
MOS: Workload-aware Elasticity for Cloud Object Stores

Ali Anwar, Yue Cheng
Virginia Tech

Blacksburg, VA

{ali,yuec}@cs.vt.edu

Aayush Gupta
IBM Research – Almaden

San Jose, CA
guptaaa@us.ibm.com

Ali R. Butt
Virginia Tech

Blacksburg, VA

butta@cs.vt.edu

ABSTRACT

The use of cloud object stores has been growing rapidly in
recent years as they combine key advantages such as HTTP-
based RESTful APIs, high availability, elasticity with a“pay-
as-you-go” pricing model that allows applications to scale
as needed. The current practice is to either use a single
set of configuration parameters or rely on statically config-
ured storage policies for a cloud object store deployment,
even when the store is used to support different types of
applications with evolving requirements. This crucial mis-
match between the different applications requirements and
capabilities of the object store is problematic and should be
addressed to achieve high efficiency and performance.
In this paper, we propose MOS, a Micro Object Storage

architecture, which supports independently configured mi-
crostores each tuned dynamically to the needs of a particular
type of workload. We also design an enhancement, MOS++,
that extends MOS’s capabilities through fine-grained re-
source management to effectively meet the tenants’ SLAs
while maximizing resource efficiency. We have implemented
a prototype of MOS++ in OpenStack Swift using Docker
containers. Our evaluation shows that MOS++ can effec-
tively support heterogeneous workloads across multiple ten-
ants. Compared to default and statically configured object
store setups, for a two-tenant setup, MOS++ improves the
sustained access bandwidth by up to 79% for a large-object
workload, while reducing the 95th percentile latency by up
to 70.2% for a small-object workload.

Keywords

Object store; Performance analysis; Resource management
and scheduling

1. INTRODUCTION
Cloud object stores, such as Amazon S3, Google Cloud

Store (GCS), OpenStack Swift and Ceph [34], have become
the most widely used form of cloud storage in recent years.
These stores combine key advantages such as high availabil-
ity, elasticity and a “pay-as-you-go”pricing model, which al-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan

c© 2016 ACM. ISBN 978-1-4503-4314-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2907294.2907304

lows applications to scale as the usage increases or decreases,
and offers HTTP-based RESTful APIs for easy data man-
agement. The desirable features, coupled with the advances
in virtualization infrastructure, are driving the adoption of
cloud object stores by a myriad of applications. Exam-
ples range from web applications [14] that store image and
video files, to backup services [3] that require large capac-
ity for archival data, to big data analytics frameworks [17].
Similarly, object stores are increasingly being adopted by
the HPC community [23] as they provide efficient meta-
data management and scalability that helps in extreme-scale
high-end computing, and allows for seamless adaptation to
a wide range of general purpose and scientific computing file
system workloads [34].

A typical deployment of cloud object stores either opts to
use a monolithic configuration or segmented storage setup [10]
with a static configuration to handle different types of ap-
plications with evolving requirements. Using a monolithic
configuration setup results in all applications experiencing
the same service level, e.g., similar average latency per re-
quest, data transfer throughput, and queries per second
(QPS). However, different applications entail extremely dif-
ferent latency and throughput requirements. For example,
a social networking or photo sharing application requires
low latency to support a highly-responsive user experience,
whereas backup services can tolerate higher latency but re-
quire sustained high throughput. Some object stores provide
static configuration of storage policies, e.g., Swift segmen-
tation [10], to allow for segmenting the cluster. This static
storage segmentation policy is limited to cover only the stor-
age server layer of an object store. However, a typical object
store setup also consists of additional layers such as proxy
server and load balancer layer. End-to-end performance of
an application depends on correct configuration at all these
layers to meet its requirements, and not only the storage
server. Thus, a comprehensive solution is needed.

From the cloud provider’s perspective, supporting dra-
matically different workloads from different applications (ten-
ants) using a single homogeneous configuration means that
optimization opportunities are lost. Each different appli-
cation represents a workload with different characteristics.
For example, a photo sharing application such as Insta-
gramwould have a large number of small-medium sized files
(e.g, KB- to MB-level image objects), with skewed access
pattern where frequent read and write requests go for hot-
ter/popular objects. In contrast, an enterprise backup ap-
plication (e.g., Arq [1]) consists largely of write requests for
large cold archive files with reads only sparsely arising. Us-

http://dx.doi.org/10.1145/2907294.2907304

 0

 100

 200

 300

 400

 500

A B C D

T
h
ro

u
g
h
p
u
t
(Q

P
S

)

Workload

Default
FavorsSmall
FavorsLarge

(a) Throughput (QPS)

 0

 50

 100

 150

 200

A B C D

B
a
n
d
w

id
th

 (
M

B
/s

)

Workload

Default
FavorsSmall
FavorsLarge

(b) Bandwidth (MB/s)

 0

 3

 6

 9

 12

 15

 18

A B C D

L
a
te

n
c
y
 (

s
e
c
)

Workload

Default
FavorsSmall
FavorsLarge

(c) Latency (s)

Figure 1: Performance achieved under various object store configurations in a multi-tenant environment.

ing a homogeneous configuration prevents fine-tuning of the
system to such varied needs and reduces overall system effi-
ciency.
The situation is further complicated by the fact that due

to regular system upgrades and introduction of new storage
architectures, data centers hosting the object stores are be-
coming increasingly heterogeneous [21, 30]. However, with
either the “one-size-fits-all” monolithic deployment or static
storage segmentation policy driven partitioning, it is im-
possible to match specific types of hardware with the right
type of application workload. For example, latency-sensitive
small-object workloads would require low-latency storage
devices and powerful CPU processing capacity, whereas large
object write-only workloads can be supported with a combi-
nation of high network bandwidth across all layers (e.g., load
balancer, proxy, and object servers etc.) and weaker CPU
power. Under these scenarios, meeting SLA requirement
for one of the workloads may require, (i) adding hardware
resources that may not improve the performance for other
workloads, and (ii) software tuning that may decrease the
performance for other workloads.
Furthermore, the workloads seen by the object store are

varied and fluctuate over time. Consider a scenario where
the workload demand from one application (tenant) is spik-
ing while the demand from another application that shares
the same object store resources is dipping. In this situa-
tion, static policies need to be updated based on the changes
experienced in the workload. This calls for a new object
store architecture that can dynamically perform resource
provisioning for driving online reconfiguration across mul-
tiple partitions of the object store.
Hence in this paper, we posit that compared to using

a rigid object store it is more beneficial to support multi-

tenant workloads separately using dynamically configurable

finer-grained object stores on sub-clusters of available re-
sources.

Motivational Study. To motivate our approach and demon-
strate the need for differentiated object stores, we study dif-
ferent types of representative practical workloads as follows.
We examine four different real-world applications that use
cloud object storage as listed in Table 1. We deploy and eval-
uate OpenStack Swift in a multi-tenant environment using
COSBench [35] as workload generator configured for the four
types of studied workloads. Swift is a popular object store
implementation provided by OpenStack that is increasingly
becoming the de facto cloud computing software platform.
In these tests, we use three different Swift configurations (se-
tups)1. We run COSBench clients on designated machines to
saturate Swift. Each benchmark is run for 15 minutes after

1The integrated Swift storage policies only support static storage
node segmentation. In our motivational study we keep the storage
node settings fixed and vary the proxy node settings. We do this

Workload Workload characteristics App. scenario

Obj. size Operation distribution
A 1–128KB G: 90%, P: 5%, D:5% Web hosting
B 1–128KB G: 5%, P: 90%, D:5% Online game hosting
C 1–128MB G: 90%, P: 5%, D:5% Online video sharing
D 1–128MB G: 5%, P: 90%, D:5% Enterprise backup

Table 1: Different types of workloads and application scenarios
used for testing the behavior of object stores. G: GET operation;
P: PUT operation; D: DELETE operation.

all data is loaded into the store. We use two nodes as proxy
servers in each of the configuration. To simulate datacenter
heterogeneity, one of the proxy server has 32 cores while the
other has 8 cores. The proxy server running on the 32-core
machine is connected to the storage nodes via 1 Gbps in-
terconnect, while the proxy server on the 8-core machine is
connected via 10 Gbps interconnect. In addition, four 32-
core machines are used as storage nodes. Each storage node
has 3 SATA SSDs. The storage nodes are well-endowed and
configured in such a way so as not to become a performance
bottleneck for any of the studied configurations.

Default configuration: The default monolithic Swift setup
is used where both 8-core and 32-core machines acted
as proxy server. The workloads are handled by all re-
sources and round robin DNS was used to distribute
the requests to the proxies.

FavorsSmall configuration: The available resources are
divided into two sub-object stores, one configured for
workloads with small objects and the other for large
objects. One 8-core machine (connected via 10 Gbps)
served as proxy for WorkloadA and WorkloadB, and one
32-core machine connected via 1 Gbps network served
WorkloadC and WorkloadD.

FavorsLarge configuration: One 32-core machine (con-
nected via 1 Gbps) is used as proxy for WorkloadA and
WorkloadB, while one 8-core machine (connected via
10 Gbps) is used as proxy for WorkloadC and WorkloadD.

Figure 1 shows the comparison of performance achieved
under the studied configurations. As shown in Figure 1(a),
separating proxy servers for different workloads improved
the overall QPS by 700% and 225% for FavorsSmall and
FavorsLarge, respectively, compared to the default Swift setup.
It is interesting to note that even though FavorsSmall re-
sulted in very high QPS for small objects of (WorkloadA and
WorkloadB), it is not the best configuration as it significantly
affects the MB/s (dropped by from 350% to 500%, as ob-
served in Figure 1(b)) for workloads dominated with large
object (WorkloadC and WorkloadD). On the other hand, in
FavorsLarge the throughput for large objects remained same.

to highlight the need for a more comprehensive workload-aware
scheme, which is the subject of this paper.

Similarly, the latency of FavorsLarge is also less than that
achieved by the default configuration for all the workloads
(Figure 1(c)). FavorsSmall provides best and worst latency
for small and large object workloads, respectively. We also
observe that switching to different network connections on
proxy servers in Default configuration results in similar re-
sults. These results demonstrate the need for a compre-
hensive study of the impact of different configurations on
performance to ensure efficient cloud object store design.
From our experiments, we infer the following. (i) Cloud

object store workloads can be classified based on the size of
the objects in their workloads. In case of small objects, cloud
tenants are mostly interested in QPS and latency, whereas
for large objects data throughput is considered more im-
portant. (ii) When multiple tenants run workloads with
drastically different behaviors, they compete for the object
store resources with each other, the workload dominated
with small objects experiences a dramatic loss in perfor-
mance. This is because the available network bandwidth
is exhausted to transfer TCP packets containing payload
for large objects, hence wasting the CPU power that would
have been utilized to serve workloads with small objects on
object storage nodes. That is why using a separate proxy
server under FavorsSmall and FavorsLarge gives a fair chance
to small object workloads to be properly handled by the stor-
age nodes. Thus, cloud object stores need better resource
management to ensure that tenants are treated equally.

Contributions. To this end, we propose MOS, a novel mi-
cro object storage architecture with independently config-
ured micro-object-stores each tuned dynamically for a par-
ticular type of workload. We then expose these microstores
to the tenants who can then choose to place their data in the
appropriate microstore based on the latency and throughput
requirements of their workloads. We further enhance our
basic resource provisioning engine to build MOS++, which
incorporates the container abstraction for fine-grained re-
source management, SLA awareness, and better resource ef-
ficiency.
Specifically, we make the following contributions:
• We evaluate the impact of conventional object storage

configuration on performance and resource efficiency
by conducting experiments on a local Swift testbed.
Our observations stress the need to carefully evaluate
the various configuration choices and develop simple
Rules-of-Thumb that cloud providers can leverage for
provisioning the object storage.

• We perform a detailed performance and resource ef-
ficiency analysis on identifying major hardware and
software configuration opportunities that can be used
to fine-tune object stores for specific workloads. Our
findings indicate the need to re-architect cloud object
storage specialized for the public cloud.

• Based on our behavior analysis, we design MOS, an
object store that (i) dynamically provisions micros-
tores, each configured with different combination of
hardware and software options, and (ii) exposes the
interfaces of microstores to the tenants to use accord-
ing to application requirements.

• We extend our basic framework to MOS++ that uses
container based approach to launch resources in a more
fine-grained manner. MOS++ is SLA-aware, supports
rapid deployment, portability across machines, offers
a lightweight footprint, and simplifies maintenance.

• We implement a prototype of MOS++, and demon-
strate that our approach results in improved perfor-
mance (by up to 89.6% and 79.8% compared to the de-
fault monolithic and statically configured object store
setup, respectively), as well as higher resource effi-
ciency. Furthermore, we design a simulator to evaluate
our solution under a large-scale 456-core cloud cluster
setup. We also compare the performance of MOS with
MOS++ to highlight advantages of our container based
approach.

2. BACKGROUND AND RELATED WORK

Object Store Segmentation. Swift provides storage poli-
cies to support for segmenting the cluster through the cre-
ation of multiple object rings [10]. This feature is useful if
a provider wants to offer different level of durability, per-
formance, or storage implementation but does not want to
maintain separate clusters. In contrast, MOS advocates
to separately maintain clusters to incorporate segmentation
across all layers. Furthermore, storage policies are static
whereas MOS dynamically perform resource provisioning
that can drive online reconfiguration across multiple par-
titions of the object store. Also, performance comparison of
the Swift-based prototype of MOS with other object stores
like Ceph will not be an apple-to-apple comparison as Ceph
outperforms Swift [2] and they have significantly different
architecture.

Workload-aware Elasticity. The focus of various recent
research works have been on providing an elastic setup for
cloud based storage. Lim et al. [29] propose an elastic stor-
age system on HDFS for multi-tier application services. Sim-
ilarly, ElasTraS [20] provides scalability and elasticity to the
data store in clouds for optimizing transactional data ac-
cess. MeT [19] focuses on systems metrics (CPU utilization,
I/O wait and memory usage) that are critical for a NoSQL
database. Skute [15] provides a fault-tolerance and scal-
able replication scheme for cloud storage. MOS differs from
these works in that it focuses on providing best performance
guarantee for heterogeneous multi-tenant workloads by ex-
ploiting automated elasticity for cloud object store.

Handling Cluster/Workload Heterogeneity. hatS [26]
proposes a replication scheme for HDFS that integrates het-
erogeneous storage technologies into Hadoop. φSched [27]
designs a cluster-heterogeneity-aware scheduler to improve
the resource-application match. Walnut [16] suggests using
a hybrid object strategy to support both small and large ob-
jects in an object store. CAST [17] and its extension [18] per-
form coarse-grained cloud storage (including object stores)
management for data analytics workloads. In contrast,MOS

explicitly partitions the conventional monolithic storage into
multiple dynamically tuned microstores, each serving a par-
ticular type of workload.

Meeting SLA/SLO. SCADS [33] uses a steady-state per-
formance model to predict whether a server can handle a
particular workload, without violating a given latency thresh-
old. SCADS reconfigures the storage system on-the-fly in re-
sponse to workload changes driven by a performance model.
Similarly, Papio [32] introduces a QoS-enabled function into
the S3-based object store where it accepts an explicit per-
formance request as an advanced reservation, and enables
QoS in the access with the extended S3 RESTful interfaces.
MOS differs from these works in that it: i) keeps track of

 1

 10

 100

 1000

 10000

10KB

1M
B

10M
B

128M
B

256M
B

512M
B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T
h
ro

u
g
h
p
u
t
(Q

P
S

)

B
a
n
d
w

id
th

 (
G

B
/s

)

Object size

QPS

GB/s

(a) Read performance.

 0

 20

 40

 60

 80

 100

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F
 (

%
)

Latency (ms)

10KB

1MB

10MB

128MB

256MB

512MB

(b) Read latency distribution.

Figure 2: Impact of varying the object size on read performance.
Note the log scale on the Y-axis of Figure 2(a) and the X-axis of
Figure 2(b).

fine-grained resource usage; and ii) partitions the heteroge-
neous workloads and optimizes each individually based on
tenants’ SLA requirements while yielding higher overall per-
formance and better resource efficiency.

Dynamic Resource Management. Mantle [31] is a pro-
grammable storage system that lets users inject custom bal-
ancing logic into Ceph [34]. This feature provides flexibil-
ity for allocating resources. Unlike Mantle, MOS automati-
cally performs resource provisioning without burgeoning the
users. [13] propose a fine-grained resource allocation mech-
anism based on metrics such as CPU utilization, I/O wait
and memory usage that are critical for MapReduce work-
loads. Similarly, Lee et al. [28] design a heterogeneity-aware
resource allocator and job scheduler for a cloud data analyt-
ics system. While these works provide heterogeneity-aware
optimizations targeted at MapReduce workloads, MOS tar-
gets object stores and focuses on improving the performance
of real-time request processing.

3. ANALYSIS
In this section, we present a detailed analysis of how object

store behaves under various software and hardware configu-
rations. Next, we use the study to develop rules-of-thumb for
configuring object stores, which guide the design of MOS.
In the following analysis, we use a 32-core machine as a

proxy node with two 32-core storage nodes each equipped
with 3 SSDs (to eliminate the storage bottleneck), unless
mentioned otherwise. For workloads dominated by small
objects (at KB level) the metrics of interest are throughput

in terms of queries per second (QPS) and response latency,
while for workloads dominated by large objects (at MB–
GB level), bandwidth in terms of MB/s or GB/s is more
important.

Q1: How does object size impact performance? First,
we analyze the impact of object size on performance in
terms of throughput (QPS) and bandwidth (GB/s). While
QPS captures the object-wise throughput performance, the
bandwidth serves as an important metric reflecting byte-
wise performance. As shown in Figure 2(a), increasing the
object size results in the throughput decreasing drastically.
Specifically, when the object size is increased from 10 KB
to 10 MB, we observe the increasing tendency of the net-
work bandwidth. When the object size is increased further
to above 128 MB, the bandwidth only improves marginally
(from 0.97 GB/s to 0.98 GB/s), implying that the NIC is
saturated. Figure 2(b) plots the corresponding latency dis-
tribution at each studied object size. At large object sizes
(10 MB–512 MB), the request response latency is more than

100× than that for small object sizes (10 KB–1 MB). From
these tests, we can infer that, as long as the object size
exceeds a certain threshold, network bandwidth becomes
the limiting factor. Correspondingly, this again, explains
why WorkloadA and WorkloadB achieve extremely poor perfor-
mance when co-existing with WorkloadC and WorkloadD in §1.
Hence, the tests demonstrate that, in a multi-tenant envi-
ronment with mixed workloads, individual workloads should
be partitioned and serviced through disjoint object stores to
reduce mutual interference and performance impact.

Q2: How does proxy server configuration impact
performance? Next, we study the effect of scaling proxy
nodes on workload performance. We vary the computa-
tional capacity of the proxy node by increasing proxy’s allot-
ted CPU cores. Figure 3(a) shows the proxy tuning effect.
As we increase the proxy workers in one proxy node the
QPS is improved linearly until we reach 32 proxy workers.
The observed CPU utilization reaches close to 85% (bound-
ing the throughput) with both 32 and 64 proxy workers,
implying that CPU becomes the bottleneck here. Adding
one more proxy node (2x) almost doubles the performance
(QPS increased from 2, 200 to 3, 700), clearly demonstrating
that proxy’s performance is constrained by the CPU capac-
ity. Next, we repeat the test with large object workloads.
As shown in Figure 3(b), the network bandwidth limit is
reached as soon as the number of proxy workers reaches
4, with modest CPU utilization (about 25%) observed on
the proxy node. This is because for large object workload,
the performance becomes constrained by the network band-
width before CPU can be saturated. Hence adding another
proxy node (2x, i.e., doubling the available network band-
width) results in linear increase in throughput. Thus, the
takeaway is that a proxy’s computational capacity can act as
the bottleneck for workloads dominated with small objects,
whereas the network bandwidth is the limiting resource for
workloads dominated by large objects.

Q3: How does storage server configuration impact
performance? Next, we study the effect of scaling ob-
ject storage nodes on workload performance. As shown in
Figure 3(c), the peak QPS for small object workloads is
achieved with 16 object storage workers, which is exactly the
same as the number of proxy workers launched to achieve
this QPS (recall that two object storage nodes are deployed
behind one proxy server node). This implies that the maxi-
mum performance can only be achieved when both the proxy
and storage nodes are equipped with the same amount of
CPU resources, which strengthens our observation that CPU
capability is the limiting factor for small-object workloads.
In contrast, for large-object workloads, the network limit is
quickly reached with only 4 object storage workers. This is
because, for large objects the performance is bottlenecked
by the network (recall that each storage node has 3 SATA
SSDs, thus disk bandwidth does not pose a limitation in our
test).

Q4: How does network/storage affect performance?
In our next test, we study the effect of varying storage de-
vice and network connectivity on workload throughput. Fig-
ure 4(a) shows that faster network interconnect (1 Gbps
NIC → 10 Gbps NIC) results in only 12% increase in QPS
for small object workloads with HDD as storage medium,
and 70% increase when SATA SSD is used. This observa-
tion shows that small-object intensive workloads are more
sensitive to the storage devices rather than the network

 0

 0.8

 1.6

 2.4

 3.2

 4

1 2 4 8 16 32 64 2x
0%

20%

40%

60%

80%

100%
T

h
ro

u
g
h
p
u
t
(1

0
3
 Q

P
S

)

P
e
r-

n
o
d
e
 C

P
U

 u
ti
l(
%

)

Proxy workers

100% util

QPS

CPU util

(a) Effect of varying proxy capability (A).

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 2x

B
a
n
d
w

id
th

 (
G

B
/s

)

Proxy workers

10 Gbps NIC bandwidth limit

(b) Effect of varying proxy capability (C).

 0
 0.4
 0.8
 1.2
 1.6

 2
 2.4
 2.8

1 2 4 8 16 32
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T
h
ro

u
g
h
p
u
t
(1

0
3
 Q

P
S

)
W

o
rk

lo
a
d
A

B
a
n
d
w

id
th

 (
G

B
/s

)
W

o
rk

lo
a
d
C

Object storage workers

QPS

GB/s

(c) Effect of varying object store server capa-
bility.

Figure 3: Studied software/hardware configuration options. In Figure 3(c), small-object workloads refer to bars (QPS) while large-object
workloads refer to linepoints (GB/s). A: WorkloadA; C: WorkloadC.

 0

 0.5

 1

 1.5

 2

 2.5

1 Gbps 10 Gbps

T
h
ro

u
g
h
p
u
t
(1

0
3
 Q

P
S

)

HDD

SSD

(a) WorkloadA.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 Gbps 10 Gbps

B
a
n
d
w

id
th

 (
G

B
/s

) HDD

SSD

(b) WorkloadC.

Figure 4: Performance of the object store equipped with homo-
geneous storage devices as a function of the NIC bandwidth.

 0

 0.3

 0.6

 0.9

 1.2

2.5 Gbps 5 Gbps 7.5 Gbps

B
a
n
d
w

id
th

 (
G

B
/s

)

3HDD
1SSD+2HDD
2SSD+1HDD

3SSD

Figure 5: Performance of large-object workload with hetero-
geneous storage devices as a function of the NIC bandwidth.
The corresponding bandwidth (GB/s) with 2.5 Gbps, 5 Gbps, and
7.5 Gbps are 0.31 GB/s, 0.62 GB/s, and 0.93 GB/s, respectively.

bandwidth. Thus, they may be efficiently handled using
a lower-bandwidth network interconnect but by using high-
bandwidth storage devices. On the other hand, increasing
network interconnect improves performance by as much as
900% (using SSDs) in case for large-object intensive work-
loads (Figure 4(b)), which clearly indicates such kind of
workloads can benefit from high-bandwidth network inter-
connects.

Q5: What is the impact of heterogeneous storage
setup on performance of large-object workloads? Fi-
nally, we study the impact of heterogeneous storage config-
uration on large-object intensive workloads. Here, we limit
the network bandwidth using Linux traffic control tool tc.
We measure the performance of the object store under a
large-object workload, with four setups: two heterogeneous
setups 1 SSD + 2 HDD and 2 SSD + 1 HDD; and two ho-
mogeneous setups 3 HDD and 3 SSD as baselines. Figure 5
demonstrates that the choice of different storage device type
combination changes based on the network bandwidth limit.
We vary the network bandwidth limit to emulate the sce-
nario where the network is partitioned in a multi-tenant en-
vironment. Note, when the network is limited to 2.5 Gbps,
all four storage configurations achieve the same performance.
Thus, the storage setup of choice under 2.5 Gbps is 3 HDDs.
As the bandwidth limits increases to 7.5 Gbps, the 3 HDDs
setup becomes the worst choice, especially when meeting

SLAs is critical. Here, the 2 SSD + 1 HDD setup is de-
sirable as it achieves almost the same performance as the
3 SSD setup, but with a higher resource efficiency. These
tests necessitate the need for a workload-aware resource pro-
visioning mechanism that selects the most efficient and high
performing options under dynamically changing workloads
and tenant requirements.

Summary of Rules-of-thumb. It is fairly straightforward
to manually tune the object stores by controlling all the
other configuration variables. However, it is a challenging
task to dynamically detect the workload shifts and meet
the tenant goals while maximizing the resource efficiency at
runtime, particularly when the service providers are faced
with many software and hardware configuration options. To
this end, we develop the following rules-of-thumb that are
helpful in guiding the online/offline performance tuning of
object stores as well as the design of MOS.

R1 Cloud object store design can benefit from (i) partition-
ing the monolithic object store architecture based on work-
load characteristics, and (ii) separately servicing interfering
workloads in the multi-tenant environment. Object size dis-
tribution is a key factor for classifying workload character-
istics.

R2 CPU capacity of proxy servers is the first-priority re-
source for small-object intensive workloads. CPU becomes
a bottleneck much earlier than the network for such work-
loads.

R3 On the other hand, availabile network bandwidth plays
a critical role in the performance of large-object intensive
workloads.

R4 The number of CPU cores used in storage nodes can
be safely configured based on the number of deployed proxy
workers, given that the storage devices provide sufficient disk
bandwidth. This rule can be modeled using the following
equation: proxyCores = storageNodes∗coresPerStorageNode.
E.g., one 32-core proxy node may require four 8-core storage
nodes.

R5 The aggregated network bandwidth between proxy and
storage nodes should be roughly the same as the link band-
width used by cloud provider to connect to the proxies. Gen-
erally, this rule can be modeled as: bwproxies = storageNodes∗
bwstorageNode.

R6 A faster network cannot effectively improve QPS for
small-object intensive workloads. For tenants who do not
impose strict SLO requirements, the workload, if dominated
with small objects, may be better served using a combi-
nation of low-bandwidth network (i.e., 1 Gbps NICs) with
high-bandwidth storage devices (e.g., SSD delivering decent
random and sequential I/O performance). This low-cost het-

MOS Substrate

 Microstores

Load balancer/

Load redirector

Microstore 1

Object
storage

Object
storage

Object
storage

Proxy Proxy Proxy…

…

Workload monitor

Microstore N

Object
storage

Object
storage

Object
storage

Proxy Proxy Proxy…

…

Workload monitor

Resource

manager
Free resource pool

ServerServerProxy
Object
storage
Object
storage
Object
storage

Load balancer/

Load redirector

Load balancer/

Load redirector
… Workload 1

Workload N

…

Figure 6: Overview of MOS architecture.

erogeneous resource combination can effectively meet ten-
ants’ requirement while improving data center cost efficiency.

R7 For large-object intensive workloads, we have to collec-
tively consider the network bandwidth limits and the stor-
age configuration. Given a certain network limit and SLA, a
combination of slow and fast storage devices (e.g., HDD+SSD)
may be able to serve the application needs in a resource ef-
ficient manner.

4. MOS FRAMEWORK
We design MOS based on the rules-of-thumb developed

in §3, with the goal to address workload and datacenter re-
source heterogeneity. Instead of a conventional monolithic
storage architecture, where all tenants/workloads share the
storage resources using same or static configurations, MOS

uses multiple object stores, which we refer to as micros-
tores. To service changing workloads, MOS performs dy-
namic resource partitioning and provisioning, allowing each
microstore within an object storage setup to run as a fully-
functional object store unit. As pointed in our earlier moti-
vational study, although the monolithic approach is simple
to implement and configure, it is not necessarily resource
efficient and can lead to wastage of CPU etc. resources.
Figure 6 shows the architecture of MOS, which consists of

two layers: (1) Microstores: consists of multiple instances
of object stores, a microstore, which is allocated a subset
of proxy nodes and storage nodes that matches the require-
ments of application the microstore will support. (2) MOS
substrate: consists of a resource manager that monitors
the load on each microstore using a workload monitor and
automatically reconfigures the resources assigned to the mi-
crostore to cope with workload shifts.

Microstores. A typical MOS deployment configures mul-
tiple instances of object store. Each instance comprises a
subset of nodes in the cluster, and constitutes a unique mi-
crostore. Each microstore consists of two types of nodes:
proxy nodes and storage nodes (each statically equipped
with hardware resources such as CPUs, network interface
cards (NICs) and storage devices, etc.). The proxy nodes are
responsible for directing queries and managing the metadata
for key space and replicas, etc. Whereas, the storage nodes
store the object data in their local file systems and replicate
the objects at multiple storage nodes for fault tolerance. The
number of microstores configured in a deployment of MOS

is specified by the service provider and will depend on the
kinds of workloads that need to be supported. At any given

time during MOS’s operation, the amount of resources allo-
cated to each microstore is determined by its resource uti-
lization. Such elasticity guarantees resource efficiency while
delivering the needed performance.

MOS substrate. The MOS substrate layer consists of a
central Resource Manager and the same number ofWorkload

Monitors as the number of microstores. The main function
of this layer is to perform online performance and resource
utilization monitoring. The workload monitors are used to
gather statistics of each running microstore, which are polled
periodically by the resource manager to decide when and if
a reconfiguration is warranted. The workload monitors also
execute, as needed, online microstore reconfiguration com-
mands issued by the Resource manager to meet tenants’ de-
mands. The resource manager manages the available pool
of heterogeneous resources. It makes decisions about when
and how to add or redistribute resources for the reconfigura-
tion of a microstore in order to respond to workload shifts in
the observed throughput and latency. We design the MOS

framework in a modular fashion, where the core resource
provisioning mechanism is configurable depending on ten-
ants’ needs.

Algorithm 1: MOS Resource Provisioning Algorithm.

Input: microstores: Microstore array, free pool: free
resource pool, utillow: low utilization threshold,
utilhigh: high utilization threshold, epoch:
configurable monitoring interval

begin
microstores.hw ← init(free pool)
while true do

foreach ms in microstores do

// periodically collect monitoring stats
if utillow ≤ util(ms.hw) ≤ utilhigh then

ms.firstT ime← true
continue

else
if ms.firstT ime then

ms.firstT ime← false
ms.toChange← 1

else
ms.toChange← ms.toChange ∗ 2

if util(ms.hw) > utilhigh then

// to add in more resources
ms.hw ← ms.hw + ms.toChange
/* allocate resource from free resource pool */

alloc(free pool, ms, ms.toChange)
else if util(ms.hw) < utillow then

// to remove resources
ms.hw ← ms.hw − 1
/* return resource to free pool */

dealloc(free pool, ms, 1)
sleep(epoch)

5. BASIC MOS
We first design a basic version of MOS. The goal of the

basic version is to provide a coarse-grained dynamic resource
management mechanism that can help achieve good resource
utilization without worrying about SLA enforcement. The
core of the basic MOS uses a greedy heuristic to perform
resource provisioning based on online workload changes.

Basic MOS Algorithm. Algorithm 1 takes as input mi-

crostores, a vector of all microstores storing statistics such as
hardware configuration, current load being served, and the
resource utilization, e.g., CPU and network bandwidth uti-
lization. Initially, the algorithm allocates the same amount
of resources to each microstore conservatively. It then en-

ters into the main loop, where the resource manager peri-
odically (with configurable epochs) polls each microstore.
In each iteration, if the resource utilization (fetched using
util(ms.hw)) of one microstore lies within a pre-defined
threshold range (i.e., [utillow utilhigh]), the algorithm sim-
ply moves to the next microstore. If the microstore is in sub-
optimal state, the algorithm decides to quadratically add or
linearly remove resources. This is to ensure that the algo-
rithm will not overshoot the de-allocation of resources, but
can quickly respond to sudden workload increases.

6. ENHANCEMENTS: MOS++
There are two limitations of the basic MOS resource pro-

visioning algorithm: (i) it is not SLA-aware; and (ii) it lacks
the ability to perform fine-grained resource management.
We address these shortcomings by designing support for con-
tainer based deployment for object store in MOS to create
MOS++. Containers greatly improve the flexibility for dy-
namic reconfiguration. For example, by leveraging contain-
ers, MOS++ can specify the number of CPU cores added
to each microstore, support utilizing different types of stor-
age devices in various configurations, and perform network
partitioning.

Algorithm 2: MOS++ Resource Provisioning Algorithm

(SLA-aware and Container-based).

Input: free pool: free resource pool, slalow: low SLA
threshold, slahigh: high SLA threshold, utillow:
low utilization threshold, utilhigh: high
utilization threshold, utilthresh: % amount of
time sampled in one epoch, epoch: configurable
monitoring interval

begin
ms ← init(sla, free pool)
while true do

if slalow ≤ ms.perf ≤ slahigh then
if utillow ≤ ms.util ≤ utilhigh then

continue
else

// fine-tune the ms config
if ms.util > utilhigh then

ms.cont← ms.cont + 1
/* allocate resource from free resource pool */

alloc(free pool, ms, 1)
else if ms.util < utillow then

ms.cont← ms.cont− 1
/* return resource to free pool */

dealloc(free pool, ms, 1)
else

if sample(utillow ≤ ms.util ≤ utilhigh)

> utilthresh then
continue

else if ms.perf > slahigh then

// to remove containers
toChange←

getContainers(ms.perf − slahigh)
ms.cont← ms.cont− toChange
dealloc(free pool, ms, toChange)

else if ms.perf < slalow then

// to add in containers
toChange← getContainers(slalow−ms.perf)
ms.cont← ms.cont + toChange
alloc(free pool, ms, toChange)

sleep(epoch)

Specifying SLAs. We consider latency-based SLAs with
constraints for small-object intensive workloads and bandwidth-
based SLAs with constraints for large-object intensive work-
loads. Each SLA, which is associated with one object size
attribute, has two parameters:

Notation Description

E Entities of the object store (proxy/object server)

cpuE
ij 1 if CPU j is assigned to workload i, 0 otherwise

S Disk storage type (PCIe/SATA SSD, HDD, etc.)

diskS
ik 1 if Disk k is assigned to workload i, 0 otherwise

nwi Network bandwidth assigned to workload i

Table 2: Notations used in the LP model employed in MOS++.

• Average request response time (average latency) for
small-object intensive workloadsOR average bandwidth
for large-object intensive workloads. For example, for
a workload where 90% of all requests have a size of
10 KB , the average latency must be within a par-
ticular range, i.e., slalow and slahigh, where slalow is
associated with the upper bound in terms of average
latency and slahigh with the lower bound. Similarly,
an SLA has a slahigh and slalow associated with the
upper and lower bound in terms of bandwidth, respec-
tively, if the workload is large-object dominant, i.e.,
most objects with a size greater than 10 MB.

• Resource utilization: The fraction of time (utilthresh)
the system resource utilization is within a specified
range, e.g., utillow and utilhigh.

The SLA requirement is met if either one of the above two

parameters is true.

MOS++ Algorithm. Fine-grained resource allocation en-
ables SLA-aware resource provisioning using Algorithm 2,
which is an enhancement of Algorithm 1. In addition to the
input parameters provided to the basic Algorithm 1, the en-
hanced algorithm takes three extra parameters: slalow, low
SLA threshold; slahigh, high SLA threshold; and utilthresh,
fraction of time slots sampled during the period of one epoch.2

In a workload, if the performance of a microstore goes above
slahigh, resources are removed and reclaimed at per-container
granularity from that microstore based on the suggested
value provided by the function getContainers(.). Conversely,
resources are allocated and added into the microstore whose
performance is observed to go below the slalow value. We set
a precondition of resource utilization as the second param-
eter for our SLA. Function sample(.) periodically measures
the resource utilization on a per-epoch basis. Again, the
resources that need to be added are suggested by function
getContainers(.), which uses a linear programming (LP)
optimizer to compute a near-optimal allocation plan.

Resource Provisioning Optimization. We define the
amount of resources allocated to workload i as:

resourcei =
∑

j

cpuE
ij +

∑

l

diskS
il + nwi . (1)

The resource provisioning problem is modeled as an op-
timization problem to minimize the resources used for all
workloads. Specifically, the objective is to:

2The sampling probability (%) is configurable. Each time slot is
configured as 1% of the epoch. E.g., for an epoch of 5 minutes, a
sampling time slot is 3 seconds.

minimize
∑

i

resourcei , (2)

s.t. slalow
i ≤ cosperf(resourcei) ≤ sla

high

i , ∀i , (3)

0 ≤
∑

j

cpuE
ij ≤ 1, cpuE

ij = 0 or 1, ∀i , (4)

0 ≤
∑

l

diskS
il ≤ 1, diskS

il = 0 or 1, ∀i , (5)

0 <
∑

i

nwi ≤ nwmax . (6)

Table 2 describes the notations used for representing the
above model. Constraint 3 is used to guarantee that the SLA
(the average response time for small-object workloads and
the average bandwidth for large-object workloads) require-
ment is met. We profile the performance offline using an
extensive stress test by iterating through nearly all possible
resource configurations (§3). The estimated performance of
a particular workload is estimated using function cosperf(.),
fed with the provisioned resources. Constraints 4 and 5 make
sure that a CPU core or a storage drive can only be assigned
to one workload. Similarly, Constraint 6 restricts the max-
imum network bandwidth (nwmax) that can be allocated
to all the workloads. In the context of object stores, the
CPU resources are allocated to two entities (denoted using
E): proxies and object servers. While our model is general
enough to cover many types of storage devices, we focus on
three extant storage types (denoted using S) – PCIe/SATA
SSDs, HDDs – in this work. The fairly small problem size
implies that the optimization problem can be solved quickly,
i.e., in seconds using CPLEX [8].

7. IMPLEMENTATION
Figure 7 shows the implementation details of MOS and

MOS++. We buildMOS on top of the Mesos [24] framework.
The Mesos resource management is driven by the resource
provisioning algorithms, i.e. Algorithm 1 or Algorithm 2.
MOS launches Swift directly on the physical nodes serving
as Mesos slaves. For MOS++ we extend Volt [11], a Mesos
framework that can be used to launch containers on Mesos
slaves.
For fine-grained resource allocation, we enforce the run-

time constraints on resources while launching the Docker
containers using the options provided by Docker [7]. The
number of CPU cores is configurable for launching applica-
tions inside a container. Docker supports CPU core binding
and disk size partitioning. For efficient disk utilization, we
launch the object server containers with privileged mode,
which enables the usage of devices attached to the host ma-
chine inside the container. We leverage this option to attach
suitable storage devices for launched containers. To perform
network partitioning, we use control groups (cgroups) [4]
with Linux traffic control (tc) [9].
Container based deployment of Swift offers several advan-

tages such as rapid deployment, portability across machines,
easy sharing, lightweight footprint and simplified mainte-
nance. All these advantages come at a cost of negligible or
“close to zero” overhead [22]. To provide high availability,
the Mesos cluster is launched with 3 masters with one acting
as the leader and the rest on standby. In case of a master
failure, a standby leader becomes the leader as a result of
the election done by Zookeeper [25].
We have implemented our own proxy executor, object ex-

MOS
Scheduler

MOS++
Scheduler

Mesos
Master

…
…
…

Mesos slave

Proxy

executor

Object

executor

ServerServerProxy/Object

servers

…
…

Mesos slave

Proxy

executor

Object

executor

ServerServerProxy/Object

containers

Standby
Mesos Master

Standby
Mesos Master

MOS
Frameowork

Zookeeper

Quroum

…
…

Mesos slave

Proxy

executor

Object

executor

ServerServerProxy/Object

containers

…
…

Mesos slave

Proxy

executor

Object

executor

ServerServerProxy/Object

servers

MOS slaves MOS++ slaves

… …

…

Figure 7: MOS modules and their interactions. Mesos provides
support to launch Swift either directly on physical nodes or inside
containers.

ecutor, and Python scripts to automate online reconfigura-
tion of Swift in a distributed setup. The proxy executor is
used to support dynamic reconfiguration of proxy servers
inside the containers. The object executor performs on-
line disk capacity management using the swift-ring-builder

tool3, whenever the storage configuration is updated. The
code to build Docker container images and the Docker im-
ages for Swift proxy and object server are publicly available
on Github [5, 6].

8. EVALUATION
We present the evaluation of MOS++ using both a pro-

totype implementation and simulations. We first use the
prototype to evaluate a number of object store setups under
multi-tenancy in both static and dynamic workloads. This
is followed by a simulation study of a large-scale system to
compare MOS++ and MOS.

8.1 Prototype Evaluation

Experimental Methodology. We evaluate MOS++ using
a 128-core local testbed. The testbed is connected using a
10 Gbps switch, with a maximum bandwidth of 40 Gbps.
We emulate a two-tenant (client) environment, i.e., we run
COSBench on two separate machines within the same sub-
net. We use WorkloadA (small-object read-intensive work-
load) and WorkloadC (large-object read-intensive workload)
for this purpose. We compare MOS++ against two differ-
ent object store setups – Default, where we use off-the-shelf
monolithic configuration of Swift, and Static, where we stat-
ically configure two micro object stores designated for two
tenants based on the rules-of-thumb of §3. The static ap-
proach is more advanced than the default segmentation poli-
cies [10] and serves as another point of comparison for our
approach. Note that we focus on MOS++ for our prototype
evaluation as it also encompass the basic design of MOS.

The Default setup is launched directly on the physical ma-
chines. Static, like MOS++, is launched inside containers.
For Static setup, we tried several different overall configu-
rations and selected the best one. Specifically, 75% CPU
cores, 30% of NW bandwidth, and 100% PCIe SSD with
30% SATA SSD are assigned to WorkloadA. Accordingly, 25%

3Swift lazily migrates existing data replicas to newly added disks
where new data can be instantly written and persisted. We lever-
age this feature to (i) control the I/O performance on new data
that is written in newly added disks, and (ii) amortize the data
migration cost.

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 1 2 3 4 5 6 7 8

B
a
n
d
w

id
th

 (
G

B
/s

)

Throughput (10
3
 QPS)

Default
Static

MOS++

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 0 1 2 3 4 5 6 7 8

B
a
n
d
w

id
th

 (
G

B
/s

)

Throughput (10
3
 QPS)

Figure 8: Overall throughput vs. bandwidth observed under dif-
ferent setups. Dotted lines are generated using linear regression,
indicating the linear relationship between the overall throughput
and bandwidth.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4 5 6 7 8

9
5

th
 %

ile
 l
a
te

n
c
y
 (

m
s
)

Throughput (10
3
 QPS)

Default
Static

MOS++

Figure 9: Throughput vs. 95th percentile latency under Work-
loadA.

CPU cores, 70% NW bandwidth, and 70% SATA SSD are
assigned to WorkloadC. MOS++ starts initially with the same
configuration as Static throughout our evaluation. Regard-
ing runtime parameters, we set slalow to be proportional to
the workloads’ load and slahigh 2× of slalow. We set utillow
65% and utilhigh 85%. We set epoch to be 3 minutes and
utilthresh as 80%.

Performance Evaluation. In our first set of experiments,
we evaluate MOS++’s ability to handle heterogeneous vary-
ing workloads. We vary the COSBench processes from 2
to 1024 for WorkloadA to increase the throughput, while we
decrease WorkloadC’s load by varying the COSBench pro-
cesses from 32 to 2. Figure 8 plots the overall performance
of the two studied workloads in terms of both throughput
(QPS) and bandwidth (MB/s). Default achieves signifi-
cantly higher bandwidth compared to Static when WorkloadC

dominates (the far left part on X-axis dimension). This
is because the large-object workload consumes most of the
network bandwidth to transfer packets containing payload
for large objects. Guided by our rules-of-thumb, Static’s
statically provisioned micro store setup is able to balance
the performance of both workloads to some extent. Hence,
as WorkloadA gradually increases and eventually dominates,
Static outperforms Default by as much as 2×. By lever-
aging workload-aware elasticity support, MOS++ combines
the “best of both worlds”, hence we see 10.4–89.6% improve-
ment in overall throughput and 7.6–79.8% improvement in
overall bandwidth, compared to both Default and Static.
Thus, MOS++ is able to improve the overall performance
for the two tenants with workloads exhibiting dramatically
different characteristics.
Figure 9 depicts the 95th percentile read tail latency and

throughput tradeoffs observed for WorkloadA. For WorkloadA,
Default performs the worst and lies in the upper-left corner

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

9
5

th
 %

ile
 l
a
te

n
c
y
 (

m
s
)

Bandwidth (GB/s)

Default
Static

MOS++

Figure 10: Bandwidth vs. 95th percentile latency under Work-
loadC. Average latency results show similar trend.

of the scatter chart. Static achieves comparatively similar
performance with MOS++ as WorkloadA starts to increase.
By adapting to the increasing load and adding more CPU
power for WorkloadA, MOS++ eventually outperforms Static
at peak loads (the right-most two data points) by up to
11.7% in throughput and up to 70.2% in tail latency. Fig-
ure 10 shows a similar trend under WorkloadC. Under the
large-object dominant workload, Static is bottlenecked by
its statically allocated network resource and hence limits
the bandwidth for WorkloadC. Accordingly, we observe up to
79% improvement in bandwidth and up to 50.6% reduction
in tail latency, compared to Default. Thus, MOS++ is able
to improve the performance for both tenants, and effectively
remove the performance bottleneck observed in Default and
Static setups.

Adaptivity and Efficiency Evaluation. In our next ex-
periment, we evaluate the adaptivity and resource efficiency
of MOS++. We use a dynamically changing heterogeneous
workload, which is issued concurrently by two tenants –
WorkloadA and WorkloadC. The workload is generated by COS-
Bench and is composed of three stages. In Stage 1, the work-
load is dominated by large objects (WorkloadC). At around
40 min, Stage 2 begins with abrupt change in workload char-
acteristics as the small-obj dominant workload (WorkloadA)
instantaneously spikes and then gradually shifts down. This
lasts for until around 200 min. Finally, at 230 min, in
Stage 3 there is another abrupt change as WorkloadA once
again increases and dominates. With these three stages
concatenated together we capture the behavior of MOS++

both under abrupt as well as gradual change in a dynami-
cally changing workload in a multi-tenant environment. Fig-
ure 11(a) and Figure 11(b) plot the average throughput
change and the average read latency change4 of WorkloadA,
respectively. Figure 11(c) plots the average bandwidth change
of WorkloadC. Besides, Figure 12 depicts the breakdown of a
variety of resources used in our tests.

As Stage 1 begins, MOS++ achieves the same performance
as Static. This is because MOS++ starts off with the same
setup as Static. After around 5 min, MOS++ slightly out-
performs Static by 12%, because MOS++ is SLA-aware and
gradually reduces the network bandwidth originally allo-
cated to WorkloadA and its performance reaches the highest
after 5 min. Though Static achieves comparatively similar
performance, it is not able to satisfy the SLA at 100% since
its allotted network bandwidth is quickly saturated. In con-
trast, as observed in Figure 12, WorkloadC eventually uses up
to 95% of all the available network resources (R3 and R5

4We observed a similar trend for write latency.

 0

 3

 6

 9

 12

 15

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

T
h
ro

u
g
h
p
u
t
(1

0
3
 Q

P
S

)
W

o
rk

lo
a
d
 A

Runtime (min)

Stage 1 Stage 2 Stage 3

Workload A
spikes

Workload A gradually decreases

Workload A
resumes

Default
Static

MOS++

(a) Throughput under WorkloadA.

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

A
v
e
ra

g
e
 l
a
te

n
c
y
 (

m
s
)

W
o
rk

lo
a
d
 A

Runtime (min)

Stage 1 Stage 2 Stage 3

Default unable to sustain
Worklaod A

MOS++ meets the SLAs

Default
Static

MOS++

(b) Average latency under WorkloadA.

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

B
a
n
d
w

id
th

 (
G

B
/s

)
W

o
rk

lo
a
d
 C

Runtime (min)

Stage 1 Stage 2 Stage 3

Workload C suddenly decreases
and gradually increases

SLA SLA

Workload C
decreases a bit

Default
Static

MOS++

(c) Bandwidth under WorkloadC.

Figure 11: Performance of MOS++ and the baselines under
a dynamically changing heterogeneous workload. Purple dashed
lines represent tenant-defined SLAs in terms of average latency
(slalow) for WorkloadA. Orange dashed lines represent tenant-
defined SLAs in terms of bandwidth (slalow) for WorkloadC.

in §3). Accordingly, MOS++ detects nothing significant in
WorkloadA and decides to free up the CPU resource originally
allocated to WorkloadA (recall that MOS++ and MOS starts
with the same configuration). This clearly demonstrates
that, rather than reserving resources statically, MOS++ elas-
tically reprovisions the resources to achieve better resource
efficiency while meeting the SLA.

Stage 2 instantaneously begins at around 40 min and quickly
spikes. At this time, MOS++ immediately start to react.
Driven by the increasing WorkloadA and the specified SLA
(90 ms average latency), MOS++ provisions proxies and ob-
ject stores with more CPU cores. This can be observed in
Figure 12 (R2 and R4). Note in Figure 11(a), MOS++ im-
proves the throughput of WorkloadA by up to 2.1× at around
60 min. As WorkloadC’s load decreases as Stage 2 begins,
MOS++ reduces the CPU cores allocated to WorkloadC and
reassigns them to WorkloadA. Correspondingly, 58% of the
network bandwidth allocated is reclaimed and marked as
free and 21% is reallocated to WorkloadA (R6). WorkloadA

spikes at around 60 min and gradually decreases while WorkloadC
slowly increases. Accordingly, MOS++ adapts by reclaiming
the extra CPU resources that are not needed for the cur-
rent load/SLA for WorkloadA, and grabs back the network

0%

50%

100%

C
P

U
(%

)

Workload A Workload C Free

0%

50%

100%

N
e

tw
o

rk
(%

)

0%

50%

100%

H
D

D
(%

)

0%

50%

100%

S
A

T
A

S
S

D
 (

%
)

0%

50%

100%

0 40 80 120 160 200 240 280

P
C

Ie
S

S
D

 (
%

)

Runtime (min)

Figure 12: Resource allocation breakdown under dynamically
changing heterogeneous workload.

COS Heuristics

CPU

driver

Disk

driver

Network

driver

Resource

allocator

Workload

parser

COS config

Resource

pool reader

Algorithm

Engine

Available
resources

Algorithm

Workload
spec.

SLA spec.

Figure 13: COSPerf architecture.

resource, which gets eventually saturated by WorkloadC (Fig-
ure 11(c)). Note that MOS++ allocates 50% of the HDD
capacity to WorkloadC at 80 min, since the optimizer detects
that a combination of HDD+SSD yields the most econom-
ical setup provided the given SLA (R7). As shown in Fig-
ure 11(a), MOS++ maintains the highest performance for
both tenants while being resource efficient, whereas both
Default and Static fail to do so, which further demonstrates
the superiority of MOS++.

Stage 3 begins at around 230 min with a sudden spike
of WorkloadA and about half drop in WorkloadC. Default is
unable to sustain WorkloadA, because the network bandwidth
is mostly used up by WorkloadC. Again, MOS++ maintains
the best performance for both tenants featuring the SLA-
awareness and workload adaptivity.

8.2 Comparison of MOS and MOS++
In our next set of experiments, we use a simulation study

to compare MOS and MOS++ for a large-scale setup.5

COSPerf Simulator. We design and implement a cloud
object store simulator (COSPerf) based on the rules-of-thumb
discussed in §3. Figure 13 depicts the architecture of COSPerf.
A resource parser takes as input available resources, and
sort them based on capability/capacity. The resources from
these pools are then fetched by the resource allocator for
launching resource drivers including a CPU driver, a disk
driver, and a network driver. Resource allocator is driven by
the algorithm engine, which is used to simulate the resource
provisioning algorithm that is provided as a configurable pa-

5For comparison of MOS with Static and the monolithic Default
setup please refer to our short paper [12].

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t
(1

0
3
 Q

P
S

)

Runtime (min)

Stage 1 Stage 2 Stage 3 Stage 4

MOS++ gradually
adds in containers

MOS++ outperforms
MOS

MOS,A
MOS++,A

MOS,B
MOS++,B

Figure 14: Throughput of MOS Vs. MOS++ under WorkloadA
and WorkloadB.

 0

 1

 2

 3

 4

 5

 0 100 200 300 400 500 600 700 800

B
a

n
d

w
id

th
 (

G
B

/s
)

Runtime (min)

Stage 1 Stage 2 Stage 3 Stage 4

MOS++ outperforms
MOS

MOS,C
MOS++,C

MOS,D
MOS++,D

Figure 15: Bandwidth of MOS Vs. MOS++ under WorkloadC
and WorkloadD.

rameter to COSPerf. The algorithm engine interacts with
the resource allocator to keep track of the available resources
and generates an object store configuration file. The algo-
rithm engine also monitors the simulated performance of the
launched microstores.
A cloud object store (COS) heuristics module takes work-

loads as input and predicts performance under a set of spec-
ified software/hardware configurations. The dynamic shifts
in simulated performance due to online reconfiguration and
workload changes are modeled and calculated by the COS
heuristics module, which is built based on the extensive
analysis and profiling of a real object store under various
scenarios (§3). Thousands of experiments (each running for
15 minutes) were executed under varying load/configuration
to further fine-tune our COS heuristics model.

Simulation Methodology. For simulation, we assume a
pool of 50 server machines with diversified (heterogeneous)
hardware configurations, including CPU, network, and stor-
age devices. Specifically, we use the following pool of re-
sources: (i) 3 32-core machines, 4 16-core, 31 8-core ma-
chines, and 12 4-core machines; (ii) 18 10 Gbps and 32
1 Gbps NICs; and (iii) HDD to SSD ratio was 70% to 30%.
The workloads run for about 14 hours and we divide the
workloads in four major stages. For analysis purposes, we
focus on throughput in terms of QPS for small object work-
loads and bandwidth for large objects.

Simulation Evaluation. Figure 14 and Figure 15 show
how MOS and MOS++ behave under dynamically-changing
WorkloadA-D. The goal of our evaluation is to test under
both abrupt and gradual change in a workload under multi-
tenancy, which are emulated by our workloads. In Stage 1,
as the load of small-object workloads (i.e., WorkloadA and
WorkloadB) increases (as shown in Figure 14), MOS uses re-
sources from the free resource pool to keep the resource uti-
lization under control until the utilization stabilizes and falls
back in the [utillow, utilhigh] range. MOS++ also achieves
the same goal but by allocating resources at a finer granular-

ity. As a result, we do not see a sudden spike in QPS. Instead
the transition is smoother, which allows both WorkloadA as
well as WorkloadB to almost linearly increase QPS. In addi-
tion to maintaining resource utilization within the accept-
able range, MOS++ also makes sure that SLA requirements
are met.

As Stage 2 begins, the load of large-object workloads (i.e.,
WorkloadC and WorkloadD) increases. As shown in figure 15,
both MOS and MOS++ start adding resources to accommo-
date the increasing demand on network bandwidth. Again,
MOS++ keeps fine-grained track of the resources at per-
container basis and just allocates the right amount of re-
sources to meet the tenant requirements while maximizing
the resource efficiency. Starting around 310 min, however,
MOS ends up adding more resources than needed to mi-
crostore C and D. Though MOS is able to lower down the
network utilization from 95% to 85%, it causes a spike in
performance.

From the beginning of Stage 3 up until around 500 min,
both MOS and MOS++ end up utilizing all the resources
due to the increasing demands from all tenants. As shown
in Figure 14 and Figure 15, MOS++ outperforms MOS by
up to 25% for WorkloadA, and up to 31% for WorkloadD. This
is due to the following design choices we make in MOS++:
(i) MOS++ allocates resources at the container granularity;
and (ii) MOS++’s optimizer generates a better resource pro-
visioning plan that yields higher performance by exploiting
all the available resources. After 500 min, the load decreases
for WorkloadC and WorkloadD. As a result, MOS and MOS++

reclaim resources from microstore C and D to the pool of
free resources. Finally, in Stage 4, the load further increases
for WorkloadA and WorkloadB. As a result, MOS and MOS++

utilize the resources freed up in Stage 3 from WorkloadC and
WorkloadD. At this point, both MOS and MOS++ quickly
detects performance improvement opportunity for WorkloadB
as the throughput of WorkloadB is still at a low level, while
more resources are also added into WorkloadA with the goal
to maintain the CPU utilization within the “sweet” range.
Hence, tenants will not see performance lost as the work-
load shifts. MOS++ further improves MOS’s performance
on WorkloadA and WorkloadB by up to 33% and 26%, respec-
tively. This, again, demonstrates the superiority of MOS++

in effectively utilizing the limited resources for maximizing
performance improvement and meeting tenants’ SLAs.

Workload MOS MOS++

A 4444 QPS 4994 QPS
B 3828 QPS 4429 QPS
C 2 GB/s 2.3 GB/s
D 1.6 GB/s 1.9 GB/s

Table 3: Average perfor-
mance summary.

Table 3 presents a sum-
mary of the average per-
formance by combining
all stages for WorkloadA-

D. The results show that
for small-object work-
loads, MOS++ achieves
12.4% better performance
for WorkloadA, and 15.7% better performance for WorkloadB,
compared to MOS. Similarly, average performance of
MOS++ for large-object workloads is 15% higher for
WorkloadC and 18.8% better for WorkloadD than that of MOS.

9. DISCUSSION
There are two limitations that are not fully addressed in

our current implementation. First, although MOS supports
multi-tenancy and heterogeneous workload separation, we
limit the number of microstores to be launched based on
workload characteristics (i.e., object sizes) to reduce the

implementation complexity and reconfiguration overhead.
Consequently, it limits the kinds of different workloads the
system can effectively handle. Should a workload change
its inherent characteristics, e.g., the object size distribution
changes dramatically, and no longer fit well with any pro-
visioned microstores, the system may end up doing recon-
figuration thrashing. This in turn will lead to reduced per-
formance. A possible solution is to perform online workload
analysis and profiling at the load balancer/redirector side,
and using the information to compute an optimal number
of microstores and perform workload-to-microstore mapping
on the fly. Such a dynamic detect-and-map system is part of
our future work. Second, although MOS++ is able to meet
the SLAs by leveraging offline workload profiling and on-
line optimization, it does not currently consider the profit,
i.e., revenue, for the service provider and tenant utility, i.e.,
perf/$, while provisioning the microstores. A feasible yet
simple cloud-profit-aware solution can be to enhance our op-
timizer by incorporating the cloud pricing model and mon-
etary profit. This aspect is orthogonal to our work, but can
be easily incorporated into the design if needed.

10. CONCLUSION
In this paper, we have presented an experimental analysis

of cloud object store, and proposed a set of rules-of-thumb
based on the study. The rules provide practical guidelines for
service administrators and online resource managers to bet-
ter tune object store performance to application needs. The
resulting system, MOS, outperforms extant object stores in
multi-tenant environments. Furthermore, we build MOS++

to enhance MOS by leveraging containers for fine-grained
resource management and higher resource efficiency. Our
experimentation reveals that it is possible to exploit the
inherent heterogeneity within modern datacenters to bet-
ter serve heterogeneous workloads across multiple tenants.
Evaluation with our prototype implementation shows that
MOS++ improves performance by up to 89.6% and 79.8%
compared to the default monolithic and statically config-
ured object store setup, respectively. We have implemented
COSPerf, a cloud object store simulator, to further verify
the design choices of MOS++. Results show that, by utiliz-
ing the same set of resources, MOS++ achieves up to 18.8%
performance improvement compared to the basic MOS.

Acknowledgments. We thank the anonymous reviewers for

their comments. This work was sponsored in part by the NSF

under Grants CNS-1405697 and CNS-1422788.

11. REFERENCES
[1] Arq. https://www.haystacksoftware.com/arq/.

[2] Ceph vs Swift. http://goo.gl/rtvrvg.
[3] Cloud backup with HP cloud. http://goo.gl/43bC5W.
[4] Control groups. https://goo.gl/KkCXAR.
[5] Docker container image for Swift object server. https://hub

.docker.com/r/alivt/swift-object.

[6] Docker container image for Swift proxy sever. https://hub.
docker.com/r/alivt/swift-proxy.

[7] Docker run preferences. https://goo.gl/SoF9Pc.
[8] IBM CPLEX optimizer. http://goo.gl/BA95mC.
[9] Linux traffic control. http://goo.gl/E5aQdq.

[10] Swfit storage policies. http://goo.gl/hRrySo.
[11] Volt git repo. https://github.com/VoltFramework/volt.
[12] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt. Taming

the cloud object storage with mos. In ACM PDSW, 2015.

[13] A. Anwar, K. Krish, and A. R. Butt. On the use of
microservers in supporting hadoop applications. In IEEE
CLUSTER, 2014.

[14] D. Beaver, S. Kumar, H. C. Li, J. Sobel, P. Vajgel, et al.
Finding a needle in haystack: Facebook’s photo storage. In
USENIX OSDI, 2010.

[15] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
self-organized, fault-tolerant and scalable replication
scheme for cloud storage. In ACM SOCC, 2010.

[16] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid,
R. Ramakrishnan, S. Rao, and R. Sears. Walnut: a unified
cloud object store. In ACM SIGMOD, 2012.

[17] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. Cast:
Tiering storage for data analytics in the cloud. In ACM
HPDC, 2015.

[18] Y. Cheng, M. S. Iqbal, A. Gupta, and A. R. Butt. Pricing
games for hybrid object stores in the cloud: provider vs.
tenant. In USENIX HotCloud, 2015.

[19] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. Paulo,
J. Pereira, and R. Vilaça. Met: workload aware elasticity
for nosql. In ACM EuroSys, 2013.

[20] S. Das, D. Agrawal, and A. El Abbadi. Elastras: An elastic
transactional data store in the cloud. USENIX HotCloud,
2009.

[21] C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In ACM
ASPLOS, 2013.

[22] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An
updated performance comparison of virtual machines and
linux containers. IBM Research Report, 2014.

[23] H. Greenberg, J. Bent, and G. Grider. Mdhim: A parallel
key/value framework for hpc. In USENIX HotStorage, 2015.

[24] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. H. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data
center. In USENIX NSDI, 2011.

[25] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, 2010.

[26] K. Krish, A. Anwar, and A. R. Butt. hats: A
heterogeneity-aware tiered storage for hadoop. In IEEE
CCGrid, 2014.

[27] K. Krish, A. Anwar, and A. R. Butt. [phi] sched: A
heterogeneity-aware hadoop workflow scheduler. In IEEE
MASCOTS, 2014.

[28] G. Lee, B.-G. Chun, and R. H. Katz. Heterogeneity-aware
resource allocation and scheduling in the cloud. In USENIX
HotCloud, 2011.

[29] H. C. Lim, S. Babu, and J. S. Chase. Automated control
for elastic storage. In ACM ICAC, 2010.

[30] J. Mars, L. Tang, and R. Hundt. Heterogeneity in
“homogeneous” warehouse-scale computers: A performance
opportunity. IEEE CAL, 2011.

[31] M. A. Sevilla, N. Watkins, C. Maltzahn, I. Nassi, S. A.
Brandt, S. A. Weil, G. Farnum, and S. Fineberg. Mantle: a
programmable metadata load balancer for the ceph file
system. In ACM SC, 2015.

[32] Y. Tanimura, S. Yanagita, and T. Hamanishi. A high
performance, qos-enabled, s3-based object store. In IEEE
CCGrid, 2014.

[33] B. Trushkowsky, P. Bod́ık, A. Fox, M. J. Franklin, M. I.
Jordan, and D. A. Patterson. The scads director: Scaling a
distributed storage system under stringent performance
requirements. In USENIX FAST, 2011.

[34] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and
C. Maltzahn. Ceph: A scalable, high-performance
distributed file system. In USENIX OSDI, 2006.

[35] Q. Zheng, H. Chen, Y. Wang, J. Duan, and Z. Huang.
Cosbench: A benchmark tool for cloud object storage
services. In IEEE CLOUD, 2012.

https://www.haystacksoftware.com/arq/
http://goo.gl/rtvrvg
http://goo.gl/43bC5W
https://goo.gl/KkCXAR
https://hub.docker.com/r/alivt/swift-object
https://hub.docker.com/r/alivt/swift-object
https://hub.docker.com/r/alivt/swift-proxy
https://hub.docker.com/r/alivt/swift-proxy
https://goo.gl/SoF9Pc
http://goo.gl/BA95mC
http://goo.gl/E5aQdq
http://goo.gl/hRrySo
https://github.com/VoltFramework/volt

	Introduction
	Background and Related Work
	Analysis
	MOS Framework
	Basic MOS
	Enhancements: MOS++
	Implementation
	Evaluation
	Prototype Evaluation
	Comparison of MOS and MOS++

	Discussion
	Conclusion
	References

