
MRONLINE: MapReduce Online Performance Tuning

Min Li†, Liangzhao Zeng‡, Shicong Meng‡,
Jian Tan‡, Li Zhang‡, Ali R. Butt†, Nicholas Fuller‡

† Dept. of Computer Science, Virginia Tech; ‡IBM TJ Watson Research Center

{limin,butta}@cs.vt.edu, {lzeng,smeng,tanji,zhangli,nfuller}@us.ibm.com

ABSTRACT

MapReduce job parameter tuning is a daunting and time consum-
ing task. The parameter configuration space is huge; there are more
than 70 parameters that impact job performance. It is also difficult
for users to determine suitable values for the parameters without
first having a good understanding of the MapReduce application
characteristics. Thus, it is a challenge to systematically explore
the parameter space and select a near-optimal configuration. Ex-
tant offline tuning approaches are slow and inefficient as they entail
multiple test runs and significant human effort.

To this end, we propose an online performance tuning sys-
tem, MRONLINE, that monitors a job’s execution, tunes associ-
ated performance-tuning parameters based on collected statistics,
and provides fine-grained control over parameter configuration.
MRONLINE allows each task to have a different configuration, in-
stead of having to use the same configuration for all tasks. More-
over, we design a gray-box based smart hill climbing algorithm
that can efficiently converge to a near-optimal configuration with
high probability. To improve the search quality and increase con-
vergence speed, we also incorporate a set of MapReduce-specific
tuning rules in MRONLINE. Our results using a real implemen-
tation on a representative 19-node cluster show that dynamic per-
formance tuning can effectively improve MapReduce application
performance by up to 30% compared to the default configuration
used in YARN.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems —distributed applications; D.2.9 [Software]: Software Engi-
neering —software configuration management

General Terms

Design, Algorithms, Performance, Evaluation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC’14, June 23–27, Vancouver, BC, Canada.

Copyright 2014 ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600229 .

Performance

Advisor

New Job

Configuration

Test Run

Job Results

Monitored Logs

Job Configuration

Figure 1: Current offline performance tuning approach used for

MapReduce applications.

Keywords

Cloud computing; MapReduce; YARN; Online parameter tuning;
Performance tuning; Dynamic parameter configuration; Hill climb-
ing.

1. INTRODUCTION
The use of the MapReduce [3] large-scale data processing frame-

work is growing exponentially as the amount of data created by web
search engines, social networks, business web click streams, and
academic and scientific research continue to increase at unprece-
dented rates. While the MapReduce framework enables users to
scale up applications easily, writing good MapReduce applications
requires specialized system-level skills and extra effort as users
also have to provide application-specific job and system configu-
ration parameters. These parameters are crucial and affect perfor-
mance significantly. For example, consider the configuration pa-
rameter io.sort.mb that controls the amount of buffer memory to
use when sorting files. Setting io.sort.mb to sub-optimal values
can lead to unnecessary I/Os and consequently increase task run-
ning time. Moreover, different applications require different values
for io.sort.mb depending on the HDFS [8, 11] block size and the
map task output size. Similarly, applications vary in demands, e.g.,
the MapReduce application Grep [9] requires smaller sort space
than Terasort [10], as Grep usually outputs much less data than
Terasort in the map phase. Recent research such as Starfish [15]
shows that MapReduce application performance depends on the
size and content of the data set, job characteristics, cluster hardware
configuration, and more importantly configuration parameters. The
importance of such performance tuning is further highlighted by the
observation that a simple web search on the topic yields a long list
of best practices and MapReduce tuning guides [1, 2, 16, 17, 31].
These documents show that multiple orders of application perfor-
mance gains can be achieved when using tuned parameters com-
pared to the default settings.

The challenge is that the MapReduce job parameter tuning is a
daunting and time consuming task. This is mainly due to the fact
that the parameter configuration space is huge; the number of per-
formance related parameters in Hadoop [8] is more than 70. More-
over, it is difficult for a user to determine the optimal value for a pa-
rameter without first having a deep understanding of the application
characteristics. The current approach to address this challenge is to
use offline performance tuning. As shown in Figure 1, traditional
offline tuning first selects a configuration based on default settings
or a rough understanding of application characteristics. Next, sev-
eral test runs of the application are done and profiled to collect data
such as job performance counters, and system monitoring logs. The
user then feeds the collected data to a performance advisor, or per-
form manual static analysis, to generate a new configuration. The
whole process is then repeated multiple times until a desired perfor-
mance goal is reached. The selected configuration is then employed
for running the application on production clusters.

There are multiple drawbacks of the above traditional perfor-
mance tuning for MapReduce. First, the process is time consuming
as it requires many test runs and each run can only try a single
configuration. This is further exacerbated when the application in-
volves long running tasks. Second, the offline approach is not cost
effective if the tuning is done for an application that will only run
for few times or perhaps just once. Users would rather simply run
their applications without tuning, leading to overall inefficient re-
source utilization. In addition, as shown by Starfish [15], the opti-
mal configuration also depends on the data set and cluster hardware
configuration. This implies that users would have to re-adjust the
parameters each time they change the input data sets or run the ap-
plications on different clusters. Moreover, no one configuration is
suitable for all tasks within a job. MapReduce jobs also commonly
exhibit data skew [23] that requires different amounts of resources
based on the different sizes of data being processed. Finally, the tra-
ditional offline tuning statically tunes the parameters once and use
the configuration throughout the whole life cycle of a job. How-
ever, the job characteristics and cluster utilization are dynamic, and
static tuning cannot adapt to such variations and thus cannot avoid
performance-degrading cluster hot spots.

In this paper, we mitigate the aforementioned problems by de-
signing an online performance tuning system, MRONLINE. MRON-
LINE improves single Hadoop job performance via online perfor-
mance tuning, as well as expedites the performance tuning process
by reducing the number of test runs by employing a finer grain
online process that tests multiple configurations per run. MRON-
LINE provides the ability to tune multiple jobs’ performance in
a multi-tenant environment. Moreover, MRONLINE considers dy-
namic cluster utilization information to help MapReduce applica-
tions avoid hot spots. MRONLINE also does not require any modifi-
cations to user programs, which makes it user friendly and encour-
ages quick adoption.

Specifically, this paper makes the following contributions:

• We design and implement a task-level dynamic configura-
tion framework based on YARN [29], the second generation
open source MapReduce implementation. MRONLINE en-
ables different configurations for each map and reduce task,
which is a key system-level improvement over extant ap-
proaches and offers huge optimization opportunities.

• We design a gray-box based smart hill climbing algorithm
to systematically search the MapReduce parameter space,
which relies on our task-level dynamic configuration frame-
work. We support both aggressive and conservative tuning
strategies.

• We propose tuning rules for key parameters, which improve
search quality and reduce convergence iterations.

• We evaluate MRONLINE on YARN and present an experi-
mental performance evaluation on a representative 19-node
cluster. Our results demonstrate that compared to the de-
fault YARN settings, our approach achieves an efficiency im-
provement of 22% by dynamically tuning the applications.
Moreover, for applications that run multiple times, MRON-
LINE can expedite the test runs and reduce job execution
time by up to 30%. Our results show that MRONLINE of-
fers an effective means to improve MapReduce application
performance.

The rest of the paper is organized as follows. Section 2 presents
an introduction of YARN, the classification of configuration pa-
rameters and identifies two use cases that we consider in MRON-
LINE. Section 3 discusses the system architecture of MRONLINE,
followed by an explanation of the task-level dynamic configuration
in Section 4. In Section 5, we detail the design of our gray-box
based hill climbing algorithm to systematically search for optimal
configuration parameters. Section 6 describes the tuning rules for
various key job configuration parameters. Section 7 discusses our
implementation details. Section 8 demonstrates the effectiveness
of MRONLINE versus the default configuration through a series of
experiments. Related works are discussed in Section 9, and finally
Section 10 concludes the paper.

2. BACKGROUND
In the section, we first describe YARN that serves as an enabler

for MRONLINE. Next, we present a classification of the consid-
ered configuration parameters, followed by an identification of two
specific use cases that we have considered in MRONLINE.

2.1 YARN
MRONLINE is designed and implemented on YARN [29], the

latest generation of the publicly available Hadoop platform. We
choose YARN as it provides many advantages over prior ver-
sions of Hadoop. Hadoop is designed as a monolithic framework,
which tightly couples the MapReduce programming model with
distributed resource management. This leads to unnecessary/forced
use and misuse of the MapReduce programming model when all
what users want is to just leverage the large-scale compute re-
sources provided by enterprises and research organizations. For in-
stance, users have been observed to submit map-only applications
to simply launch arbitrary processes (not necessarily MapReduce
tasks) in Hadoop clusters [29], or submit applications that have map
functions implemented as reduce tasks to circumvent limited map
quotas [12]. Moreover, Hadoop employs a centralized scheduler
for managing tasks of all jobs. This is becoming a performance
bottleneck as the number of jobs submitted to a Hadoop cluster
grows. Traditional Hadoop implementation also does not support
changing the map or reduce slot configurations between different
jobs, which precludes dynamically adapting to variations during a
job’s life-cycle, and consequently reduces system efficiency.

YARN has been designed to address the above limitations. It sep-
arates the computational programming models from resource man-
agement, and provides support for frameworks other than MapRe-
duce such as Giraph [7, 27], Spark [19, 35], and Storm [28]. In
this paper, we focus on tuning parameters of the MapReduce pro-
gramming model running on top of YARN. However, YARN can
be exploited to extend our approach to support performance tuning
of other frameworks as well. Another useful feature of YARN is

that it delegates application related scheduling to per application
masters that can employ application-specific resource scheduling,
thus providing for higher scalability. For this purpose, YARNman-
ages cluster-wide resources through the use of a new key concept,
“container.” A container is a resource scheduling unit that encap-
sulates the number of CPUs, required memory, interconnect band-
width, etc. for scheduling. Different MapReduce applications can
request different-sized containers from YARN as per their needs.
For example, an application master is responsible for specifying
the number of needed containers, the size of each container, and
the mapping between the containers and tasks. MRONLINE lever-
ages the containers to design a task-level configuration framework.

2.2 Parameter Classification
We focus on parameters that impact application performance and

are amenable to dynamic configuration. The optimal values of
these parameters depend on the application characteristics, the size
and the contents of the associated input data and the cluster setup.
We classify the considered parameters into three categories based
on when the modified value of a parameter can take effect.

The first category includes parameters that are difficult
to change after the application has started. The num-
ber of mappers, the number of reducers, and slow start
(mapreduce.job.reduce.slowstart.completedmaps) are three
key parameters that fall into this category. Slow start specifies the
number of mappers that should be completed before any reduc-
ers are launched. Starting the reduce tasks early can help overlap
the map tasks execution with the shuffle phase and improve perfor-
mance. However, starting the reduce tasks too early creates con-
tention for the cluster resources that are also needed by the map-
pers. The optimal value for the parameter is application specific.

The second category consists of parameters that cannot be
changed on the fly for already running tasks, but impact the tasks
that will be launched after changes have been made. Examples of
such parameters include io.sort.mb, the number of virtual cores
in a container, the size of memory in a container, and parameters
specifying reduce buffer size. Choosing the right values for this
category can reduce I/Os and improve the cluster utilization.

The third category consists of parameters that can be changed
on the fly and become effective immediately. Parameters such
as mapred.inmemmerge.threshold and io.sort.spill.percent
fall into this category. These two parameters control the threshold
of when to spill out data from memory onto disks. MRONLINE can
even try multiple values within a task for parameters in this cate-
gory, thus speeding up the tuning process.

MRONLINE currently supports tuning of parameters in the sec-
ond and third categories. Tuning of parameters in the first category
can be done using simulation tools, such as MRPerf [30], and re-
mains a focus of our on-going research.

2.3 Use Cases for MRONLINE

We considered two use cases for designing MRONLINE. The first
use case is to expedite test runs by trying multiple task configura-
tions in a single test run. This enables us to reduce the tuning time
significantly. The second use case is to improve the performance
of applications that are executed only once. MRONLINE employs
different strategies for each of these two use cases.

1. Expedited Test Runs Use Case: In this use case, we ag-
gressively and systematically search for different parameter con-
figurations to find optimal values. We first design and implement
a task-level configuration framework that enables testing of differ-
ent parameter configurations in a single test run. We then design
a gray-box based smart hill climbing algorithm to find the optimal

Figure 2: MRONLINE system architecture.

configuration. The quality of the generated solution depends on
the number of tasks executed in a single test run. If too few tasks
are executed, the configuration quality can be improved by multi-
ple test runs. We also increase the algorithm convergence speed by
monitoring and modeling the runtime statistics into the algorithm.

2. Fast Single Run Use Case: In this use case, we improve
the application performance in a single run. Here, we conserva-
tively tune the configurations mostly based on the observed runtime
statistics. For example, if we observe that too many spills are being
written to the disk, we increase the size of the sort buffer. Our main
goal in this case is to improve performance of the current task, in-
stead of searching for a desirable configuration that can be used for
later runs. This is particularly useful for jobs that run few times or
only once. For this use case, a performance boost can be achieved
by simply co-executing MRONLINE with target applications.

3. SYSTEM ARCHITECTURE
The overall architecture of MRONLINE is shown in Figure 2.

MRONLINE is based on YARN that, unlike the centralized job
tracker of earlier versions of Hadoop, has a resource manager that
manages cluster resources and the execution cycle of distributed
application-specific masters, and tracks node liveness. To support
dynamic configuration, MRONLINE modifies the YARN resource
manager to support allocation of different-sized containers for dif-
ferent applications. The Node manager, akin to the task tracker of
Hadoop, runs on each cluster node and is responsible for managing
the containers running locally on the node. However, YARN del-
egates the task tracking functions to per application components.
MRONLINE implements its sub-components within each node man-
ager to leverage existing features such as resource monitoring.

MRONLINE consists of a centralized master component, online
tuner, which is a daemon that can run on the same machine as the
resource manager of YARN or on a dedicated machine. Online
tuner controls a number of distributed slave components that run
within the node managers on the slave nodes of the YARN cluster.

Online tuner is composed of three components: a monitor, a
tuner and a dynamic configurator. The monitor works together
with the per-node slave monitors to periodically monitor appli-
cation statistics. Specifically, the slave monitors gather statistics
about the tasks running on the node, as well as the node statistics,
and send the information to the centralized monitor. The central-
ized monitor then aggregates, analyzes and passes the information
to the tuner.

The tuner implements the tuning strategies and algorithms,
which decide what parameters should be changed and what new
values should be assigned. When needed, the tuner generates
new configurations for each application and task. Finally, the dy-

API Description

List<String> getConfigurableJobParameters(JobID

jid)

Returns the set of configurable parameters for the job with
job ID jid and associated tasks that are currently running
or will run in the future.

List<String> getConfigurableTaskParameters(JobID

jid, TaskID tid)

Returns the set of configurable parameters for the tasks
with job and task IDs jid and tid, respectively.

int setJobParameters(JobID jid, Sets the parameters for a job with ID jid.
Map<String, String> kv)

int setTaskParameters(JobID jid, TaskID tid,

Map<String, String> kv)

Sets the parameters for a task with job and task IDs jid
and tid, respectively.

int setTaskParameters(JobID jid, Sets the parameters for all the tasks associated with a job
Map<String, String> kv) with ID jid.

Table 1: Key APIs provided by the dynamic configurator of MRONLINE.

Real Time

Performance

Monitor

Performance

Advisor

Other

Performance

Tuning Tools

Tuning

Knowledge

Base

New Job

Configuration

Test Run

Runtime

Statistics

Job

Configuration

Dynamic

Configurator

Figure 3: The tuning process used by MRONLINE.

namic configurator takes the newly chosen configurations and dis-
tributes the lists of new parameters to the slave configurator com-
ponents. The slave configurators are responsible for activating the
new changes for tasks that are running on their associated nodes.

Figure 3 illustrates the tuning process used by MRONLINE. Af-
ter storing input data sets in HDFS, a user launches the applica-
tion using a default configuration or a configuration based on rough
understanding of application characteristics. The real-time perfor-
mance monitor then starts to track runtime statistics including per
task information such as task progress rate, CPU and memory uti-
lization, the number of spilled records, I/O utilization and per node
resource utilization. This information is periodically sent to the
performance advisor that is implemented in the tuner component
shown in Figure 2. The performance advisor analyzes and deter-
mines new configurations and sends them to the dynamic configu-
rator that then changes the configuration for each task accordingly.
The tuning process iterates until a desirable configuration is gener-
ated. MRONLINE supports both aggressive and conservative tuning
strategies (Section 2). The performance tuning advisor can also be
extended to communicate with other performance tuning tools, and
the tuning rules can also be stored in a tuning knowledge base to be
used across application runs.

4. TASK-LEVEL DYNAMIC CONFIGURA-

TION
We extend YARN to support task-level dynamic configuration.

In contrast to traditional YARN applications that use one configu-
ration for executing all of the tasks, MRONLINE enables different
configurations for different tasks.

Upon receiving a list of tasks and associated configuration map-
pings, the dynamic configurator writes per-task configuration files
to the working directory of the corresponding application. When
the tasks are assigned to containers, the slave configurator on the
nodes retrieves the changed configuration files associated with the
tasks. The launched tasks then read the changed configuration files,
which in turn changes the configuration accordingly. Thus, each
task can have a different configuration that can also vary.

Current implementation of YARN supports one fixed container
size for all map tasks or all reduce tasks. We extend the resource
scheduler to support requests that require different-sized contain-
ers. Specifically, we use a hash map data structure to keep track
of the different-sized containers requested and corresponding oper-
ations such as assignment and release of the containers.

The key APIs supported by the dynamic config-
urator of MRONLINE are shown in Table 1. The
functions getConfigurableJobParameters and
getConfigurableTaskParameters return a set of config-
urable parameters for a specified job or task. The other three
functions set the job or task configuration parameters to specified
values. The APIs also allow other tuning algorithms, and not just
ours, to easily tune the job parameters if needed.

5. GRAY-BOX BASED HILL CLIMBING

ALGORITHM
In this section, we present the design of our tuner that system-

atically searches through the configuration space and finds a de-
sirable configuration given a specific application, data set size and
cluster configuration. To this end, we introduce a gray-box based
hill climbing algorithm to tune the job parameter configurations
for YARN applications. Our approach is inspired by the smart hill
climbing algorithm [33] that was developed to provide black-box
optimization for configuring web application servers. Our approach
has three desirable properties: 1) it provides probabilistic guaran-
tees on the closeness of a determined configuration to the optimal
configuration; 2) it effectively tolerates noise in evaluated cost from
factors such as resource contention; and 3) it adopts the weighted
latin hypercube sampling (LHS) technique that helps improve the
sampling quality and increases the convergence speed. Applying
LHS in our approach allows us to partition the probability distribu-
tions of each parameter value into equal probability intervals, and
sample a value from each interval, which leads to higher quality
sampling. Moreover, we also consider the system-level monitoring
information and apply it to the algorithm to speed up the search
process. Thus, our algorithm offers a gray-box based method.

Algorithm 1 shows the details of tuning we have devised in
MRONLINE. Our algorithm has two phases, a global search phase
and a local search phase. The global search phase aims to find
promising local areas to explore through efficient LHS sampling.
The local search phase moves or narrows the search neighborhood
area determined by any cost improvements compared to the cur-
rent best configuration, until the size of the neighborhood is smaller
than a predefined threshold. The local search phase also uses LHS
to search the neighborhood and picks the best configuration.

Algorithm 1 Gray-Box based Hill Climbing.

1: Initialize LHS parameters k,m, n, the threshold of neighborhood size
Nt, the shrink factor f and the threshold of global search g.

2: local_search = 1, global_search = 1
3: config[m] = LHS_sampling(m)
4: Ccur=best(config[m])
5: Nccur

=adjust_neighbor(Ccur)
6: While global_search < g do
7: if local_search == 1 then
8: while NCcur

> Nt do
9: config[n]=LHS_sampling(n)
10: Ccandi=best(config[n])
11: if(cost(Ccandi) < cost(Ccur))
12: Ccur=Ccandi

13: Nccur
=adjust_neighbor(Ccur)

14: else
15: Nccur

=shrink_neighbor(Ccur)
16: endif
17: endwhile
18: local_search = 0
19: endif
20: config[m]=LHS_sampling(m)
21: Ccandi=best(config[m])
22: if(cost(Ccandi) < cost(Ccur))
23: Ccur = Ccandi

24: Nccur
=adjust_neighbor(Ccur)

25: local_search = 1
26: else
27: global_search++
28: endif

29: endwhile

The initial value for parameters such as the number of sampled
configurations in the global search phase m (set to 24 in our tests),
the number of sampled configurations in the local search phase n
(16), the threshold of neighborhood size Nt (0.1), and the shrink
factor f (0.75) that controls the ratio of the current neighborhood
size to the shrunken neighborhood size, are set based on experimen-
tation with the factors along with the theoretical analysis provided
by the smart hill climbing algorithm [33]. The LHS interval, k, in-
dicates the granularity of each parameter interval, and is set to 24
in our evaluation.

After the initialization, we enter the global search phase that uses
LHS to generate m test configurations. Next, we configure the first
m tasks to each use one of the generated configurations. As the
tasks execute, the application performance is periodically moni-
tored and the observations are used to estimate the cost of each
configuration. We choose the configuration Ccur that has lowest
estimated cost as the current search point and set the neighborhood
size based on Ccur. Next, we switch to the local search phase,
where we iteratively apply LHS sampling with n sampled config-
urations on the updated neighborhood with the center point Ccur.
The dynamic configurator uses the newly calculated configurations
to configure the newly launched tasks dynamically and the moni-
tor component then gathers the execution statistics of the launched
tasks. A candidate configuration Ccandi is chosen based on the
updated minimum estimated cost. The algorithm compares the es-
timated costs of a candidate configuration Ccandi and the current
best configuration Ccur. If the candidate configuration is better
than the current configuration, it implies that there is a high possi-
bility that a better configuration from the neighborhood with cen-
ter configuration Ccandi can be obtained. Otherwise, the algorithm
shrinks the neighborhood size with the same center pointCcur with
shrink factor f . The local search phase is then terminated, after the
local search finds a local point with a neighborhood size smaller

than a predefined threshold Nt. This implies that the algorithm
finds a local optimal point.

After the local search phase, the algorithm enters the global
search phase again to find a promising configuration space to ana-
lyze. If a point that is better than the current local optimal configu-
ration is found, the system enters the local search phase to refine the
search, otherwise the algorithm terminates after a specified number
of iterations g (set to 5 in our tests).

There are several challenges we have to address to incorporate
the gray-box hill climbing algorithm into MRONLINE.

Mapping Sampled Configurations to Tasks. Our monitor
keeps track of the launched tasks and their associated configura-
tions, as well as queued tasks both with and without assigned con-
figurations. Given the fact that the tasks are independent from each
other in YARN, when the configurations are generated, our tuning
system randomly chooses a task from the queued tasks list and as-
signs one of the configurations to the task. The configuration is
then further adjusted based on the task-related information.

Estimating Cost of Executed Tasks. Equation 1 shows how we
estimate the cost of each task. We consider four factors: CPU uti-
lization, memory utilization, ratio of the number of spill records to
the number of map output or combiner output records, and ratio of
the current task execution time to the maximum task execution time
of all the tasks in the job. The goal of this formula is to reduce the
task execution time and the number of spill records of all the tasks,
while keeping the memory and CPU fully utilized. A caveat to
avoid is that over-utilizing resources can create contention between
tasks, thus increasing task execution time.

y = (1.0−umem)+ (1.0−ucpu)+numspill/nummapoutput

+ Ttask/Tmaxtask. (1)

Utilizing Tuning Rules to Reduce the Number of Conver-

gence Iterations and Resizing the Neighborhood Size. We con-
sider the statistics collected from the monitor for enhancing search
quality, which we detail in Section 6.

Moreover, the dependencies between the parameters are also
considered in the algorithm. For example, the memory size of
mappers should always be greater than the size of io.sort.mb. The
parameter mapreduce.reduce.shuffle.input.buffer.percent
should always be greater than the parameter
mapreduce.reduce.shuffle.merge.percent. Since a job
with a small number of map tasks can restrict MRONLINE to try
out all the parameters listed in Table 2, considering these tuning
rules helps us converge to a suitable configuration quickly. In the
evaluation section, we quantify how the tuning effectiveness is
impacted by the length of a job.

6. TUNING RULES
In this section, we present the guidelines that we incorporate into

our gray-box based algorithm (Section 5) for tuning MapReduce
setups for the two target use cases identified in Section 2.3. We
focus on the CPU and memory related parameters shown in Ta-
ble 2. Other parameters are tuned using the hill climbing algorithm
without using the additional tuning rules.

The tuning rules are aimed at improving the cluster utilization
by adjusting containers to meet the task requirements and allevi-
ate over- or under- utilization, as well as to reduce extra I/O traffic
by carefully tuning the memory buffer options. The current im-
plementation of MRONLINE provides per-task configuration, and

Configuration Parameters Default
Value

Memory Tuning

mapreduce.map.memory.mb 1 GB
mapreduce.reduce.memory.mb 1 GB
mapreduce.task.io.sort.mb 100
mapreduce.map.sort.spill.percent 0.8
mapreduce.reduce.shuffle.input.buffer.percent 0.7
mapreduce.reduce.shuffle.merge.percent 0.66
mapreduce.reduce.shuffle.memory.limit.percent 0.25
mapreduce.reduce.merge.inmem.threshold 1000
mapreduce.reduce.input.buffer.percent 0.0

CPU Tuning

mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.task.io.sort.factor 10
mapreduce.reduce.shuffle.parallelcopies 5

Table 2: The key configuration parameters in MRONLINE.

application-wide auto-configuration, e.g., selection of the number
of mappers and reducers, remains the focus of our future work.

6.1 Tuning Guidelines for the Considered Use
Cases

Expedited Test Runs Use Case: The goal in this case is to re-
duce the number of test runs and find a near-optimal configura-
tion for YARN applications. To this end, we allow MRONLINE

to temporarily yield worse performance than the default configu-
ration as the algorithm searches through the configuration space
comprehensively and monitors the changes and their impact. We
adopt an aggressive strategy that tries out as many cases as possi-
ble using a wave pattern for invoking parameter changes. We first
update several tasks with new configurations at once, run and col-
lect data about the tasks, and then adjust the parameter settings in
the next wave based on the collected statistics from the previous
wave. Moreover, MRONLINE controls the YARN application exe-
cution flow by holding off the launching of new tasks until the tasks
in the previous wave are finished. This strategy slows down the test
run execution, but allows the gray-box search algorithm to find a
near-optimal configuration with high confidence.

Fast Single Run Use Case: In this case, we aim to improve
performance in a single job run. Here, we adopt a conservative
approach. We start the job with default values in the first wave
and tune the parameters based on the collected information in the
next. Moreover, MRONLINE does not interrupt the application task
scheduling sequence, thus minimizing any negative impact of the
gray-box algorithm on performance. The slave configurator run-
ning on each participating node uses the updated configuration file
if available. If the configuration file is not present, the task is
launched with the default configuration.

6.2 Memory Tuning
The first part of Table 2 shows parameters that decide the mem-

ory allocation of map and reduce tasks and the memory allocation
for the sub-phases within these tasks. These parameters should be
selected carefully. If the memory is set to too big of a value, it will
waste memory resources that can be allocated to other containers,
thus reducing overall cluster utilization. In contrast, if the memory
is set to too small a value, it will incur resource contention leading
to extra disk operations (even out of memory errors), thus degrad-

ing performance. The optimal values depend on the input data size,
the map/reduce function, and the output data size.

To tune the memory allocation of map and reduce tasks,
we adjust the parameters mapreduce.map.memory.mb and
mapreduce.reduce.memory.mb. For aggressive tuning, we
obey the hill climbing algorithm using LHS sampling to try mem-
ory options within predefined memory ranges. After we obtain the
task execution time and the memory utilization of map or reduce
tasks that ran in the previous wave, we adjust memory bounds to
help our hill climbing algorithm to narrow down the search space
of these two parameters. This is done as follows. If we observe
the memory utilization to be beyond 90%, it may cause over-
utilization, so we increase the memory lower bounds to the 80th

percentile of sampled memory values. We also decrease the mem-
ory upper bounds to 80th percentile of sampled memory values if
we detect memory under-utilization (50% of memory utilization).
When the tasks suffer from data skew and exhibit heterogeneous
behavior, MRONLINE keeps track of the 80th percentile value, and
adjusts the bounds accordingly. For conservative tuning, we try
different memory values only when they have high probabilities to
yield better results. For the first wave, we conservatively use de-
fault values and collect statistics. We then estimate the memory
size needed by the map or reduce tasks using this information. If
the memory is underutilized, our hill climbing algorithm tries the
lower value with a higher probability; otherwise, it tries the higher
value with a higher probability.

The next finer grain level of memory pa-
rameter tuning includes three key parameters:
mapreduce.task.io.sort.mb in the map phase, and
mapReduce.reduce.shuffle.input.buffer.percent and
mapReduce.reduce.input.buffer.percent in the reduce phase.
These affect performance in that they control the number of spill
records written to disks. If enough memory is allocated both in
the map and reduce phases, the number of spill records will be
minimized. The parameter mapreduce.tasks.io.sort.mb should
not exceed the memory size of map tasks.

Ideally, the number of spill records in the map phase should
equal the number of map output records. The number of spill
records in the reduce phase should equal zero. Otherwise, the
number of spill records is 3× the number of map output records
in the worst case. However, allocating more memory than needed
would cause memory contention between the buffers and applica-
tion logic, which negatively impacts job performance. The optimal
memory buffer sizes depend on job and cluster characteristics.

The approach used for tuning the parameter
mapreduce.task.io.sort.mb is to configure the buffer size
based on map output size by continuously monitoring the number
of spill records and the size of map outputs. For conservative
tuning, the value is set as the default value in the beginning. As the
first few map tasks are started, the buffer size is set to the estimated
map output size. If the ratio of increased number of spill records
to increased map output records is greater than one, we increase
the lower bound to 80th percentile of the sampled values, since
the current parameter value is not big enough to hold the map or
combine outputs. If the ratio is one, MRONLINE decreases the
upper bound to 80th percentile of the sampled values. The rule is
similar for aggressive tuning, except that before any application
statistics are obtained, multiple configurations as determined by
the hill climbing algorithm are first tried.

The parameter mapreduce.map.sort.spill.percent decides
when to spill data out to disks. It enables pipelining be-
tween map functions and disk writes. When the param-
eter io.sort.mb is big enough, the value of the parameter

mapreduce.map.sort.spill.percent should be set to a high value
to ensure that disk writes are not triggered. Thus, for both aggres-
sive and conservative tuning, we set the value to 0.99. If spilling
extra records is unavoidable, we reset the parameter to its default
value.

For tuning buffers in the reduce phase, we calculate the buffer
sizes based on the estimated reduce input sizes. Specifically, the
input size of each reducer is estimated by monitoring the number of
spill records in the reduce phase and the sum of the size of partitions
generated by each map output for the corresponding reducer.

The parameter MapReduce.reduce.input.buffer.percent
decides when to write the merged reduce output to
disk. For example, when the reduce function re-
quires only a small amount of memory, the parameter
mapreduce.shuffle.input.buffer.percent is set equal to
the shuffle buffer to avoid any spills written to disks. Specifically,
we use the memory utilization statistics from node managers to
determine the memory usage of reducers.

The parameter mapreduce.reduce.shuffle.merge.percent
controls the trigger for memory to disk merge pipelining shuf-
fle and memory-disk merge. It cannot exceed the reduce buffer
size. For conservative tuning, the value is initially set as the de-
fault value. When the shuffle buffer is big enough to accommo-
date all the reduce input, the value can be set equal to the shuffle
buffer to avoid additional disk I/Os. Otherwise, for safety, the value
is set to (mapreduce.reduce.shuffle.input.buffer.percent−
0.04) that has the same value difference with the parame-
ter mapreduce.reduce.shuffle.input.buffer.percent as in
the default YARN configuration. Finally, we set the parame-
ter mapreduce.reduce.merge.inmem.threshold to 0, which
makes the merge trigger only based on memory consumption.

6.3 CPU Tuning
Table 2 also lists the key parameters we consider for CPU tuning.

YARN supports allocation of different number of CPUs to map and
reduce tasks. The parameter yarn.nodemanager.resource.cpu-
vcores manages the number of CPU virtual cores that can be al-
located for containers running in each slave node. If the value is
32, then on a 8-core machine, each virtual core has 1/4 share of a
physical core. Given that the number of physical cores per machine
is fixed, a larger value yields smaller share per virtual core. This
parameter is not suitable for dynamic tuning.

The parameters mapreduce.map.cpu.vcores and
mapreduce.reduce.cpu.vcores directly control the CPU al-
location of map and reduce tasks. The basic tuning rule is to
allocate enough CPU resources to map and reduce tasks without
sacrificing the cluster utilization. For conservative tuning, we
start with the default value of 1, and collect container utilization
information from the node manager. If full CPU utilization is
observed, we increase the allocation by 1. If the task execution
time is reduced and CPU under-utilization is not observed, we
continue to increase the virtual core allocation.

The parameter mapreduce.reduce.shuffle.parallelcopies
determines the concurrent transfers executed by reduce tasks dur-
ing shuffle. The desirable value depends on the amount of shuffled
data. A higher amount leads to a higher number of parallel shuf-
fles. For conservative tuning, starting from the default value, we
increase the parameter in increments of 10 until the task execution
time is not improved any further.

The parameter mapreduce.task.io.sort.factor controls the
concurrency of disk to disk merge with a default value of 10. The
optimal value depends on the amount of data to be merged. For

conservative tuning, we increase the value by 20 until the task exe-
cution time stops showing improvement.

The above discussion introduced all of the guidelines that we
have incorporated into MRONLINE for parameter tuning. The pro-
vided APIs of the dynamic configurator are flexible, and can be
used easily to incorporate additional tuning logic for more parame-
ters as necessary.

7. IMPLEMENTATION
We have implemented MRONLINE on top of Hadoop-2.1.0-

beta [8]. The online tuner is implemented as a daemon that ex-
tends the AbstractService class within YARN and includes the three
components of Section 3 running in dedicated threads. The Ab-
stractService class maintains service state and a list of service state
change listeners. Once the service state has been changed, the
service state change listeners are informed. The online tuner is
implemented by extending CompositeService class within YARN.
The CompositeService class consists of a list of AbstractService
instances. It has a shutdown hook that allows the child services
within the composite service to be shut down gracefully when the
Java Virtual Machine (running the YARN instance) is shut down.
Leveraging this feature allows us to gracefully shut down the online
tuner and its child components as needed.

The monitor periodically gets a job counter for each submitted
and running job from YARN through the JobClient interface. It
then sends the job identifier and associated job counters to the tuner.
The monitor also retrieves the task-level counter and cluster-level
information such as the CPU, memory, network I/O, disk I/O from
each slave node. The tuner takes the input from the monitor and de-
termines the parameters that have to be changed and the values that
should be assigned to these parameters. This is done by using the
gray-box hill climbing algorithm and tuning rules described earlier.

After the tuner generates the list of parameters to be changed, it
sends the information to the dynamic configurator. The dynamic
configurator updates are then communicated to the working direc-
tory of corresponding jobs in HDFS through the JobClient inter-
face. The slave configuration thread—that we have implemented
in the node manager of YARN—then periodically checks whether
per task configuration files are updated, picks up the values and
changes the parameters accordingly.

System Overhead: The test runs using aggressive tuning can
potentially have longer execution times than compared to the test
runs using the default configuration. However, MRONLINE is much
more effective than other offline tuning techniques in that we finish
the test run in one trial instead of 20− 40 trials reported by works
such as Gunther [25]. For the fast single run use case, we employ
conservative tuning, which does not interfere with the application
execution flow and thus have minimal overhead. The design of our
monitor is also non-intrusive, since we leverage the JobClient APIs
within YARN, which functions periodically in the standard setting
as well. The dynamic configurator updates the parameter values,
which consumes few resources. Thus, we note that the overall over-
head of our system is negligible compared to default YARN.

8. EVALUATION
In this section, we show the effectiveness of our approach on a

19 node cluster. We note that the size of our testbed is in line with
those considered by recent related works [15, 25]. We first show
the performance improvement achieved for the studied MapReduce
applications using the aggressive tuning strategy of MRONLINE.
Next, we show that MRONLINE can generate desirable configu-
rations that yield better application performance using conserva-

Benchmark Input Data Input Size Shuffle Size Output Size #Map, #Reduce Job Type

Bigram Wikipedia 90.5 GB 80.8 GB 27.6 GB 676, 200 Shuffle
Inverted index Wikipedia 90.5 GB 38 GB 10.3 GB 676, 200 Map
Wordcount Wikipedia 90.5 GB 30.3 GB 8.6 GB 676, 200 Map
Text search Wikipedia 90.5 GB 2.3 GB 469 MB 676, 200 Compute
Bigram Freebase 100.8 GB 84.8 GB 77.8 GB 752, 200 Shuffle
Inverted index Freebase 100.8 GB 21 GB 11 GB 752, 200 Compute
Wordcount Freebase 100.8 GB 16.7 GB 9.4 GB 752, 200 Map
Text search Freebase 100.8 GB 906 MB 229 MB 752, 200 Compute
Terasort synthetic 100 GB 100 GB 100 GB 752, 200 Shuffle
BBP N/A 0 252 KB 0 100, 1 Compute

Table 3: The benchmarks used in our tests and their characteristics.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

Terasort

A
v
e

ra
g

e
 j
o

b
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Default
Offline Tuning

MRONLINE

Figure 4: Job execution times under MRON-

LINE, offline tuning, and the default YARN

configuration for Terasort for the expedited

test runs use case.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

Bigram InvertedIndex WC TextSearch

A
v
e

ra
g

e
 j
o

b
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Default
Offline Tuning

MRONLINE

Figure 5: Job execution times under MRON-

LINE, offline tuning, and the default YARN

configuration using the Wikipedia data set for

the expedited test runs use case.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

Bigram InvertedIndex WC TextSearch

A
v
e

ra
g

e
 j
o

b
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Default
Offline Tuning

MRONLINE

Figure 6: Job execution times under MRON-

LINE, offline tuning, and the default YARN

configuration using the Freebase data set for

the expedited test runs use case.

tive performance tuning as well. Next, we present results to il-
lustrate the impact of job size on the effectiveness of MRONLINE.
Finally, we show that MRONLINE can also improve application per-
formance in a multi-tenant environment.

8.1 Methodology
Each node on our 19-node test cluster has two Intel Quad-core

Xeon E5462 2.80 GHz CPUs, 12 MB L2 cache, 8 GB memory,
a 320 GB Seagate ST3320820AS_P SATA disk, and a 1 Gbps
network card. One node works as the master and the rest of the 18
nodes work as slaves. The nodes are arranged in two racks with
nine and ten nodes, respectively.

For the expedited test runs use case, we compare MRON-
LINE against both the default YARN configuration and a well-
regarded offline tuning guide made available by an enterprise cloud
provider [2]. For the fast single run use case and multi-tenant tests,
we only compare MRONLINE against the default YARN configura-
tion as the offline tuning approach is not capable of tuning and de-
tecting runtime resource utilization hot spots etc. Moreover, since
MRONLINE currently does not support the tuning of parameters
such as the number of mappers and reducers and application-wide
parameters, we use the same values of these parameters for both
the offline tuning and MRONLINE. The values used for the default
YARN configuration are the ones specified by the HadoopWiki [8],
with the following changes. We use a block size of 128 MB. The
number of virtual cores available for container allocation is 28 (4
for data nodes and node manager daemons), and the memory avail-
able for container allocation is 6 GB (2 GB for data nodes and
node manager daemons).

Table 3 lists the representative MapReduce applications that we
have used in our evaluation. Terasort, word count (WC), text search
(Grep), and BBP that is a compute-intensive program that uses
Bailey-Borwein-Plouffe to compute exact digits of PI, are available
with the Hadoop distribution and serve as standard benchmarks.
In addition, we also consider two more applications, bigram and
inverted index. Bigram [26] counts all unique sets of two con-

secutive words in a set of documents. Inverted index [26] generates
word to document indexing from a list of documents. We clas-
sify the applications into three categories: Map intensive, Shuffle
intensive and Compute intensive. Map intensive means that the
map phase accounts for the largest part of the execution time (spent
mostly doing I/Os). Shuffle intensive jobs spend the largest part of
time in the shuffle phase, while compute intensive jobs spend the
largest amount of time in the map phase doing computation.

We use two data sets to drive bigram, inverted index, word count
and text search. Wikipedia [32] data set has the original size of
45 GB. We concatenate two copies of this data set together to pro-
duce a larger data set of 90 GB. Note that this does not change the
workload characteristics of the data set. Freebase [18] is an open
source 100.8 GB data set released by Google. It is a knowledge
graph database for structuring human knowledge, which is used to
support the collaborative web based data oriented applications. Fi-
nally, the data sets used by Terasort range from 2 GB to 100 GB
in size and are generated synthetically using Teragen.

To account for variance in the results due to events such as net-
work, disk I/O congestion, and hardware and file system errors, we
repeat each experiment four times. In the following, we report the
average results from the multiple runs.

8.2 Performance Improvement for the Expe-
dited Test Runs Use Case

In this experiment, we evaluate the effectiveness of MRONLINE

for the expedited test runs use case that employs aggressive tuning.
We first run MRONLINEwith each of the studied application to gen-
erate the best parameter configuration applicable. We then use the
configurations to run applications and compare against applications
running with the default configuration and with configurations pro-
duced using the offline tuning guide [2].

Figure 4 shows the average execution time for Terasort that ex-
periences a 23% improvement in execution time under MRONLINE

compared to the default configuration. Figure 5 and Figure 6 show
the execution time for the four applications using theWikipedia and

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Terasort

N
u

m
b

e
r

o
f

s
p

ill
 r

e
c
o

rd
s
 (

1
0

9
) Optimal

Default
Offline Tuning

MRONLINE

Figure 7: The number of spill records un-

der MRONLINE, offline tuning, and the default

YARN configuration for Terasort for the expe-

dited test runs use case.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Bigram InvertedIndex WC TextSearch

N
u

m
b

e
r

o
f

s
p

ill
 r

e
c
o

rd
s
 (

1
0

9
) Optimal

Default
Offline Tuning

MRONLINE

Figure 8: The number of spill records un-

der MRONLINE, offline tuning, and the default

YARN configuration using the Wikipedia data

set for the expedited test runs use case.

 0

 1

 2

 3

 4

Bigram InvertedIndex WC TextSearch

N
u

m
b

e
r

o
f

s
p

ill
 r

e
c
o

rd
s
 (

1
0

9
) Optimal

Default
Offline Tuning

MRONLINE

Figure 9: The number of spill records un-

der MRONLINE, offline tuning, and the default

YARN configuration using the Freebase data

set for the expedited test runs use case.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Terasort

A
v
e

ra
g

e
 j
o

b
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Default
MRONLINE

Figure 10: Job execution times under MRON-

LINE and the default YARN configuration

using Terasort for the fast single run use

case.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Bigram InvertedIndex WC TextSearch

A
v
e

ra
g

e
 j
o

b
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Default
MRONLINE

Figure 11: Job execution times under MRON-

LINE and the default YARN configuration us-

ing the Wikipedia data set for the fast single

run use case.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Bigram InvertedIndex WC TextSearch

A
v
e

ra
g

e
 j
o

b
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Default
MRONLINE

Figure 12: Job execution times under MRON-

LINE and the default YARN configuration us-

ing the Freebase data set for the fast single run

use case.

Freebase data sets, respectively. We observe that for the Wikipedia
data set MRONLINE reduces the job execution time by 25%, 11%,
14% and 19% for bigram, inverted index, word count, and text
search, respectively. Similarly, the performance enhancement for
the Freebase data set under MRONLINE is 30%, 18%, 20%, 25%
compared to the default configuration for bigram, inverted index,
word count, and text search, respectively. MRONLINE improves
the performance mainly due to three factors: 1) it effectively re-
duces the number of spill records written and read from disks; 2) it
increases the resource utilization by tuning the container size for
mappers and reducers; and 3) it detects near-optimal values for
other performance related parameters. We observe here that com-
pared to the offline tuning guide, MRONLINE yields similar perfor-
mance. However, MRONLINE is able to finish the gray-box based
hill climbing algorithm within a single test run as there are around
600− 800 mappers and 200 reducers in these applications. In con-
trast, the offline guide took us much higher number of runs to de-
termine a suitable configuration to use.

To further understand the effectiveness of MRONLINE, we stud-
ied how MRONLINE reduces the number of spill records. Fig-
ures 7, 8, and 9 show the number of spill records generated by the
map tasks under MRONLINE, the default configuration, and config-
urations obtained through the offline tuning guide for the studied
applications and data sets. In the figures, Optimal refers to the
number of records generated by a combiner in the map phase or
generated by the map function if there is no combiner, and rep-
resents the number of spill records that an optimal configuration
would produce. We can see that the numbers of spill records are
effectively reduced to optimal for all applications by both MRON-
LINE and offline tuning. However, MRONLINE also minimizes the
number of test runs compared to the offline tuning approach.

8.3 Performance Improvement for the Fast
Single Run Use Case

In our next experiment, we compare the job execution time un-
der MRONLINE using the conservative tuning strategy against the

default YARN configuration on the Wikipedia, Freebase and the
synthetic data sets. Conservative tuning is beneficial to applica-
tions that run once, since the goal is to improve performance and
not necessarily find the best configurations. We run the applications
under MRONLINE and measure the job execution time. The results
are shown in Figures 10, 11 and 12. We observe that MRONLINE is
able to improve the performance for all the studied applications and
data sets from 8% (for word count using the Wikipedia data set) to
up to 22% (for bigram using the Freebase data set). The signifi-
cant reduction in execution time under MRONLINE is achieved be-
cause MRONLINE improves the cluster utilization by adjusting the
container size, alleviates the I/O contention by reducing the spill
records and searches for the optimal values for other performance
related parameters.

This experiment demonstrates that MRONLINE can effectively
reduce job execution time for applications that run once or for a
few times. For such applications, the users do not need to worry
about tuning application parameters before running the jobs and
can achieve a speedup automatically by using MRONLINE.

8.4 The Impact of Job Size on the Effective-
ness of Parameter Tuning

In our next experiment, we study how the effectiveness of pa-
rameter tuning using MRONLINE is affected by job size. To this
end, we run Terasort with increasing input data sets ranging from
2 GB to 100 GB. The number of reducers is set to about 1/4 that
of the number of mappers. For example, we have 4 reducers and 16
mappers for a job with a size of 2GB, 12 reducers and 46mappers
for another job with a size of 6 GB. We execute MRONLINE for
a single run of each job to generate an optimal configuration using
aggressive tuning. We then use this configuration to run the job
again and compare against the default YARN configuration. Fig-
ure 13 shows the results, where we can observe that MRONLINE

reduces job execution time marginally for jobs with sizes smaller
than 10 GB. The reason for this is that, for these jobs, MRON-
LINE does not have the sufficient number of mappers or reducers

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

 3600

 4000

2GB 6GB 10GB 20GB 60GB 100GB

A
v
e
ra

g
e
 j
o
b
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Default
MRONLINE

Figure 13: Job execution time under MRONLINE and the default

YARN configuration using Terasort with different data set sizes.

 0

 400

 800

 1200

 1600

 2000

 2400

 2800

 3200

Terasort BBP

A
v
e
ra

g
e
 j
o
b
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Default
MRONLINE

Figure 14: Job execution time for Terasort and BBP.

to search through the configuration space. Here, jobs finished be-
fore MRONLINE can find a good configuration. For jobs that use
data sets greater than 20 GB, MRONLINE becomes effective and
reduces the job execution time by 21%, 23%, and 20% for job
sizes of 20 GB, 60 GB, and 100 GB, respectively. Once MRON-
LINE has determined a suitable configuration, increasing the data
set size does not further improve performance under MRONLINE.
This is because the additional mappers or reducers are unnecessary
for MRONLINE as it is able to explore the design space thoroughly
using the number available under the 20 GB case.

8.5 MRONLINE Tuning Efficiency in a Multi-
tenant Environment

In our next experiment, we demonstrate that MRONLINE is par-
ticularly useful in a multi-tenant environment. For this test, we si-
multaneously run two MapReduce applications, Terasort and BBP,
on our cluster using the fair share scheduling algorithm. We config-
ure Terasort with an input data set size of 60GB with 448 mappers
and 200 reducers. BBP is configured to compute 0.5×106 digits of
PI. We execute MRONLINE with aggressive tuning and produce de-
sirable configurations for the two applications. We compare appli-
cation characteristics under configurations generated using MRON-
LINE to that of the default YARN configuration.
Figure 14 shows the job execution time for Terasort and BBP.We

observe that MRONLINE reduces the job execution time by 13%
and 28% for Terasort and BBP, respectively. To further understand
the performance impact of MRONLINE, we examined the memory
and CPU utilization of Terasort and BBP under the two approaches
shown in Figure 15 and Figure 16, respectively. In the figures,
Terasort-m represents the average utilization of all mappers, while
Terasort-r represents the same for all reducers. Similarly, BBP-m
and BBP-r show the average utilization for all mappers and reduc-
ers, respectively, for BBP. We observe that under the default con-
figuration the memory utilization of both the applications is below

0%

20%

40%

60%

80%

100%

Terasort-m Terasort-r BBP-m BBP-r

U
ti
liz

a
ti
o
n

Default
MRONLINE

Figure 15: Memory utilization for Terasort and BBP.

0%

20%

40%

60%

80%

100%

Terasort-m Terasort-r BBP-m BBP-r

U
ti
liz

a
ti
o
n

Default
MRONLINE

Figure 16: CPU utilization for Terasort and BBP.

50%. In contrast, MRONLINE improves the memory utilization of
the two applications to above 80%, for both map and reduce tasks.
For CPU utilization, we see that, with the exception of BBP-m,
the utilization is below 25% for all cases under the default con-
figuration. MRONLINE improves the CPU utilization by assigning
fewer CPUs to Terasort and BBP-r. Note that the CPU utilization
of BBP-m is around 99%. MRONLINE identifies this as CPU over-
utilization, and allocates more CPU cores to BBP. Moreover, we
note that the number of spill records for Terasort is reduced from
1.8×109 under the default configuration to 0.6×109 under MRON-
LINE. Reducing the number of spill records is beneficial, especially
when disk I/O is one of the key performance bottleneck.

This experiment shows that MRONLINE can effectively increase
the memory utilization and CPU utilization for Terasort and BBP
and thus reduce the job execution time. In other words, in
this multi-tenant experiment where CPU is a bottleneck for BBP,
MRONLINE successfully identifies idle CPUs and reassign a por-
tion of them to BBP. Thus, we have demonstrated that MRONLINE

can mitigate hot spots in the cluster and improve overall system
utilization.

9. RELATED WORK

MapReduce Configuration Parameter Tuning: There are sev-
eral works [13–15] that have focused on MapReduce job configu-
ration tuning in recent years. Herodotos et al. [13–15] proposed a
cost based optimization technique to help users identify good job
configurations for MapReduce applications. The system consists of
a profiler to get concise statistics including data flow information
and cost estimation, a what-if engine to reason about the impact
of parameter configuration settings, and a cost based optimizer to
find good configurations through invocations of the what-if engine.
The effectiveness of this approach depends on the accuracy of the
what-if engine that uses a mix of simulation and model based esti-
mation. MRONLINE is different from this work in that MRONLINE

finds desirable configuration parameters through real test runs on

real systems. Additionally, we use task level dynamic configura-
tion to avoid multiple what-if iterations, and unlike such prior ap-
proaches are also able to adjust to dynamic cluster runtime status,
e.g., network congestion or I/O congestion.

Gunther [25] is another offline tuning method that uses a genetic
algorithm to identify good parameter configurations, tries one con-
figuration per test run, and can take 20 − 40 test runs. In contrast,
MRONLINE can perform the tuning in a single job run. Moreover,
we use a gray-box based approach that effectively exploits MapRe-
duce runtime statistics, while Gunther is a black-box approach. In
addition, we identify two specific use cases where MRONLINE is
helpful; aggressive tuning aims to reduce the number of test runs,
while conservative tuning can help improve the performance of jobs
that only run once. In contrast, Gunther cannot help in either case.

AROMA [24] aims to automate the resource allocation and job
configuration for heterogeneous clouds to satisfy SLAs while mini-
mizing cost. AROMA uses a two-phase machine learning and opti-
mization framework based on support vector machine based perfor-
mance models. The offline phase classifies executed jobs using k-
mediod clustering algorithm using CPU, network, and disk utiliza-
tion patterns, while the online phase captures the resource utiliza-
tion signature of tested applications. Finally, AROMA finds near
optimal resource allocation and configuration parameters based on
a pattern matching optimization method. Compared to MRON-
LINE, AROMA does not support dynamic configuration. Moreover,
AROMA has to collect application resource utilization signatures
before finding a near optimal configuration. This is not suitable for
jobs that run once.

Parameter tuning guides [1, 2, 16, 17, 31] are also proposed by
industry and vendors to help MapReduce non-experts to set desir-
able values for their applications. However, these tuning guides
are based on heuristics. The burden is still on the end users to try
out multiple parameter combinations, which is time consuming and
cumbersome as discussed in Section 1.

MapReduce Performance Tuning: Performance tuning of the
MapReduce framework itself [4, 20–22] has also gained a lot of
attention from industry and the research community. MANI-
MAL [20] focuses on the efficiency of query processing of MapRe-
duce framework and utilizes static program analysis techniques on
user-defined functions (UDFs) to detect standard query optimiza-
tion opportunities. To bridge the performance gap of MapReduce
and parallel DBMS, Hadoop++ [4] tries to inject optimizations into
UDFs, which makes query processing pipeline explicit and present
it as a DB style physical query execution plan. This work has a
different focus than MRONLINE. SUDO [36] analyzes UDFs to
identify beneficial functional properties to optimize data shuffling
for MapReduce frameworks by utilizing program analysis tech-
niques. PerfXplain [22] provides a tool for non-expert users to
tune MapReduce performance. This tool auto-generates an expla-
nation for the queries comparing two jobs, which can help identify
the reasons why inefficient or unexpected behavior happens. How-
ever, this work does not provide clear guidelines of what job con-
figuration parameters should be used. Jiang et al. [21] provides a
performance study of MapReduce, pinpointing factors that impact
MapReduce performance including I/O, indexing, record decoding,
grouping schemes and block level scheduling in database context.
Although these works share with MRONLINE the goal of improv-
ing MapReduce application performance, these systems differ from
MRONLINE because of different optimization aspects and different
targeted environments. Moreover, to the best of our knowledge,
MRONLINE is unique in its focus on YARN-based systems.

Simulation based performance tuning [6, 30] techniques have
also been explored. Our own previous work, MRPerf [30], uti-
lizes a simulation methodology to capture various factors that im-
pact Hadoop performance. Similarly, Mumak [6] is designed as
a MapReduce simulator for researchers to prototype features and
predict their behavior and performance. These projects do not tune
configuration parameters as such and only provide means to es-
timate application performance on given configurations, and thus
are complementary to MRONLINE.

Parameter Tuning in Other Areas: A number of search tech-
niques are proposed to find good configuration with high proba-
bility [33, 34] in other research areas as well. Recursive random
search [34] is a black-box optimization approach that employs a
heuristic search algorithm for tuning network parameter configura-
tions. Smart hill climbing, designed for server parameter tuning,
is another black-box optimization approach that is designed to im-
prove the recursive random search algorithm. Smart hill climbing
adopts a weighted LHS technique to improve the random sampling
on the first phase. Moreover, the algorithm learns from past and
searches the space using steepest descent direction and improves
the search efficiency. The tuning algorithm of MRONLINE is in-
spired by the smart hill climbing algorithm. However, MRONLINE

is unique in its focus on MapReduce, which is a different targeted
problem than that addressed by prior works.

iTuned [5] concentrates on tuning database configuration param-
eters by adaptive sampling and uses an executor to support online
experiments through a cycle-stealing paradigm. This approach is
not suitable for MapReduce systems. JustRunIt [37] is an exper-
iment based management system for virtualized data centers. It
shares with MRONLINE the goal of tuning parameters using ac-
tual experiments that are cheaper, simpler and more accurate than
performance models or simulations. However, the approach is not
simply applicable to MapReduce.

10. CONCLUSION
MapReduce job parameter configuration significantly impacts

application performance, yet extant implementations place the bur-
den of tuning the parameters on application programmers. This is
not ideal, especially because the application developers may not
have the system-level expertise and information needed to select
the best configuration. Consequently, the system is utilized inef-
ficiently which leads to degraded application performance. In this
paper, we present the design of MRONLINE, a tool that enables
task-level dynamic configuration tuning to improve performance
of MapReduce applications. MRONLINE expedites the test runs by
trying out multiple configurations within a single test run. Given
the large MapReduce parameter space, finding a near-optimal con-
figuration in an efficient manner is challenging. To this end, we
designed a gray-box based hill climbing algorithm to systemati-
cally search through the space and find a desirable configuration.
To speedup the convergence iteration of our algorithm, we leverage
MapReduce runtime statistics and consider design tuning rules for
some of the key parameters. We have implemented MRONLINE on
the YARN framework, and our evaluation shows that on a 19-node
cluster and across a suite of six representative applications, MRON-
LINE achieves an average performance improvement of up to 30%
compared to the typically used default YARN configurations.

We have focused on key parameters that affect task execution
time. In our future work, we plan to investigate tuning of parame-
ters, such as the number of mappers and reducers, which affect the
overall application execution time.

11. ACKNOWLEDGMENT
This work was sponsored in part by the NSF under Grants CNS-

1016793 and CCF-0746832. Min Li was also supported through an
IBM PhD Fellowship. We thank the reviewers for their feedback
and appreciate their support for our work. We also thank Minkyong
Kim and Krishnaraj K Ravindranathan for the valuable discussions
that helped us improve our design.

12. REFERENCES
[1] Cloudera. 7 tips for improving MapReduce performance,

2009. http://blog.cloudera.com/blog/2009/12/7-tips-for-
improving-mapreduce-performance/.

[2] Cloudera. Optimizing MapReduce job performance, 2012.
http://www.slideshare.net/cloudera/mr-perf.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proc. USENIX OSDI, 2004.

[4] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty,
and J. Schad. Hadoop++: Making a yellow elephant run like
a cheetah (without it even noticing). Proceedings of the
VLDB Endowment, 3(1-2):515–529, 2010.

[5] S. Duan, V. Thummala, and S. Babu. Tuning database
configuration parameters with ituned. Proceedings of the
VLDB Endowment, 2(1):1246–1257, 2009.

[6] A. S. Foundation. Mumak: MapReduce simulator, 2009.
https://issues.apache.org/jira/browse/MAPREDUCE-728.

[7] A. S. Foundation. Apache Giraph, 2013.
http://giraph.apache.org/.

[8] A. S. Foundation. Hadoop-2.1.0-Beta, 2013.
http://www.trieuvan.com/apache/hadoop/common/hadoop-
2.1.0-beta/.

[9] A. S. Foundation. Grep example, 2014.
http://wiki.apache.org/hadoop/Grep.

[10] A. S. Foundation. Terasort example, 2014.
https://hadoop.apache.org/docs/current/api/org/apache/ha-
doop/examples/terasort/package-summary.html.

[11] S. Ghemawat, H. Gobioff, and S. Leung. The Google file
system. ACM SIGOPS Operating Systems Review,
37(5):29–43, 2003.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness: fair
allocation of multiple resource types. In Proc. USENIX
NSDI, 2011.

[13] H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of mapreduce programs.
Proceedings of the VLDB Endowment, 4(11):1111–1122,
2011.

[14] H. Herodotou, F. Dong, and S. Babu. Mapreduce
programming and cost-based optimization? Crossing this
chasm with starfish. Proceedings of the VLDB Endowment,
4(12):1446–1449, 2011.

[15] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B.
Cetin, and S. Babu. Starfish: A self-tuning system for big
data analytics. In Proc. Conference on Innovative Data
System Research, 2011.

[16] Impetus. Advanced Hadoop tuning and optimizations, 2009.
http://www.slideshare.net/ImpetusInfo/ppt-on-advanced-
hadoop-tuning-n-optimisation.

[17] Impetus. Hadoop performance tuning, 2012.
https://hadoop-toolkit.googlecode.com/files/White
paper-HadoopPerformanceTuning.pdf.

[18] G. Inc. Freebase data dumps, 2013.
https://developers.google.com/freebase/data.

[19] A. Incubator. Spark: Lightning-fast cluster computing, 2013.
http://spark.incubator.apache.org/.

[20] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
optimization for mapreduce programs. Proceedings of the
VLDB Endowment, 4(6):385–396, 2011.

[21] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of
mapreduce: An in-depth study. Proceedings of the VLDB
Endowment, 3(1-2):472–483, 2010.

[22] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain:
debugging mapreduce job performance. Proceedings of the
VLDB Endowment, 5(7):598–609, 2012.

[23] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune:
Mitigating skew in mapreduce applications. In Proc. ACM
SIGMOD International Conference on Management of Data,
2012.

[24] P. Lama and X. Zhou. Aroma: Automated resource
allocation and configuration of mapreduce environment in
the cloud. In Proc. ACM International Conference on

Autonomic Computing, 2012.

[25] G. Liao, K. Datta, and T. L. Willke. Gunther: Search-based
auto-tuning of mapreduce. In Proc. Springer Euro-Par, 2013.

[26] J. Lin and C. Dyer. Cloud9: A hadoop toolkit for working
with big data, 2010.
http://lintool.github.io/Cloud9/index.html.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In Proc. ACM SIGMOD

International Conference on Management of Data, 2010.

[28] Twitter. Storm: Distributed and fault-tolerant realtime
computation, 2013. http://storm-project.net/.

[29] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
et al. Apache Hadoop Yarn: Yet another resource negotiator.
In Proc. ACM Symposium on Cloud Computing, 2013.

[30] G. Wang, A. R. Butt, P. Pandey, and K. Gupta. A simulation
approach to evaluating design decisions in mapreduce setups.
In Proc. IEEE MASCOTS, 2009.

[31] T. White. Hadoop: The Definitive Guide. O’Reilly, 2012.

[32] Wikipedia. Wikipedia data dumps, 2014.
http://dumps.wikimedia.org/enwiki/latest/.

[33] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A
smart hill-climbing algorithm for application server
configuration. In Proc. ACM International Conference on

World Wide Web, 2004.

[34] T. Ye and S. Kalyanaraman. A recursive random search
algorithm for large-scale network parameter configuration.
ACM SIGMETRICS Performance Evaluation Review,
31(1):196–205, 2003.

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing with working sets. In
Proc. USENIX Conference on Hot Topics in Cloud

Computing, 2010.

[36] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y. Li,
W. Lin, J. Zhou, and L. Zhou. Optimizing data shuffling in
data-parallel computation by understanding user-defined
functions. In Proc. USENIX NSDI, 2012.

[37] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and
Y. Turner. JustRunIt: Experiment-based management of
virtualized data centers. In Proc. USENIX ATC, 2009.

