
Toward Transparent Data Management in
Multi-layer Storage Hierarchy of HPC Systems

Bharti Wadhwa†, Suren Byna‡, Ali R. Butt†
†Department of Computer Science, Virginia Tech

‡Lawrence Berkeley National Laboratory

Email:{bharti,butta}@cs.vt.edu; SByna@lbl.gov

Abstract—Upcoming exascale high performance computing
(HPC) systems are expected to comprise multi-tier storage
hierarchy, and thus will necessitate innovative storage and I/O
mechanisms. Traditional disk and block-based interfaces and file
systems face severe challenges in utilizing capabilities of storage
hierarchies due to the lack of hierarchy support and semantic
interfaces. Object-based and semantically-rich data abstractions
for scientific data management on large scale systems offer a
sustainable solution to these challenges. Such data abstractions
can also simplify users involvement in data movement. In this
paper, we take the first steps of realizing such an object abstrac-
tion and explore storage mechanisms for these objects to enhance
I/O performance, especially for scientific applications. We explore
how an object-based interface can facilitate next generation
scalable computing systems by presenting the mapping of data
I/O from two real world HPC scientific use cases: a plasma
physics simulation code (VPIC) and a cosmology simulation code
(HACC). Our storage model stores data objects in different
physical organizations to support data movement across layers
of memory/storage hierarchy. Our implementation sclaes well to
16K parallel processes, and compared to the state of the art, such
as MPI-IO and HDF5, our object-based data abstractions and
data placement strategy in multi-level storage hierarchy achieves
up to 7× I/O performance improvement for scientific data.

I. INTRODUCTION

Parallel I/O for scalable computing systems such as HPC
deployments need a transformative upgrade in the era of
exascale computing to support emerging systems with deep
memory and storage hierarchies. Realizing efficient storage
and I/O mechanisms entails designing specialized software
that takes full advantage of components introduced in these
hierarchies. Traditional file and block based storage systems
face severe challenges to meet the requirements of scientific
applications. The dependence of parallel file systems on the
POSIX-IO [22] enforces strict, costly data consistency re-
quirements and lacks semantic data abstractions. However,
these features are crucial for data movement while preserving
semantics, storage and retrieval of scientific applications’
data, especially in deep memory and storage hierarchies. In
addition, parallel I/O makes it challenging to shoehorn new
interfaces, such as taking advantage of multiple layers of
storage and support for analysis in the data path. In the cloud
computing environments, object-based storage systems, such
as Openstack Swift [3], have become quite popular. However,
most of these systems have been developed to store immutable
cloud data and do not consider storage of large scale HPC

application data. Other object-based storage systems such as
Lustre [14] and Ceph [23] do support HPC applications. High-
level I/O interfaces, such as HDF5 [9], manage data arrays
and attributes as objects. However, the existing file systems
and high-level library solutions do not support data storage in
multiple layers of storage hierarchy, and just store the data in
to one layer (disk- or SSD-based storage) of the stack. Hence,
there is a crucial need for an efficient data storage and I/O
system for HPC, which supports the complex memory/storage
hierarchy and facilitate transparent data movements among the
multiple layers of exascale storage stack.

In this paper, we propose an object-based storage interface
to transparently store data in upcoming HPC storage hierarchy,
and to manage semantics of data. This approach provides
the flexibility of storing data into multiple layers of storage
hierarchy. It provides the application users the options to
store data partially into different layers of storage stack,
thus enhancing performance by storing part of data closer
to analysis process as needed. To achieve this flexibility, our
proposed storage model targets storing scientific data using an
object abstraction that remains uniform across the different
layers of storage. The uniformity ensures that data can be
moved between layers without unnecessary translation that can
loose semantic information. It also supports optimizing storage
of the data and the metadata inside the object and container
abstractions in the storage hierarchy. These objects can move
between the layers of exascale storage stack efficiently, and
provide enhanced flexibility and data consistency. The object-
based abstractions can store complex data structures such as
multidimensional arrays and key-value stores in a consistent
way in all layers of the storage stack, enabling high scalability
and efficient management.

We implement the object-based data mapping atop the MPI-
IO [21] interface and provide multiple options to store the ap-
plications’ data into different layers of storage system (such as
SSD-based burst buffers and/or disk-based Lustre file system),
according to the user requirements. We illustrate the utility
of our approach by applying it to two science simulation use
cases: VPIC-I/O [5], [4] and HACC-I/O [12], [2]. Specifically,
this paper makes the following contributions:

1) Introduction of an object representation for mapping
scientific data into object abstractions that stay uniform
across storage hierachies.

2) Introduction of a data object management system and
storage strategies therein, aimed at facilitating semantic-
preserving scientific data movement and storage between
the layers of exascale storage stack.

3) Implementation and evaluation of the proposed storage
model showing significant performance improvement.

II. BACKGROUND: OBJECT-BASED STORAGE

Object-based storage [10] is a generic term used to describe
an abstract data container that consists of multiple byte-
streams (or objects), each with related attributes. As the
attributes are stored and transferred with the objects, object-
based storage can efficiently express quality of service (QoS),
transparent performance optimizations, data sharing, and data
security qualities that a storage system can exploit. Object-
based storage has been implemented for disks, NVRAM, and
in memory. However, existing efforts do not integrate objects
across the entire memory hierarchy. We studied the design and
implementation of some of the popular object storage systems,
and in the following present a brief discussion to highlight the
breadth of features and use cases that object-based stores offer.

Lustre: Lustre File System [14] is an object-based, parallel
distributed file system. It is mainly deployed on large-scale
clusters to provide high data availability, independence to
physical data location, and scalability. These features make
Lustre a suitable choice for general-purpose back-end file
system and also for supporting various scientific applications.

Ceph: Ceph [23] is an object-oriented distributed file sys-
tem with a highly scalable design that makes it suitable for
various types of applications. Similar to Lustre, Ceph also
separates metadata from data and distributes the metadata over
multiple nodes running a software component called OSD.

OpenStack Swift: Swift [3] is another widely-used and
popular object storage system. Swift is designed to store cloud
data such as large binary blobs, image and video files, backups,
analytics data, and other unstructured data in the form of
objects, with high availability, durability, and scalability.

DAOS: Distributed Application Object Storage
(DAOS) [13] is the storage system designed for the ongoing
Fast Forward [17] project to meet the requirements of exascale
computing systems. DAOS is an extremely simple object
model that encapsulates entire exascale data and metadata. It
replaces POSIX with transactional, shared-nothing, distributed
object store known as DAOS container.

Apache Spark: Spark [1] is an in-memory data processing
and cluster-computing framework mainly used for enterprise
big data analytics. Spark provides in-memory computations
using Resilient Distributed Dataset (RDD) [26] abstraction,
which is an immutable distributed collection of objects, for
increased speed and data processing over MapReduce [6].

MarFS: MarFS [11] is a recently-developed object-based
file system that presents cloud-style object-storage as scalable
near POSIX filesystem. MarFS is becoming popular as it
provides high scalability and a POSIX interface atop cloud-
style object storage. These features also make MarFS attractive
for HPC applications.

We found that these storage systems provide various benefits
to manage and store data such as high performance, security,
and scalability. But some of these systems are mainly used for
cloud computing applications and are optimized for storage
of immutable data, and thus may not be directly applicable to
many HPC use cases.

Lustre and Ceph have been successfully supporting HPC
application data at scale, but these parallel file systems for
HPC manage data as streams of bytes via POSIX I/O and thus
are susceptible to limitations at exascale due to lack of inherent
support for object based abstractions. They lack a uniform
and consistent data interface for each layer of the storage
stack. Such uniformity is desirable as it can facilitate storage
and scientific application data I/O, and supports seamless data
movement across hierarchies. Simple and efficient methods for
data management and storage through the memory hierarchy
are critical for sustaining storage systems for scientific appli-
cations at exascale.

III. DESIGN

A. Object Definition

The typical data structures used by scientific applications
to represent data are multidimensional arrays. We define an
object comprising a multi-dimensional array that contains ei-
ther one property or multiple properties of a physical scientific
object. An object can also contain an associative array (key-
value store). Each object contains metadata (object ID, name,
dimension, datatype, etc.), payload (actual data of a multi-
dimensional array), extended metadata (attributes or properties
of the payload, locations of products of data, etc.), and
provenance (time of creation, owner of an object, time and
user of accesses, etc.). A high-level view of an object and
its components is shown in Figure 1. Multiple objects can be
packed into a container to manage them as a collection. One
can expand this definition to add more metadata and to support
more data structures as payload.

Fig. 1. The proposed object structure.

In parallel applications, objects are created in parallel on all
participating processes, but have a global view of a single ob-
ject. Each process creates a set of individual local sub-objects
(one object per process), which are considered collectively as a
subset of the global object (or object container). Once objects
and containers are created, application data is mapped into
them using object API, and container-id’s and object-id’s are
returned to the client for future access.

Object API (provided to the application users)

cid=create_Container(attr,
..)

Creates the data container with a global
view which holds all the objects. Returns the
container-id cid to user

oid[i]=create_Object(cid,
attr, local_size, plist,
..)

Creates the objects for each process, with ap-
plication data, semantic information and other
attributes attr and properties list plist, Returns
object-id oid to use

write_Object(oid[],
buf,...)

Creates a memory buffer buf for in-memory
computations, and writes objects to storage sys-
tem

finalize_container(c_id) Deletes the container and its component objects

TABLE I
OBJECT APIS FOR CREATING CONTAINERS/OBJECTS AND WRITING TO

THE STORAGE SYSTEM.

An object can either represent a single property of a set
of physical objects or a data structure containing multiple
properties of the objects. We name the former as basic objects,
and the latter as composite objects. Depending upon the
application requirement, either basic or composite objects can
be created on the compute nodes.

B. Object-based Storage Model for Multi-layer HPC Storage

In this section, we first present the object APIs that we
provide to applications, then we discuss our system architec-
ture, followed by the object storage design model for efficient
objects storage.

a) Object APIs: We provide a number of object APIs to
the application as listed in Table I. The APIs support object
management functions such as creating containers and objects,
and storing the objects into different layers of the storage
system. Our design model offloads from the users to our
system the task of managing MPI-IO or HDF5 calls to the
separate layer. A key advantage of uniform object APIs is
that data can be moved between layers without modification,
which preserves semantics and enables seamless migration of
data between storage hierarchy layers as needed.

b) System Architecture: Figure 2 presents the overall
system architecture of our approach. The application interacts
with the system at the top layer that exports the object APIs to
the user. In this layer, our object model creates data containers
and associated objects on the compute nodes and returns the
container-id and object-ids to the user. There are n compute
nodes, and each of them runs k processes, P1 to Pk, to map
application data into objects, O1 to Ok. Each process creates
one object locally in the memory of the compute node on
which it executes. Another component of this layer is the
object-based data container, which provides a global view of
all the objects to the application.

The next component of the system is SSD-based burst
buffers/nodes that offer persistent edge storage. This layer
provides a closer (to compute) and faster storage system
for meeting high performance needs. Objects created on the
compute nodes are pushed onto this layer for short-term
storage. To store the objects, our object storage model creates
multiple object-shards (S1, S2, ..) in this layer.

Application

PnkP2 PK Pn(k-1)

OnkOn(k-1) On(k-2)

Pn(k-2)P1

OkO2O1

N1 Nn

S1 S2

Compute Nodes

Object-Based Data Container

Burst Buffer / Node Persistent Edge Storage

Disk Based Parallel File System

SnS(n-1)

Metadata File

Fig. 2. High-level architecture of the proposed object storage system. Pnk

is the kth process on nth compute node Nn. Onk is the object created by
process Pnk , Sn is nth object-shard created by group of processes on Nn.
Burst Buffers are SSD-based storage system. The parallel file system is HDD
based, e.g., Lustre.

The third and the last layer of the system comprise a disk
based parallel file system, e.g., Lustre. This layer provides
long-term storage for objects (in the form of object-shards)
that are in compute nodes or burst buffers.

c) Object-based Storage Model: Our storage model uses
MPI-IO interface for mapping the data objects into files. The
objects can be stored in the burst buffers, in the disk-based
file system, or both according to the application requirements.

C. Object Creation and Data Mapping Process

First, as described earlier, our proposed approach creates an
object-based data container that contains all the objects created
on the compute nodes and set its properties such as its type,
lifetime, and state. A unique container-id is assigned to this
container, which is returned to the user after its creation and
setup. Once a data container is created, each process creates
a data object into this container to map the application data
using the object-creation APIs listed in Table I . Based on the
application requirements, either basic or composite objects are
created. Next, application data is mapped into these objects
using the object-mapping APIs and the object-ids are returned
to the user. Objects sharing the same node-local memory are
called sub-objects.

Once the objects are created in memory and application
data is mapped into these objects, the next step is to examine
the application requirements and determine if these objects
need to be kept in memory, or stored into the storage layers.
The storage model assigns each application a storage quota,
based on which some sub-objects are stored into burst buffers
and the rest are stored in Lustre. For example, if the storage
quota is assigned as (25:75), 25% of all the sub-objects from
the applicaiton will be pushed to burst buffer and the rest
of the objects to the lower storage layer, i.e., Lustre. Our
object interface contributes to seamless semantic-preserving
data migration between these storage layers.

The model maps the data objects into object-shards as
follows. As shown in Figure 2, in the top layer, the model
divides all the processes into groups based on the nodes on
which they run. Therefore, if there are n compute nodes and k
processes on each node, we get n groups of processes where
each group has k members. The grouping of the processes is
based on the nodes so that all the local sub-objects can be
stored collectively in physical proximity. The storage model
can classify the sub-objects into one group per node or one
group for a collection of two or more nodes.

Once the data objects are grouped together, our storage
model maps them into object-shards and pushes them to the
burst buffers or the disk-based parallel file system, depending
on the storage quota assigned to the application data.

We experimented with 5 different object-sharding strategies
using a representative application (VPIC-I/O [5]) as shown
in Table II. Each strategy forms different number of object-
shards per node for our use cases. The experimental details of
these strategies are presented in the next section. We observed
that Strategy-3, which creates n/2 object-shards for composite
objects and 4n object-shards for basic objects performs the
best for storing the objects in our studied application. These
shards reside partially into the burst buffers and Lustre file
system. If required, application can access the object-shards
from burst buffers, bringing them back into memory, or send
them to the lower storage layer.

Our storage model preserves the information of each object-
shard (such as its name and location) into the metadata portion
of the object as well as a separate Metadata file. This approach
helps us manage the mapping of objects to object-shards
without using a separate metadata server.

In summary, our design enables a flexible object-based store
with uniform APIs, and allows for seamless migration of data
between different hierarchies of the HPC storage stack.

IV. EVALUATION

In this section, we present the implementation details of
our object-based approach and its evaluation. Our implemen-
tation targets I/O of two scientific applications: VPIC-I/O [5],
a particle physics simulation that simulates field data and
particle data; and HACC-I/O [12], a benchmark that captures
the I/O patterns and evaluates the performance for the HACC
simulation code.

A. VPIC-I/O

In VPIC-I/O, original data structure contains 8 variables for
each particle and these variables are stored as 1-D arrays using
HDF5 datasets. Using our object interface, we implemented
both types of objects – Basic and Composite. We mapped the
particle data into objects, where each process creates one sub-
object in the local memory of node to which it belongs. Then
we used our object-based storage model to map these sub-
objects into object-shards mainly using five object-sharding
strategies (specified in Table II) based on number of shards
formed on n compute nodes, to which the sub-objects are
mapped.

Strategy No. of Object-Shards for n Nodes Size of each Object-Shard (GB)
Basic Composite Basic Composite

1 8 1 32-525 256-4100
2 8n n 1 8
3 4n n/2 2 16
4 2n n/4 4 32
5 n n/8 8 64

TABLE II
SPECIFICATIONS OF VARIOUS OBJECT-SHARDING STRATEGIES FOR

VPIC-I/O.

We ran all our experiments on the Cray XC40 system
‘Cori’ installed at the National Energy Research Scientific
Computing Center (NERSC) for a scale of up to 16, 384
cores/MPI processes. We measured the ‘I/O rate’ obtained for
storing these object-shards in a file system using our storage
model and compared the performance with that of writing the
same amount of application data using HDF5 datasets. The
‘I/O rate’ is the ratio of the amount of total data written to
the time taken for storing the data in the file system. We store
the object-shards in 2 ways: (1) All object-shards into Lustre
(Horizontal Sharding); (2) A fraction of total number of
object-shards into burst buffers and rest into Lustre (Vertical
Sharding). For the VPIC-I/O experiments, each MPI process
writes 8 M particles. We use a Lustre OST count of 248 and
stripe size of 32 M for all of our experiments.

1) Horizontal Sharding: In our tests, we have created and
stored object-shards for both basic and composite objects.

0

50

100

150

200

250

300

1K 2K 4K 8K 16K

I/
O
	 R
at
e	
(G
B/
se
c)

Number	 of	 Processes

VPIC-‐I/O	 (Write	 Performance	 with	 Basic	 Objects)

HDF5

Object-‐Sharding	 Strategy	 1

Object-‐Sharding	 Strategy	 2

Object-‐Sharding	 Strategy	 3

Object-‐Sharding	 Strategy	 4

Object-‐Sharding	 Strategy	 5

Fig. 3. Write performance for VPIC-I/O Basic Objects.

Basic Objects In the case of storing basic objects, each
process creates 8 sub-objects (one for each particle property
or variable). Each of these sub-objects are grouped together
based on the compute nodes, and then mapped into object-
shards. Figure 3 shows the I/O rate obtained for storing the
basic objects for five object-sharding strategies compared to
that of HDF5 [9] dataset storage. We observed a performance
improvement of up to 5× for storing all the objects under
our approach (object-sharding strategy 3 giving the maximum
performance). The performance difference rises significantly,
especially on a scale higher than 4K (i.e., 4 x 1024 = 4096)
processes. At higher scales, the larger number of object-shards
facilitates parallel storage operations, which significantly re-
duces the contention among processes.

Composite Objects Figure 4 shows the I/O rate obtained
to store all object-shards for composite objects into Lustre. As
shown in Figure 4, we observe that, similar to basic objects,

0

50

100

150

200

250

300

350

400

1K 2K 4K 8K 16K

I/
O
	 R
at
e	
(G
B/
se
c)

Number	 of	 Processes

VPIC-‐I/O	 (Write	 Performance	 with	 Composite	 Objects)

HDF5

Object-‐Sharding	 Strategy	 1

Object-‐Sharding	 Strategy	 2

Object-‐Sharding	 Strategy	 3

Object-‐Sharding	 Strategy	 4

Object-‐Sharding	 Strategy	 5

Fig. 4. Write performance for VPIC-I/O Composite Objects.

the performance for object-sharding strategy 3 is much better
for composite objects too. This storage performance is mainly
achieved due to efficient grouping of processes based on nodes,
as all the processes belonging to one node are topologically
nearer to each other.

0

100

200

300

400

500

600

1K 2K 4K 8K 16K

I/
O
	 R
at
e	
(G
B/
se
c)

Number	 of	 Processes

VPIC-‐I/O	 (Write	 Performance-‐ Vertical	 Sharding)

100%	 Object	 Shards	 in	 Lustre

25%	 in	 BB	 and	 75%	 in	 Lustre

50%	 in	 BB	 and	 50%	 in	 Lustre

75%	 in	 BB	 and	 25%	 in	 Lustre

100%	 Object	 Shards	 in	 BB

Fig. 5. Write performance for VPIC-I/O using Verical Sharding.

0

100

200

300

400

500

600

1K 2K 4K 8K 16K

I/
O
	 R
at
e	
(G
B/
se
c)

Number	 of	 Processes

VPIC-‐I/O	 (Read	 Performance-‐ Vertical	 Sharding)

100%	 Object	 Shards	 in	 Lustre

25%	 in	 BB	 and	 75%	 in	 Lustre

50%	 in	 BB	 and	 50%	 in	 Lustre

75%	 in	 BB	 and	 25%	 in	 Lustre

100%	 Object	 Shards	 in	 BB

Fig. 6. Read performance for VPIC-I/O using Verical Sharding.

2) Vertical Sharding: As described earlier (Section III-B),
one of the main contributions of our object storage design
model is that, given its uniform storage APIs, it can store
object-shards on multiple layers of storage. In this study, we
have stored data partially on both SSD-based burst buffers and
disk-based Lustre by assigning a storage quota for each appli-
cation based on performance requirements. Some applications
need to keep hot objects closer, which can be achieved by
storing them into burst buffers.

In Figure 5, we show the performance of storing all object-
shards for VPIC composite objects into Lustre compared to
storing 25%, 50%, 75%, or 100% of them into buffers and
rest into Lustre, using object-sharding strategy 3. We have
statically chosen these distributions between the two layers to
demonstrate the concept. Users may choose better distribution
based on the knowledge of application requirements. We show
in the figure a comparison of vertical sharding with horizontal
sharding, where all object-shards are stored in Lustre. Storing
all object-shards in burst buffers may not be feasible due to
capacity limitations and by moving just 25% of the object-
shards from Lustre to burst buffers, it provides up to 2.4× im-
provement compared to the case where all of them are stored
in Lustre and up to 8× compared to HDF5 (Figure 4). Thus,
our uniform API approach provides a flexible mechanism to
bring objects that are being used frequently (hot data) closer
to the computation in a seamless manner as needed.

We also measured the I/O rate for reading partial object-
shards stored in the burst buffers and compared the perfor-
mance with reading all of the shards from Lustre. In Figure 6,
we show the performance of reading the object-shards for
VPIC composite objects sharded vertically between Lustre
and burst buffer using object-sharding strategy 3. As burst
buffer layer is closer to computation, reading the object-shards
partially from burst buffer improves the performance by up to
8× compared to reading all of them from the Lustre.

B. HACC-I/O

For HACC-I/O, we implemented the objects as composite
objects. Each particle of HACC simulation consists of nine
variables representing some attributes of the application. For
all the experiments, we stored data for 8 M particles per
process. All the experiments are done on the NERSC’s Cori
supercomputers for scale of up to 16384 cores. We used object-
sharding strategies 1 to 4 (specified in Table II) for horizontal
sharding of HACC-I/O application data using the composite
objects. The baseline implementation of HACC-I/O uses MPI-
IO [21] library.

0

50

100

150

200

250

300

350

400

450

1K 2K 4K 8K 16K

I/
O
	 R
at
e	
(G
B/
Se
c)

Number	 of	 Processes

HACC-‐I/O	 (Write	 Performance	 with	 Composite	 Objects)

MPI-‐IO

Object-‐Sharding	 Strategy	 1

Object-‐Sharding	 Strategy	 2

Object-‐Sharding	 Strategy	 3

Object-‐Sharding	 Strategy	 4

Fig. 7. Write performance for HACC-I/O Composite Objects.

1) Storage Performance using Horizontal Sharding: We
show a comparison of I/O rate for storing all the object-
shards under the four object-sharding strategies with storing
application data using MPI-IO into one single file in Figure 7.

We observe that as in the case of VPIC-I/O, object-sharding
strategy 3 (which creates n/2 object-shards on n nodes)
performs significantly better. We observe a performance gain
of up to 6× for storing the object-shards with strategy 3
as compared to MPI-IO. It can also be seen in the figure
that performance gain increases manifold at higher scales.
This performance gain is achieved by significant contention
reduction among processes for storing multiple object-shards
in contrast to single shared file architecture.

2) Read Performance using Horizontal Sharding: We also
measured the performance for reading objects from object-
shards and compared the same with the MPI-IO single-file
model. In Figure 8, we show that the I/O rate obtained to read
all the objects shards using the three object-sharding strategies
as well as using MPI-IO. We observed a performance gain of
up to 30% using sharding strategy 3.

0

10

20

30

40

50

60

70

1K 2K 4K 8K 16K

I/
O
	 R
at
e	
(G
B/
se
c)

Number	 of	 Processes

HACC-‐I/O	 (Read	 Performance	 with	 Composite	 Objects)

MPI-‐IO

Object-‐Sharding	 Strategy	 1

Object-‐Sharding	 Strategy	 2

Object-‐Sharding	 Strategy	 3

Fig. 8. Read performance for HACC-I/O Composite Objects.

V. RELATED WORK

A number of recent research efforts explore object-based
storage systems. The T10 standards [8], [19] were proposed
to store data and attributes as objects. Based on T10 standards,
Seagate, IBM (ObjectStore [7]), and Panasas (PanFS [25])
implemented prototypes [19] and demonstrated the capability
of object-based storage systems. RADOS [24]], as part of
Ceph [23], is a scalable and reliable object storage service for
petabyte-scale storage clusters. Lustre views a file as multiple
objects. For instance, each Lustre object is implemented as
files on an object storage target (OST) that represents a local
file system. HDF5 data model offers three types of objects-
groups, datasets, and links between objects and stores them
into file-based storage systems. DAOS (Distributed Applica-
tion Object Storage) [13] is an object storage system that
encapsulates data of storage stack in DAOS containers and
provides distributed transactional object store. NVRAM and
various implementations of FLASH devices have also been
proposed as solutions to alleviate I/O performance issues of
HPC systems. Rajimwale et al. [20] revisited the traditional
data model of HDD on SSD devices and found that the
object-based storage is more suitable for these new devices.
Kang et al. [16] proposed object-based models to support
hardware devices with different configurations. Application

related information is allowed to be exchanged through the
object interface and this provides for performance benefits
and object-level reliability. Lee et al. [18] implemented a
SSD based object storage system, where the attributes and I/O
usage information is stored as metadata. Muninn is an object-
based versioning key-value store [15] to enable transparent
versioning on file systems.

Despite various studies of object-based storage solutions,
there is no uniform object management across all the memory
and storage layers that will be common in exascale systems.
Generally, existing research focuses on an individual level
without considering the presence of other layers. When data
moves through the hierarchies, semantic information embed-
ded in objects are lost, resulting in poor performance. In addi-
tion, object-oriented mechanisms for expressing data structures
that can transcend through all the layers of the hierarchy are
unexplored. Our approach addresses this shortcoming, and
offers an integrated solution for deep hierarchy storage for
emerging exascale systems.

VI. CONCLUSIONS

We have presented an initial design of a novel object
based storage interface to facilitate storage and I/O for HPC
applications in exascale systems that will comprise deep
memory and storage hierarchy. Our interface maps scientific
applications’ data into objects that can store both simple as
well as complex data structures along with their properties to
preserve semantic information in various layers of memory and
storage. Our approach can offload the task of managing MPI-
IO or HDF5 calls for data storage from the users to our system.
To achieve high performance as well as storage efficiency, we
store objects partially into SSD-based burst buffers or node-
local persistent storage as well as on disk-based parallel file
system (e.g. Lustre) based on application requirements. We
have implemented our proposed model with two scientific
use cases, VPIC-I/O and HACC-I/O, and evaluated it for a
scale of up to 16K processes. Experimental results show that
compared to the state of the art, our object-based storage
model can improve the I/O performance by up to 7×. Based
on this initial success, we are developing a runtime system to
optimize sharding strategies, to move data asynchronously and
pro-actively, and to support data processing while the data is
in transit among different storage layers.

ACKNOWLEDGMENT

This work is supported in part by the Director, Office of
Science, Office of Advanced Scientific Computing Research,
of the U.S. Department of Energy under Contract No. DE-
AC02-05CH11231. (Project: Proactive Data Containers, Pro-
gram manager: Dr. Lucy Nowell). This work is also sponsored
in part by the NSF under the grants: CNS-1565314, CNS-
1405697, and CNS-1615411. This research used resources of
the National Energy Research Scientific Computing Center
(NERSC), a DOE Office of Science User Facility.

REFERENCES

[1] Apache Spark. https://wiki.openstack.org/wiki/Swift. Accessed: March
20 2017.

[2] CORAL Benchmarks. https://asc.llnl.gov/CORAL-benchmarks/#hacc.
[3] OpenStack Object Storage. https://wiki.openstack.org/wiki/Swift. Ac-

cessed: Jul 22 2016.
[4] Parallel I/O Kernel (PIOK) Suite. https://sdm.lbl.gov/exahdf5/software.

html.
[5] S. Byna, J. Chou, O. Rübel, Prabhat, H. Karimabadi, W. S. Daughton,

V. Roytershteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin,
A. Shoshani, A. Uselton, and K. Wu. Parallel I/O, Analysis, and
Visualization of a Trillion Particle Simulation. In Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 59:1–59:12, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[6] J. Dean and S. Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[7] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and P. Sadayappan.
Integrating parallel file systems with object-based storage devices. In
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC
’07, pages 27:1–27:10, New York, NY, USA, 2007. ACM.

[8] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran. Object storage:
the future building block for storage systems. In Local to Global Data
Interoperability - Challenges and Technologies, 2005, pages 119–123,
June 2005.

[9] M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson. An
Overview of the HDF5 Technology Suite and Its Applications. In
Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases,
AD ’11, pages 36–47, New York, NY, USA, 2011. ACM.

[10] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gobioff,
C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective,
high-bandwidth storage architecture. SIGPLAN Not., 33(11):92–103,
Oct. 1998.

[11] G. Grider. MarFS: A Scalable Near-POSIX File System over Cloud
Objects Background, Use, and Technical Overview, 2016.

[12] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heit-
mann. HACC: Extreme scaling and performance across diverse archi-
tectures. In 2013 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 1–10, Nov
2013.

[13] Intel. DAOS Lustre Restructuring and Protocol Changes Design :
For extreme-scale computing research and development (FastForward)
storage and I/O, 2014. https://goo.gl/oCKLso.

[14] P. J.Braam. The Lustre Storage Architecture (Technical Report). Tech-
nical report, Available: http://wiki.lustre.org/., 2004.

[15] Y. Kang. High-Performance, Reliable Object-Based NVRAM Devices.
PhD thesis, Storage Systems Research Center, University of California,
Santa Cruz, 9 2014.

[16] Y. Kang, J. Yang, and E. Miller. Object-based SCM: An efficient
interface for Storage Class Memories. In Mass Storage Systems and
Technologies (MSST), 2011 IEEE 27th Symposium on, pages 1–12, May
2011.

[17] Q. Koziol. Design and implementation of FastForward features in HDF5
for extreme-scale computing research and development (FastForward)
storage and I/O. Technical report, The HDF Group, 2014.

[18] Y.-S. Lee, S.-H. Kim, J.-S. Kim, J. Lee, C. Park, and S. Maeng. Ossd:
A case for object-based solid state drives. In Mass Storage Systems and
Technologies (MSST), 2013 IEEE 29th Symposium on, pages 1–13, May
2013.

[19] D. Nagle, M. Factor, S. Iren, D. Naor, E. Riedel, O. Rodeh, and
J. Satran. The ANSI T10 object-based storage standard and current
implementations. IBM Journal of Research and Development, 52(4-
5):401–412, 2008.

[20] A. Rajimwale, V. Prabhakaran, and J. D. Davis. Block management in
solid-state devices. In Proceedings of the 2009 Conference on USENIX
Annual Technical Conference, USENIX’09, pages 21–21, Berkeley, CA,
USA, 2009. USENIX Association.

[21] R. Thakur, W. Gropp, and E. Lusk. On implementing mpi-io portably
and with high performance. In Proceedings of the Sixth Workshop on I/O
in Parallel and Distributed Systems, IOPADS ’99, pages 23–32, New
York, NY, USA, 1999. ACM.

[22] S. R. Walli. The POSIX Family of Standards. StandardView, 3(1):11–17,
Mar. 1995.

[23] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation, OSDI ’06, pages 307–320, Berkeley, CA, USA, 2006.
USENIX Association.

[24] S. A. Weil, A. W. Leung, S. A. Brandt, and C. Maltzahn. Rados:
A scalable, reliable storage service for petabyte-scale storage clusters.
In Proceedings of the 2Nd International Workshop on Petascale Data
Storage: Held in Conjunction with Supercomputing ’07, PDSW ’07,
pages 35–44, New York, NY, USA, 2007. ACM.

[25] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou. Scalable performance of the panasas parallel
file system. In Proceedings of the 6th USENIX Conference on File and
Storage Technologies, FAST’08, pages 2:1–2:17, Berkeley, CA, USA,
2008. USENIX Association.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012.
USENIX Association.

