True
break

Uneighbor ← Utility(M̂, L̂, P̂neighbor)
P̂best ← UpdateBest(P̂neighbor, P̂best)
iter++
if Accept(tempcurr, Ucurr, Uneighbor) then

P̂curr ← P̂neighbor

Ucurr ← Uneighbor

break

return P̂best

Simulated Annealing-based Algorithm In order to over-
come the limitations of the Greedy approach, we devise a
simulated annealing [29] based algorithm. The algorithm

(Algorithm 2) takes as input workload information (L̂), com-

pute cluster configuration (R̂), and information about per-
formance of analytics applications on different storage ser-
vices (M̂) as defined in Table 3. Furthermore, the algorithm

uses P̂init as the initial tiering solution that is used to spec-
ify preferred regions in the search space. For example, the
results from the greedy algorithm or the characteristics of
analytics applications described in Table 2 can be used to
devise an initial placement.

The main goal of our algorithm is to find a near-optimal
tiering plan for a given workload. In each iteration, we
pick a randomly selected neighbor of the current solution
(AllNeighbors(.)). If the selected neighbor yields better
utility, it becomes the current best solution. Otherwise, in
the function Accept(.), we decide whether to move the search

space towards the neighbor (P̂neighbor) or keep it around

the current solution (P̂curr). This is achieved by consider-
ing the difference between the utility of the current (Ucurr)
and neighbor solutions (Uneighbor) and comparing it with a
distance parameter, represented by tempcurr. In each iter-
ation, the distance parameter is adjusted (decreased) by a
Cooling(.) function. This helps in making the search nar-
rower as iterations increase; reducing the probability of miss-
ing the maximum utility in the neighborhood of the search
space.

4.3 Enhancements: CAST++
While the basic tiering solver improves tenant utility for

general workloads, it is not able to leverage certain proper-
ties of analytics workloads. To this end, we design Cast++,
which enhances Cast by incorporating data reuse patterns
and workflow awareness.

Enhancement 1: Data Reuse Pattern Awareness To
incorporate data reuse patterns across jobs, Cast++ ensures
that all jobs that share the same input dataset have the



same storage service allocated to them. This is captured by
Constraint 7 where D represents the set consisting of jobs
sharing the input (partially or fully).

si ≡ sl (∀i ∈ D, ß 6= l, ∈ D) (7)

where D = {all jobs which share input}

Thus, even though individual jobs may have different stor-
age tier preferences, Cast++ takes a global view with the
goal to maximize overall tenant utility.

Enhancement 2: Workflow Awareness Prior research
has shown that analytics workflows are usually associated
with a tenant-defined deadline [33, 21]. For workloads with
a mix of independent and inter-dependent jobs, the basic
dependency-oblivious Cast may either increase the dead-
line miss rate or unnecessarily increase the costs, as we show
in §3.1.3. Hence, it is crucial for Cast++ to handle work-
flows differently. To this end, we enhance the basic solver to
consider the objective of minimizing the total monetary cost
(Equation 8) and introduce a constraint to enforce that the
total estimated execution time meets the predefined dead-
line (Equation 9). This is done for optimizing each work-
flow separately. Each workflow is represented as a Directed
Acyclic Graph (DAG) where each vertex is a job and a di-
rected edge represents a flow from one job to another (refer
to Figure 4(a)).

min $total = $vm + $store , (8)

s.t.

Jw∑

i=1

REG
(

si, si+1, capacity[si], R̂, L̂
)

≤ deadline , (9)

ci ≥

Jw∑

i=1

(
(si−1 6= si) · inputi + interi (10)

+ (si+1 ≡ si) · outputi
)
, where s0 = φ .

Furthermore, Equation 10 restricts the capacity constraint
in Equation 3 by incorporating inter-job dependencies. The
updated approach only allocates capacity if the storage tier
for the output of a job at the previous level is not the same
as input storage tier of a job at the next level in the DAG. To
realize this approach, we enhance Algorithm 2 by replacing
the next neighbor search (AllNeighbors(.)) with a depth-
first traversal in the workflow DAG. This allows us to reduce
the deadline miss rate.

5. EVALUATION
In this section, we present the evaluation of Cast and

Cast++ using a 400-core Hadoop cluster on Google Cloud.
Each slave node in our testbed runs on a 16 vCPU n1-

standard-16 VM as specified in §3. We first evaluate the
effectiveness of our approach in achieving the best tenant
utility for a 100-job analytics workload with no job depen-
dencies. Then, we examine the efficacy of Cast++ in meet-
ing user-specified deadlines.

5.1 Tenant Utility Improvement

5.1.1 Methodology

We compare Cast against six storage configurations: four
without tiering and two that employ greedy algorithm based
static tiering. We generate a representative 100-job work-

Bin # Maps % Jobs % Data sizes # Maps in # Jobs in
at Facebook at Facebook at Facebook workload workload

1 1 35
2 1—10 73% 0.1% 5 22
3 10 16
4 11—50 13% 0.9% 50 13
5 51—500 7% 4.5% 500 7
6 501—3000 4% 16.5% 1,500 4
7 > 3000 3% 78.1% 3,000 3

Table 4: Distribution of job sizes in Facebook traces and our
synthesized workload.

load by sampling the input sizes from the distribution ob-
served in production traces from a 3, 000-machine Hadoop
deployment at Facebook [18]. We quantize the job sizes into
7 bins as listed in Table 4, to enable us to compare the
dataset size distribution across different bins. The largest
job in the Facebook traces has 158, 499 map tasks. Thus,
we choose 3, 000 for the highest bin in our workload to en-
sure that our workload demands a reasonable load but is
also manageable for our 400-core cluster. More than 99% of
the total data in the cluster is touched by the large jobs that
belong to bin 5, 6 and 7, which incur most of the storage
cost. The aggregated data size for small jobs (with number
of map tasks in the range 1–10) is only 0.1% of the total
data size. The runtime for small jobs is not sensitive to the
choice of storage tier. Therefore, we focus on the large jobs,
which have enough number of mappers and reducers to fully
utilize the cluster compute capacity during execution. Since
there is a moderate amount of data reuse throughout the
Facebook traces, we also incorporate this into our workload
by having 15% of the jobs share the same input data. We
assign the four job types listed in Table 2 to this workload
in a round-robin fashion to incorporate the different compu-
tation and I/O characteristics.

5.1.2 Effectiveness for General Workload

Figure 7 shows the results for tenant utility, performance,
cost and storage capacity distribution across four different
storage services. We observe in Figure 7(a) that Cast im-
proves the tenant utility by 33.7% – 178% compared to
the configurations with no explicit tiering, i.e., ephSSD 100%,
persSSD 100%, persHDD 100% and objStore 100%. The best
combination underCast consists of 33% ephSSD, 31% persSSD,
16% persHDD and 20% objStore, as shown in Figure 7(c).
persSSD achieves the highest tenant utility among the four
non-tiered configurations, because persSSD is relatively fast
and persistent. Though ephSSD provides the best I/O perfor-
mance, it is not cost-efficient, since it uses the most expen-
sive storage and requires objStore to serve as the backing
store to provide data persistence, which incurs additional
storage cost and also imposes data transfer overhead. This
is why ephSSD 100% results in 14.3% longer runtime (300 min-
utes) compared to that under persSSD 100% (263 minutes) as
shown in Figure 7(b).

The greedy algorithm cannot reach a global optimum be-
cause, at each iteration, placing a job in a particular tier can
change the performance of that tier. This affects the Utility
calculated and the selected tier for each job in all the pre-
vious iterations, but the greedy algorithm cannot update
those selections to balance the trade-off between cost and
performance. For completeness, we compare our approach
with two versions of the greedy algorithm: Greedy exact-fit

attempts to limit the cost by not over-provisioning extra
storage space for workloads, while Greedy over-provisioned



0%

20%

40%

60%

80%

100%

120%

ephSSD
100%

persSSD
100%

persHDD
100%

objStore
100%

Greedy
exact-fit

Greedy
over-prov

CAST CAST++N
o

rm
a

liz
e

d
 t

e
n

a
n

t 
u

ti
lit

y

(a) Normalized tenant utility.

 0

 40

 80

 120

 160

 200

 240

 280

 320

ephSSD
100%

persSSD
100%

persHDD
100%

objStore
100%

Greedy
exact-fit

Greedy
over-prov

CAST CAST++
 200

 250

 300

 350

 400

 450

C
o

s
t 

($
)

R
u

n
ti
m

e
 (

m
in

)

Cost
Runtime

(b) Total monetary cost and runtime.

0%

20%

40%

60%

80%

100%

ephSSD
100%

persSSD
100%

persHDD
100%

objStore
100%

Greedy
exact-fit

Greedy
over-prov

CAST CAST++

C
a

p
a

c
it
y
 (

%
)

ephSSD persSSD persHDD objStore

(c) Capacity breakdown.

Figure 7: Effectiveness of Cast and Cast++ on workloads with
reuse, observed for key storage configurations. Note: Greedy
over-prov represents greedy over-provisioned. Tenant utility
is normalized to that of the configuration from basic Cast.

will assign extra storage space as needed to reduce the com-
pletion time and improve performance.
The tenant utility of Greedy exact-fit is as poor as ob-

jStore 100%. This is because Greedy exact-fit only allo-
cates just enough storage space without considering per-
formance scaling. Greedy over-provisioned is able to out-
perform ephSSD 100%, persHDD 100% and objStore 100%, but
performs slightly worse than persSSD 100%. This is because
the approach significantly over-provisions persSSD and per-

sHDD space to improve the runtime of the jobs. The tenant
utility improvement under basic Cast is 178% and 113.4%,
compared to Greedy exact-fit and Greedy over-provisioned,
respectively.

5.1.3 Effectiveness for Data Reuse

Cast++ outperforms all other configurations and further
enhances the tenant utility of basic Cast by 14.4% (Fig-
ure 7(a)). This is due to the following reasons. (1) Cast++

successfully improves the tenant utility by exploiting the
characteristics of jobs and underlying tiers and tuning the
capacity distribution. (2) Cast++ effectively detects data
reuse across jobs to further improve the tenant utility by
placing shared data in the fastest ephSSD, since we observe
that in Figure 7(c) the capacity proportion under Cast++

of objStore reduces by 42% and that of ephSSD increases by
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Figure 8: Predicted runtime achieved using Cast’s performance
scaling regression model vs. runtime observed in experiments by
varying the per-VM persSSD capacity. The workload runs on the
same 400-core cluster as in §5.1.2.

29%, compared toCast. This is becauseCast++ places jobs
that share the data on ephSSD to amortize the data transfer
cost from objStore.

5.1.4 Accuracy of the Regression Model

Figure 8 compares predicted runtime to observed runtime
for a small workload consisting of 16 modest-sized jobs. The
total dataset size of all jobs is 2 TB. Both the predicted and
the observed runtime follow the same general trend, with
an average prediction error of 7.9%, which demonstrates the
accuracy of our cubic Hermite spline regression models. The
margin of error is tolerable for our case, since the focus of
Cast is to help tenants compare and choose among different
tiering plans.

5.2 Meeting Workflow Deadlines

5.2.1 Methodology

In our next set of experiments, we evaluate the ability
of Cast++ to meet workflow deadlines while minimizing
cost. We compare Cast++ against four storage configura-
tions without tiering and a fifth configuration from the ba-
sic, workflow-oblivious Cast. This experiment employs five
workflows with a total of 31 analytics jobs, with the longest
workflow consisting of 9 jobs. We focus on large jobs that
fully utilize the test cluster’s compute capacity.

We consider the completion time of a workflow to be the
time between the start of its first job and the completion of
its last job. The deadline of a workflow is a limit on this
completion time, i.e., it must be less than or equal to the
deadline. We set the deadline of the workflows between 15
– 40 minutes based on the job input sizes and the job types
comprising each workflow. When a job of a workflow com-
pletes, its output is transferred to the input tier of the next
job. The time taken for this cross-tier transfer is accounted
as part of the workflow runtime by Cast++. However, since
Cast is not aware of the intra-workflow job dependencies
(treating all currently running workflows as a combined set
of jobs), Cast cannot account for this transfer cost.

5.2.2 Deadline Miss Rate vs. Cost

Figure 9 shows the miss rate of workflow deadlines for
the studied configurations. The miss rate of a configura-
tion is the fraction of deadlines missed while executing the
workflows using that configuration. Cast++ meets all the
deadlines and incurs the lowest cost, comparable to that of
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Figure 9: Deadline miss rate and cost of Cast++ compared to
Cast and four non-tiered configurations.

persHDD that is the lowest-priced but the slowest tier and has
a miss rate of 100%.
Cast misses 60% of the deadlines because of two reasons:

(1) it selects slow tiers for several jobs in each workflow
when trying to optimize for tenant utility; and (2) by not
accounting for the cross-tier transfer time, it mis-predicts
the workflow runtime. However, Cast incurs a lower cost
compared to the non-tiered configurations, because it selects
lower-priced tiers for many of the jobs.
Despite being the fastest tier, ephSSD misses 20% of the

deadlines because of the need to fetch the input data for
every workflow from objStore. persSSD misses 40% of the
deadlines because it performs slightly worse than ephSSD for
I/O intensive jobs. Finally, objStore misses all of the dead-
lines because it is slower than or as fast as persSSD. It incurs
a higher cost because of the persSSD, which is needed for
storing intermediate data.
In summary, Cast++ outperforms Cast as well as non-

tiered storage configurations in meeting workflow deadlines,
and does so while minimizing the cost of running the work-
flows on the cloud cluster.

6. DISCUSSION
In the following, we discuss the applicability and limita-

tions of our storage tiering solutions.

Analytics Workloads with Relatively Fixed and Sta-
ble Computations Analytics workloads are known to be
fairly stable in terms of the number of types of applications.
Recent analysis by Chen et. al. [18] shows that a typical an-
alytics workload consists of only a small number of common
computation patterns in terms of analytics job types. For
example, a variety of Hadoop workloads in Cloudera have
four to eight unique types of jobs. Moreover, more than
90% of all jobs in one Cloudera cluster are Select, PigLatin
and Insert [18]. These observations imply that a relatively
fixed and stable set of analytics applications (or analytics
kernels) can yield enough functionality for a range of analy-
sis goals. Thus, optimizing the system for such applications,
as in Cast, can significantly impact the data analytics field.

Dynamic vs. Static Storage Tiering Big data frame-
works such as Spark [47] and Impala [11] have been used
for real-time interactive analytics, where dynamic storage
tiering is likely to be more beneficial. In contrast, our work
focuses on traditional batch processing analytics with work-
loads exhibiting the characteristics identified above. Dy-
namic tiering requires more sophisticated fine-grained task-
level scheduling mechanisms to effectively avoid the strag-

gler issue. While dynamic tiering in our problem domain
can help to some extent, our current tiering model adopts
a simple yet effective coarse-grained tiering approach. We
believe we have provided a first-of-its-kind storage tiering
methodology for cloud-based analytics. In the future, we
plan to enhance Cast to incorporate fine-grained dynamic
tiering as well.

7. CONCLUSION
In this paper, we design Cast, a storage tiering frame-

work that performs cloud storage allocation and data place-
ment for analytics workloads to achieve high performance
in a cost-effective manner. Cast leverages the performance
and pricing models of cloud storage services and the hetero-
geneity of I/O patterns found in common analytics applica-
tions. An enhancement, Cast++, extends these capabilities
to meet deadlines for analytics workflows while minimizing
the cost. Our evaluation shows that compared to extant
storage-characteristic-oblivious cloud deployment strategies,
Cast++ can improve the performance by as much as 37.1%
while reducing deployment costs by as much as 51.4%.
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