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Abstract—As the cloud services journey through their life-
cycle towards commodities, cloud service providers have to
carefully choose the metering and rating tools and scale their
infrastructure to effectively process the collected metering
data. In this paper, we focus on the metering and rating
aspects of the revenue management and their adaptability to
business and operational changes. We design a framework for
IT cloud service providers to scale their revenue systems in
a cost-aware manner. The main idea is to dynamically use
existing or newly provisioned SaaS VMs, instead of dedicated
setups, for deploying the revenue management systems. At on-
boarding of new customers, our framework performs off-line
analysis to recommend appropriate revenue tools and their
scalable distribution by predicting the need for resources based
on historical usage. This allows the revenue management to
adapt to the ever evolving business context. We evaluated our
framework on a testbed of 20 physical machines that were used
to deploy 12 VMs within OpenStack environment. Our analysis
shows that service management related tasks can be offloaded
to the existing VMs with at most 15% overhead in CPU
utilization, 10% overhead for memory usage, and negligible
overhead for I/O and network usage. By dynamically scaling
the setup, we were able to reduce the metering data processing
time by many folds without incurring any additional cost.

I. INTRODUCTION

A crucial challenge, especially for a sustainable IT busi-

ness model, is how to adapt the cloud service management,

and implicitly its cost, e.g., impact of associated monitor-

ing overhead, to dynamically accommodate the changes in

service requirements and data centers [17]. As the cloud ser-

vices journey through their lifecycle towards commodities,

a challenging change to their management, specifically to

the revenue management, is the demand for more granular

pricing model such as pay-as-you-go and usage-based, rather

than the extant coarse grain model that uses metrics such as

VM hours [6].

Until recently, cloud service providers could afford to

charge their customers only on a flat-rate basis, e.g., in

the form of a monthly subscription fee. Although this

pricing methodology is straight forward and involves little

management and performance overhead for the cloud service

providers, it does not offer the competitive advantage edge of

the usage based pricing [21]. As a particular technology or

service becomes more of a commodity (e.g., Infrastructure

Services, or IaaS), more and more customers are interested

in fine-grained pricing based on their actual usage or ”pay as

you go” model. For instance, from the perspective of a Soft-

ware as a Service (SaaS) customer, it is more advantageous

to be charged based on the usage of the platform (e.g., the

number of http transactions or volume of the db2 queries)

instead of a fixed monthly fee, especially when the usage

is low. Lack in providing the usage based pricing policy

for commodity services may result in losing customers and

eventually the market share [9]. Hence, from the cloud

service provider perspective, maintaining the competitive

advantage by effectively adapting to versatile pricing policies

has become a matter of high priority.

Usage based pricing policies bring a new set of service

management requirements for the service providers, par-

ticularly for their revenue management [28]. The revenue

management aspects impacted by the pricing policy change

are the collection of new metered data and its rating accord-

ing to the new detailed price plan. This entails finer-grain

metering, which may impact the performance of resources.

This is because, the service resources and applications need

to be monitored at the appropriate level to provide the usage

that has to be charged for, which may result in collecting

a large amount of metered data. Furthermore, this metered

data needs to be processed in order to perform: (1) the me-

diation, i.e., transformation into the desired units of measure

expected by the usage price policy, e.g., average, maximum

or minimum usage; (2) the rating based on the price policy

for generating the invoice for the customers, e.g., multiplying

usage by per unit rate; and (3) the calculation required

to generate custom reports regarding the customers’ usage

trends. Hence, additional resources are required not only to

store data, but also to process it for supporting such finer-

grained service management.

Cloud service providers that align their services price plan

to usage based pricing have to carefully choose the metering,

mediation, and rating tools and infrastructure to minimize

the cost of the resource requirements for performing them.

Thus, the first step in performing this cost benefit analysis is

to accurately estimate the cost associated with monitoring,

storing and processing the data for the various metering

and rating tools [8]. The cost of fine grained monitoring

depends on the volume of data collected for the purpose of

metering [8]. The extant practice is to use a separate setup

for collecting metering data for pricing in addition to the

cloud health monitoring setup that collects information such
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Figure 1. Current approach for metering cloud services.

as performance and availability of resources and resource

usage contention. The extra resources used for such revenue

management place additional burden on the cloud service

provider. To this end, recent works such as Ceilometer

from OpenStack aim to consolidate metering for multiple

purposes and avoid collecting of the same data by multiple

agents. In this paper, we propose a framework that leverages

such approaches, especially the OpenStack’s ecosystem, to

efficiently collect and estimate the volume of metering data.

Finer-grain pricing necessitates dynamically modifying

the price plans offered to the customers based on the market

demand [25]. In this context, the key challenge is how to

provide a scalable metering setup that can adapt with the

price policy updates and the load in the data center, while

minimizing the additional resources, performance impact

and interference so as to avoid toll on the business outcome.

As the selection of different pricing policies will result

in different sizes of collected metering data, the setup is

expected to store and process data of varying size without

wasting resources. Typically, cloud service providers use

a dedicated set of VMs for their service management as

shown in Figure 1, which they manually expand based on

the increasing load in their data centers. Depending on the

cloud service type, for instance SaaS, cloud service providers

may themselves be customers of IaaS or PaaS (Platform as

a Service). As such, they are charged for this dedicated set

of VMs. This infrastructure cost is additional to the cost of

the tools (e.g., for license per volume, maintenance etc.).

The goal is to minimize the footprint of this nonrevenue-

generating infrastructure, thus minimizing service manage-

ment infrastructure cost; ideally eliminating it.

The typical workloads of the PaaS and SaaS providers

clients have been found to use 50% of the IaaS capacity

at best [5], [1], leaving the remaining un-utilized 50% for

additional workloads. Moreover, SaaS customers can be

conveniently given controlled access to the metering data, if

such data is collected and maintained at the same set of VMs

as that running the workload. Therefore, in our scalable me-

tering solution we adopt this approach. The providers need

to comply with their customers SLAs by scaling up their

setup according to the load on the systems. To this end, our

framework dynamically monitors the resource utilization per

VM and scales up or down the tools deployment accordingly.

In the worst case scenario, when the workloads on all the

customers VMs is about to reach the maximum allowed as

per the SLA, our framework automatically launches new

VM(s) to adapt to the workload.

II. ENABLING TECHNOLOGIES

In this section, we discuss the enabling technologies and

provide the background for our proposed approach.

A. OpenStack and Ceilometer

We have designed our protocol on well-established cloud

ecosystem of OpenStack—an open source project that pro-

vides a massively scalable cloud operating system. Open-

Stack adopts a modular design and has become the de

facto cloud computing platform for managing large pools of

compute, storage, and networking resources in modern data

centers. A key component that we leverage in our project

is OpenStack’s Ceilometer that provides an infrastructure to

collect detailed measurements about resources managed by

OpenStack. The aim of Ceilometer is to deliver a unique

point of contact for billing systems to acquire all of the

measurements needed to establish customer billing, across

all OpenStack core components [4]. Ceilometers’ primary

targets are monitoring and metering, but the framework is

flexible and can be extended to collect data to support other

needs as well.

The main components of ceilometer can be divided into

two categories, namely agents, e.g., compute agents, central

agents, etc., and services, e.g., collector service, API service,

etc. The compute agents poll the local libvirt daemon

to fetch resource utilization of launched VMs and emit

this data as AMQP [29] notifications on the message bus

called Ceilometer bus. Similarly, central agents poll the

public RESTful APIs of OpenStack services, such as Cinder

and Glance, to track resources and emit this data onto the

OpenStack’s common message bus called Notification bus.

On the other hand, the collector service collects the AMQP

notifications from the agents and other OpenStack services,

and dispatches the collected information to the metering

database. Finally, the job of the API service is to present

aggregated metering data to the billing engine.

In Ceilometer, resource usage measurement, e.g., CPU

utilization, Disk Read Bytes, etc., is done by meters or

counters. Typically there exists a meter for each resource

being tracked, and there is a separate meter for each instance

of the resource. It is important to note that the lifetime of a

meter is decoupled from the associated resource, and a meter

continues to exist even after the resource it was tracking has

been terminated [2]. Each data item collected by a meter is



referred to as a “sample,” and consists of a timestamp to

mark the time of collected data, and a volume that records

the value. Ceilometer also allows service providers to write

their own meters. Such customized meters can be designed

to conveniently collect data from inside launched VMs. For

a Solution or Software, this feature allows the cloud service

providers to track the application usage as well.

B. MongoDB

OpenStack allows integration of multiple databases with

Ceilometer for the purpose of storing metering data, e.g.,

MySQL, MongoDB, etc. However, MongoDB is recom-

mended and is the default database in OpenStack because

of features such as flexibility and allowing the structure of

documents in a collection to be changed over time. In the

following, we discuss MongoDB and the features that allow

us to scale up or scale down the proposed setup.

MongoDB is a cross platform document-oriented

NOSQL [11] database. MongoDB eschews the traditional

table-based relational database structure in favor of JSON-

like documents with dynamic schemas, making the integra-

tion of metering data easier and faster. MongoDB offers two

key features of sharding and replication, which make it a

perfect candidate for our approach [12].

Sharding is a method of storing data across multiple

machines (shards) to support deployments with very large

datasets and high throughput operations. Sharding helps in

realizing scalable setups for storing metering data because

the data collected by Ceilometer is expected to increase

linearly over time. This is especially true for production

servers. Another feature of MongoDB is replication, which

allows multiple machines to share the same data. Unlike

sharding, replication is mainly used to ensure data redun-

dancy and facilitate load balancing. Finally, MongoDB also

allows the use of the MapReduce [16], [3] framework for

batch processing of data and aggregation options.

III. DESIGN

In this section, we present the design of our fine-grained

metering framework. Figure 2 illustrates the overall archi-

tecture and identify key components and their interactions.

The main modules consist of data size estimator, resource

profiler, resource predictor, and auto-scalable setup for me-

diation and rating with a metering store for Ceilometer.

The framework initiates a new sequence of operations

upon receiving a heat template file when OpenStack is

servicing a provisioning request. The template is first parsed

to extract the information about the requested resources. The

information is then used to estimate the expected change in

the size of metering data that will be collected by Ceilometer.

Meanwhile, the resource profiler module keeps track of the

resources that are already in use, and profile their usage

for mediation and rating purposes. The resource predictor

module uses the profiled and newly requested resources

information to estimate the additional resources that would

be required for mediation and rating for the provisioning

request. The estimate is then used to scale the metering store,

and the setup is finally launched along with the requested

provisioning.
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Figure 2. Overview of the fine-grained metering and rating architecture.

A. Data Size Estimator

The data size estimator module calculates the expected

changes in the size of metering data. For this purpose,

the module uses the resources information from the heat

template file of the provisioning request, and determines

the set of meters that are required to perform the necessary

monitoring and metering. Next, the expected total number

of metering events on various polling intervals is calculated

along with the average event object size. The number of

events are calculated by parsing the pipeline.yaml file to

fetch the sampling frequency of each meter. The average

object event size is variable and depends on the type of

meters launched and their sampling frequency or polling

interval. To this end, the data estimator module keeps track

of the changes in the event object size per meter and

estimates the value by taking the average of the three

previously collected values. The module then averages these

values across the meters to determine the overall average

object size. An alternative approach is to directly track the

overall average object event size from the metering store’s

database. List 1 shows a sample collected from the metering

store to measure the overall average object size. Finally,

the expected size of metering data (2664719556 bytes) is

determined by multiplying the number of objects (2239713)

with the average event object size (1189.759382 bytes).

List 1. Sample of average event object size collected from metering store
> db.stats()

{

"db" : "ceilometer",

"collections" : 6,

"objects" : 2239713,

"avgObjSize" : 1189.759382,

"dataSize" : 2664719556,

"storageSize" : 3217911760,

...

}



B. Resource Profiler

Ceilometer launches various meters for monitoring and

metering the usage of different resources per VM, e.g., CPU,

memory, storage, networking, etc. The resource profiler

module intercepts the metering data send to the metering

store, and uses it to keep tabs on the per-VM resource

utilization. A challenge is that the collected metering data

only gives an instantaneous view of a VM’s resource usage

at a particular time instance, and do not necessarily portray

the overall usage. To address this, the resource profiler uses a

sliding window across last n metering samples to calculate a

moving average and uses that as an estimate of the current

per-VM resource utilization. An alternative would be that

instead of intercepting the data, we query the metering store

for overall utilization. However, this would unnecessarily

burden the database and impact overall efficiency. Thus, we

do not adopt the querying approach. The resource profiler

also maintains queues of resources sorted based on estimated

utilization. This information can be used to determine free

resources within each VM, which in turn supports effective

scaling of the metering setup.

C. Offline Resource Predictor

The job of offline resource predictor module is to analyze

the data collected by the resource profiler and provide an

approximate estimate of the resources that would be required

for the associated metering setup. A possible trade-off faced

in such estimation of the needed resources is whether use

less revenue management resources at the expense of perfor-

mance degradation in terms of average time taken to process

the collected metering data. We allow the managers to

manage this trade-off by specifying the expected processing

query time, query rate, and average load on the setup, as

an input. Based on the provided input this module outputs

a recommended mediation and rating setup to achieve an

effective estimate for driving our framework decisions.

D. Auto-Scalable Metering Store

The metering related data is collected and stored in the

metering store that is typically provided using a database.

The growing volume of the metering data entails that the

database setup is scalable and efficient, and can handle com-

plex queries in a timely fashion. This is crucial as the overall

goal of our framework is to provide fine-grained pricing

plans that require high-frequency querying. To this end, we

have engineered an auto-scalable setup for MongoDB to act

as the metering store for Ceilometer. Our setup is instantiated

on the same set of VMs that are used to provide SaaS—as

the VMs have been observed to be not fully utilized as stated

earlier in Section I.

1) When to Scale?: The first step in realizing our auto-

scalable MongoDb setup is to determine when scaling is

needed. For this purpose, we use two kinds of metrics:

i) OS-level metrics, e.g., CPU, memory, disk usage, etc.;

and ii) MongoDB performance statistics, e.g., query time,

writes/s, reqs/s, etc. Since the MongoDB instances are

running on the same VMs as those providing user services,

the VMs are already being monitored and this the monitoring

data can be reused to determine the OS-level info needed

for this purpose as well. This information, coupled with

periodically collected MongoDB statistics, is then used to

determine if the metering store is loaded beyond a pre-

specified high threshold or below a low threshold, and

scaling decisions are made accordingly.

2) How to Scale?: The next step is to enact scaling of

the metering store. For this purpose, our framework exploits

creation of additional MongoDB replica sets. These replica

sets are added as shards to achieve further partitioning of

data, which in turn realized scalability of the setup. An

important design decision while performing sharding is to

carefully choose the sharding key. To this end, we keep

track of the speedup achieved with various sharding keys and

choose the best option. Note that replication and sharding are

not mutually exclusive, and can be scaled individually based

on the monitored reads/s or writes/s throughput observed

through the MongoDB performance monitor.

E. System Controller

Finally, we provide a system controller module to control

and fine-tune the scalable metering store and the resource

profiler. The module acts also as a facilitator for the various

module operations by providing access to the collected data.

We run the controller in a dedicated VM to ensure that it is

not affected by the performance and workload dynamics of

the resources.

F. Discussion

By default, OpenStack installs a standalone instance of

MongoDB to store metering data. In order to perform

mediation and rating, cloud service providers usually use

a separate set of dedicated physical machines for standalone

installation of MongoDB. In case of huge data sizes, a

distributed setup, e.g., Hadoop, is used for data processing.

This approach requires redistribution of metering data from

the metering store to the Hadoop Distributed File System

(HDFS). This is burdensome as data ingestion into HDFS

is identified as a major performance bottleneck [20], not

to mention expensive data copying. Our approach has the

advantage that it does not require such data redistributed.

Rather, our approach collects data in a distributed setup to

begin with and avoid extra copying and ingestion challenges

and overheads. Another advantage of our framework is that

it allows cloud service providers to offer not only the fine-

grained metering information, but also customizable price

plans, e.g., charging customers only on CPU utilization, etc.

Furthermore, our approach can also be applied for me-

tering IaaS. However, this would require extending the

framework and modifications such as: (i) launching the
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metering setup on physical nodes instead of VMs so that

customers do not get access to the collected metered data;

and (ii) enabling monitoring of the physical nodes within

Ceilometer for tracking infrastructure utilization per physical

node instead of per VM.

IV. EXPERIMENTAL SETUP AND EVALUATION

For proof of concept evaluation, we have implemented the

fine-grained metering approach as discussed in Section III

on top of OpenStack and MongoDB. We used Java to

implement data size estimator whereas Python was used to

implement the resource profiler, resource predictor and con-

troller modules. We deployed OpenStack Icehouse version

2014.1.1 on 20 physical machines, where each machine has

six cores and 32 GB of RAM. We varied the number of

VMs from 3 to 12 to provide a SaaS. The metering data was

collected from these VMs using variable sampling interval.

We tracked the usage of VMs for a period of one month.

We launched both default as well as customized meters to

collect the resource usage.
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We performed

tests using both a

standalone as well as

a scalable MongoDB

setup. In our scalable

setup, each replica

set consisted of

only one node that

acted as a primary

copy of the data.

Furthermore, the

replica sets were added as shards to scale the MongoDB

deployment. For testing purposes, we launched three

configuration servers but only one query router that was

deployed on the controller VM. All the performance related

experiments were done on the actual collected metering

data of more than 11 GB from the deployed OpenStack

setup over the period of one month. We used different

sharding keys for the Ceilometer database in out tests.

Figure 3 shows the effect of using different sharding keys

on the query timings for a MongoDB setup consisting of 4

shards. It can be seen that the query time is affected more
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deviation) of various Ceilometer counters using MapReduce.

by the choice of the sharding key for the distributed setup

compared to the standalone setup. Further investigation

revealed that chunks greater than 64 MB were created in

all cases except when timestamp of metering events was

used as a shard key. This resulted in the MongoDB internal

load balancer distributing chunks unevenly, with most of

the chunks assigned to just one machine. This created a

bottleneck and caused a significant increase in the query

time. Consequently, the best sharding key to use in the

target environment is timestamp, instead of counter name,

user-id or resource-id.

Figure 4 shows the comparision of estimated and actual

collected metering data size. The framework predicted that

254 events will be collected from the launched VMs every 10

minutes. The estimated average event object size was 1150

bytes, 1134 bytes, and 1188 bytes for per day, per week and

per month calculations, respectively. As seen in the Figure,

compared to the actual observed values, the data estimator

module predicted metering data size with 99% accuracy.

Figure 5 shows that CPU utilization in the observed

VMs did not increase above 15%. Similarly, the increase

in memory utilization was observed to be less than 10%. As

the needed data is already distributed to the various VMs,

so mediation is expected to generate reads but not writes.

This is confirmed by the I/O usage shown in the Figure,

with observed written data at almost zero and also with

low average data read. Another key observation here is that

due to the computation being mostly performed locally, the

network usage is also negligible. These results validate our

claim that, if handled properly as in our approach, existing

VMs can be used to perform mediation and rating tasks

without affecting the performance of the provided SaaS.

V. RELATED WORK

The focus of several recent works [26], [7], [13], [23],

[15], [27] is on providing an efficient and scalable cloud

monitoring setup, however, these works do not consider or

discuss scalability of the mediation and rating systems. In

contrast, our approach is designed for scalable deployment.

Furthermore, our approach is also unique in that it uses



existing VMs and only launches additional VMs rarely, thus

incurring little additional cost.

A pay-as-you-go scheme has also been proposed [21],

which employs a machine-learning-based prediction model

of the relative cost of interference between metering/rating

and SaaS applications. Similarly, [22] describes a metering

and pay-as-you-go model and proposes a solution to meter

resources. However, unlike our approach, the focus of this

model is to come up with a metering approach for enabling

monitoring of cache space and memory bandwidth.

CloudSim [10] proposes a toolkit to enable modelling and

simulation of cloud computing environments and perhaps is

the closest to our work in terms of profiling and predicting

the resources required for supporting cloud applications.

Similarly, PRESS [19] proposes a PRedictive Elastic re-

Source Scaling scheme for cloud systems. The significant

difference between our approach and these works is that

they predict load as a standalone applications, whereas in

our case we predict the additional load that can be added to

the existing VMs that are already loaded.

Several recent works employ a database for enabling a

monitoring system. An elastically-scalable database manage-

ment system is designed in [14], based on the argument that

in spite of the elasticity offered by the cloud infrastructure,

the backend database still is the scalability bottleneck for

cloud applications. A monitoring system that collects and

stores the metering data in distributed database is presented

in [24], but lacks the ability to scale the setup and use

existing VMs. Similarly, a scalable metering architecture is

developed in [18]. These works are orthogonal to our work,

and we leverage the techniques therein when possible to

achieve a scalable and flexible metering and rating system.

VI. CONCLUSION

We designed a framework for IT cloud service providers

to scale their revenue management systems in a cost-aware

manner. We evaluated the ability of our framework to use

existing SaaS VMs for the purpose of metering, for analysis

purposes we used 20 physical node setup to launch variable

number of virtual machine ranging from 3 to 12 within the

OpenStack environment. The results show that our approach

is promising, and has small impact on the co-located SaaS

while providing for dynamic scaling at minimal cost.
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