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Abstract—MapReduce is the model of choice for processing
emerging big-data applications, and is facing an ever increasing
demand for higher efficiency. In this context, we propose a
novel task scheduling scheme that uses current task and system
state information to drive online simulations concurrently
within Hadoop, and predict with high accuracy future events,
e.g., when a job would complete, or when task-specific data-
local nodes would be available. These predictions can then
be used to make more efficient resource scheduling decisions.
Our framework consists of two components: (i) Task Predictor

that predicts task-level execution times based on historical
data of the same type of tasks; and (ii) Job Simulator that
instantiates the real task scheduler in a simulated environment,
and predicts expected scheduling decisions for all the tasks
comprising a MapReduce job. Evaluation shows that our
framework can achieve high prediction accuracy — 95% of the
predicted task execution times are within 10% of the actual
times — with negligible overhead (1.29%). Finally, we also
present two realistic usecases, job data prefetching and a multi-
strategy dynamic scheduler, which can benefit from integration
of our prediction framework in Hadoop.

I. INTRODUCTION

In recent years, MapReduce/Hadoop [1] has emerged as

the de facto model for big data applications, and is employed

by industry [2], [3], [4], [5] and academia [6], [7], [8] alike.

Improving the efficiency of Hadoop is therefore crucial.

Recent research is revisiting classic optimizations such as

anticipatory scheduling and history-based prediction in the

context of Hadoop. Delay scheduling [9] delays assignment

of a task with non-optimal data locality, with the anticipation

that a node with better locality may become available soon.

PACMan [10] manages an in-memory cache on each Hadoop

node, and tries to keep “hot” data blocks in the cache. Such

systems typically rely on heuristics for resource management

decisions, however, this can cause false positives/negatives

when the heuristics fail to correctly capture the behavior of

the current workload.

We make the observation that if future events can be

accurately predicted in Hadoop, the information can be used

to better drive resource management than the use of pure

heuristics only, consequently improving overall system per-

formance. For instance, if we can predict that no node with

better data locality will become available in the near future,

we can avoid the overhead of Delay Scheduling [9], and

schedule the task immediately. Similarly, if we can predict

when and where a task is likely to be run in PACMan [10],

we can prefetch the needed data from disks into the memory

cache right before the task starts. However, predicting behav-

ior of an entire system is a challenging task. For example, in

operating systems, external factors including user input and

creation of new processes make future system state hard to

predict. Similarly, high-performance computing applications

usually involve complicated communication and dependen-

cies between tasks, and hence not easily predictable. In

contrast, MapReduce tasks are inherently independent with

no inter-task communication or synchronization except for

a well-defined shuffle phase, so task behavior depends only

on local node resources. Moreover, MapReduce is a batch

processing system where new tasks are added to a pending

queue. Thus, the scheduler is aware of what workloads are in

line to run in the near future. These properties are promising

in enabling high-accuracy behavior prediction in a Hadoop.

In this paper, we present an online prediction framework

that leverages the above properties of Hadoop that can drive

more efficient task scheduling. Powered by history-based

statistical prediction and online simulation, our framework

can continuously predict future execution of tasks and jobs

in live Hadoop. The online prediction framework comprises

two components, Task Predictor and Job Simulator. The

key insight in Task Predictor is that the execution time of

a task is directly correlated with the size of the data the

task processes. This allows us to derive a linear regression

model for task execution time based on task input size, and

apply the model to estimate execution time of pending tasks.

Job Simulator predicts when a task will start to run and

on which node, based on the current state of the system.

Job Simulator, when invoked, replicates the current real

system state and uses the execution time estimates from

Task Predictor to simulate future states. The real MapReduce

scheduler is modified to invoke Job Simulator and consider

its outcomes before making scheduling decisions. Moreover,

our simulator employs the same code as the real MapReduce

scheduler to ensure that the simulated environment is as

close to the real events as possible, and that the simulation

can offer a good prediction for expected future system

behavior.

Specifically, this paper makes the following contributions:

• We design an online framework for making predic-
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(a) TeraGen map. (b) random text writer map.
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(c) TeraSort map. (d) TeraSort reduce.

Figure 1. Task execution time versus data size for representative Hadoop
applications.

tions based on real-time state of a Hadoop system.

The framework provides a basis for designing more

advanced prediction algorithms and simulations.

• We develop a simulation engine that can predict task

scheduler decisions that will be made in the near future,

and leverage this information to derive more efficient

scheduling decisions.

• We implement the online prediction framework as a

patch for Hadoop release 0.20.203.0. We intend to

release the patch to the community to enable further

research in efficient MapReduce Systems.

• We evaluate our framework using representative ap-

plications and show that it achieves high prediction

accuracy — 95% of the predicted task execution times

are within 10% of the actual times — with negligible

overhead (1.29%).

II. ONLINE SIMULATION FRAMEWORK

In this section, we present the main components of our

online simulation framework. We first describe the basis for

our task execution time predictions, followed by how we

utilize this information to simulate the system and predict

when and where a particular task will be scheduled.

A. Estimating Task Execution Time Using Linear Regression

Our main objective is to predict the execution time for

an entire job. However, since jobs in Hadoop comprise of

one or more tasks, we first focus on predicting the execution

time for individual tasks making up a job.

Empirical observation and intuition suggest that the total

computation and I/O time for a MapReduce task is correlated

with the input data size of the task. To better understand

this relationship, we run a set of representative MapReduce

applications [11] with varying input data size and observe

the resulting execution time. For this purpose, we use a

single worker node configured with one map slot and one

reduce slot to eliminate the effect of any parallelization. We

also configured MapReduce to start running reduce tasks

only after all map tasks have finished, which ensures that

only one task is running on a given node at any time.

For each application, we create jobs to process 50 different

data sizes. The results of this study are shown in data size

versus execution time plots in Figure 1. Each data point on

the graphs shows the average execution time and standard

deviation observed for tasks with a given data size.

We observe that most jobs show linear correlation between

data size and task execution time. In some jobs, all associ-

ated tasks have similar input data sizes and corresponding

execution times. One notable difference is observed for

(c) TeraSort map, where the result shows two different linear

correlations, one occurring for input data size below 27 MB

(approximately) and the other above that. The reason is that

in a job such as TeraSort that involves both map and reduce

phases, when input data size is less than a threshold, 27 MB

for our test, a map task can write to a single output file

and no merge is necessary. Whereas when input data size is

larger than the threshold, the map task must write to multiple

files, and later merge the results. This produces the different

patterns as observed in the graph. The threshold may vary

for different jobs and tasks, but the pattern is expected to be

similar for map-reduce phase jobs.

Implementation of Task Predictor: Based on the above

observations, we predict execution time of a task using

information about previously finished tasks of the same type.

We develop Task Predictor to first derive a performance

model from tasks that have already finished, and then apply

the model to predict execution time of new tasks. Task

Predictor observes data sizes and corresponding execution

times for all previous tasks of a particular type, and uses

linear regression to determine the correlation between them.

With the determined correlation model, we can then predict

execution time of a task of the same type using its input

data size.

Limitations: A limitation of Task Predictor is that it

must have observed the complete execution of a type of

task before it can reasonably predict the execution time for

a new task of the type. If Task Predictor encounters a task

it has not observed before, it simply estimates the execution

time based on the input size of the task and a pre-specified

default value. Such prediction may not be very accurate, but

serves as a starting point, which is then refined when the

same type of task is encountered on its next occurrences.

Also note that although we use a linear regression model

based on input data size in our current implementation of

Task Predictor, our framework can easily incorporate more

complex models, such as those presented in [12], [7], [8].



Algorithm 1 Pseudo code for Job Simulator driving engine.

while queue is not empty AND not all jobs have finished

do

event← next event in the queue

advance virtual clock to when event occurs

if event is a heartbeat event then

SimTT prepare a status update

SimTT calls SimJT.heartbeat()

SimJT processes the heartbeat

SimJT actions← actions for SimTT

SimJT response ← a heartbeat response with

actions

SimJT send response back to SimTT

SimTT.performActions()

else if event is a task finish event then

SimTT mark task as COMPLETED

if a map task finishes then

SimTT map slots← map slots+ 1

else if a reduce task finishes then

SimTT reduce slots← reduce slots+ 1

end if

end if

end while

B. Predicting Job Schedules

Once we have obtained estimated task execution times,

we use them to predict tasks scheduling decisions for the

execution of an entire job as follows. We design a realistic

simulator, Job Simulator, that captures all the information

used by Hadoop task scheduler, instantiates the same task

scheduler code in the simulated environment as that used

for the real scheduling, and drives a simulation to mimic

the scheduling decisions that are likely to occur in the real

system given the current state. By speeding up virtual time,

Job Simulator provides a prescient look of how the system

will behave in the near future if the scheduler were to

continue its course with the currently batched jobs. This also

allows Job Simulator to predict when and where particular

tasks would be scheduled. The real scheduler can then

use the predicted information from Job Simulator to make

more efficient decisions if needed. Finally, Job Simulator is

updated periodically and the above process is repeated.

A dedicated thread in the Hadoop JobTracker process is

added to run Job Simulator. First, we take a snapshot of

the current status of JobTracker and instantiate a simulated

JobTracker and task scheduler component, SimJT, in Job

Simulator. SimJT contains replicated information for each

running job, tasks in each job, running tasks, etc., from the

real JobTracker. We also instantiate a simulated TaskTracker

object (SimTT) in Job Simulator for each TaskTracker that is

active in the real system at the time when the current round

of simulation started. Figure 2 shows the architecture of Job

Figure 2. Overview of Job Simulator architecture.

Simulator. JobTracker and task scheduler in Job Simulator

both run the same code as their counterparts in the real

system. SimTTs are simulated objects that are controlled by

a discrete event simulator engine. SimTTs communicate with

SimJT, similar to how TaskTrackers communicate with the

JobTracker. One challenge we faced was that the original

JobTracker code only works with physical time, but SimJT

had to run with virtual time during the simulations. We

refactored the JobTracker code to make it compatible with

both physical and virtual time, thus enabling the use of the

same code directly within SimJT. The simulation engine

maintains a priority event queue sorted by the virtual time

when each event is scheduled to occur. The engine advances

the virtual time to the point when the next event in the queue

will occur and processes the event. During the processing,

more events can be inserted into the queue as events that will

occur in the virtual future. The engine repeats the process

until the queue is empty, or in our case, when all jobs in the

system are completed.

Algorithm 1 shows the pseudo code for the simulation

engine. We currently implement two types of events: a

heartbeat event and a task finish event. On re-

ceiving a heartbeat from SimJT, the associated SimTT

creates an up-to-date status and sends a heartbeat message

to SimJT. SimJT processes heartbeat messages, calls the

task scheduler to make scheduling decisions if necessary,

and returns a heartbeat response with actions to the SimTT.

SimTT then performs the actions such as, a launch-map-task

action, or a all-maps-completed action (to launch a reduce

task). The processing of a heartbeat response message is

done after SimTT has processed all actions requested in the

message. On a task finish, SimTT simply marks the

task as COMPLETED and frees the slots occupied by the

task. The engine then moves on to process the next event

in the queue. The procedure is repeated until all jobs in

the simulation complete. To avoid using too much resources

on the physical machine, each simulation stops after a long

enough virtual period (default 1 hour) has elapsed, typically

within about 10 seconds in physical time. This amount of

simulation is sufficient, as status of the real system may



change due to newly submitted jobs, machine failure or

recovery, random noise, etc. Running the simulation for any

longer will likely result in it diverging significantly from the

actual system behavior.

Predictions Based on Online Simulation: Job Simulator

can predict each scheduling decision to be made by the task

scheduler. If the virtualized environment supplied to the task

scheduler mimics the real environment, the task scheduler

will make the same scheduling decision in simulation as

it will in the real system with high accuracy since the

simulation implements the same code as the real system.

Every decision is valuable information, and can be used to

improve overall system performance. When all tasks of a job

finish in the simulation, we can predict the total job finish

time as well as the start and finish time of all of its tasks.

The simulator engine drives SimTT, which in turn calls

SimJT and the task scheduler on a heartbeat. The engine

and SimTT can be viewed as a virtualized environment,

which surrounds SimJT and the task scheduler, as if Job-

Tracker and task scheduler are running in a real system. Fur-

thermore, since we do not modify the existing task scheduler

code, Job Simulator is compatible with any deterministic

task scheduler. To make a task scheduler compatible with

our Job Simulator, the scheduler must implement a copy()

method to create a new task scheduler object that is a

snapshot of itself and the scheduler must support virtual

time. We have ported the default JobQueueTaskScheduler

and Fair Scheduler (naive fair scheduler as discussed in [9])

to work with Job Simulator.

Limitation: One limitation of Job Simulator is that

it can predict the execution time only of the jobs that

are submitted when the simulation starts. In contrast to

real Hadoop, Job Simulator does not have a job client,

and no new jobs can be added during a simulation run.

However, this is not a problem since the simulation is rerun

periodically and new jobs can be captured in the next round.

Job Simulator also cannot predict hardware and network

failures. In every simulation, all jobs are simulated with the

assumption of no failure. When a failure does occur in the

real system, we rely on the subsequent simulation runs to

include the failure and simulate its impact. This is also not a

major hurdle, as the simulation can be re-invoked soon after

the system recovers, and Job Simulator will quickly adapt

to the new system state.

Performance Impact of Job Simulator: In order to be

practically useful, the simulation time must not be longer

than the interval between two simulations executions. In a

large cluster, JobTracker might be too busy running simu-

lations and not be able to keep up with heartbeat messages

from TaskTrackers. In order to minimize performance impact

on the JobTracker, Job Simulator can be separated from

JobTracker as a stand-alone process or even run on another

node. The new Job Simulator process can communicate with

JobTracker to get status update and send simulation results

via periodical heartbeat messages. Thus, Job Simulator pro-

cess will minimize the overhead on JobTracker process, and

utilize processing power of multi-core processors or even

processing power of another node.

III. EVALUATION

We have implemented the online prediction framework

including both Task Predictor and Job Simulator as a patch

for Apache Hadoop release 0.20.203.0 in about 6000 lines

of code. In this section, we evaluate the prediction accuracy

of Task Predictor and Job Simulator under two sched-

ulers: JobQueueTaskScheduler (the default Hadoop FCFS

scheduler) and Fair Scheduler [9]. We also investigate the

performance impact of our approach on JobTracker.

We conducted our experiments on a small cluster with 1

JobTracker and 3 TaskTrackers. Nodes are connected via

a 1000 Mbps link. Each TaskTracker is configured with

2 map and 2 reduce slots. We configured MapReduce to

launch reduce tasks only after all map tasks have finished.

Speculative execution is turned off.

A. Prediction Accuracy of Task Predictor

In the first set of tests, we evaluate the accuracy of Task

Predictor’s task execution time predictions. We run a work-

load with 10 grep jobs and 10 word-count jobs, and record

the predicted and actual execution time for each associated

task. The jobs are submitted together in the beginning of

the test. We run the same 20-job workload twice, first for

training, and then for the testing. Job Simulator is turned off

in this experiment. We run the same experiment under both

FCFS scheduler and Fair Scheduler.

Map tasks: The results for map tasks under the stud-

ied schedulers are shown in Figure 3 and 4. The graphs

show normalized error expressed as percentage of predicted

execution time against actual execution time of a task. A

positive error means that a predicted value is larger than the

actual value, while a negative error means that the predicted

value is smaller. The predictions are ordered by the order

in which each task finished as observed in the Hadoop task

log. Overall, we observe that 95% of the predictions are

within 10% of the actual measurements, and 75% of all

errors are within 5% of real execution time. These results

are promising in the showing the efficacy of our approach.

Reduce tasks: Prediction accuracy of our approach

for reduce tasks under the two schedulers also sees high

accuracy, 95% of all prediction errors are within 10% of

actual measurements. We observe few significant outliers,

e.g., a task running for 3 seconds predicted to run for 7.8

seconds. We believe that such outliers can be reduced with

more training that is possible in a long running scheduler

with much more historic information. Moreover, given high

accuracy for most of the tasks, we expect the impact of such

missed predictions to be small.
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Figure 3. Prediction errors for map tasks under FCFS scheduler.
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Figure 4. Prediction errors for map tasks under Fair Scheduler.

B. Prediction Accuracy of Job Simulator

In the next test, we study the accuracy of Job Simulator.

For this purpose, we run a workload of 10 word-count jobs

twice, first for training Task Predictor as before, and then

for testing Job Simulator. In this case, we did not use grep

jobs as they involve dependency between jobs. For every

test, we record predicted execution time of each task and

each job. We show the results of predicted execution time

of each of the 10 jobs under the two studied schedulers

in Figures 5 and 6. Individual lines show how predicted

execution time of each job changes as the workload executes.

A line stops when a job completes as no further predictions

are made for that job. Flat lines, as seen for FCFS in

Figure 5, show that our predictions do not change over time

and are accurate from the beginning of the workload run.

Error in predicted execution time of each job is observed to

be within 10 seconds for the 900 seconds workload. Results

for Fair Scheduler also show stable prediction for each job,

with error observed to be within 40 seconds. Given the 900

seconds workload runtime, we note that we can predict finish

times of jobs 15 minutes earlier (as long as no other job is

submitted during our simulation).

To further understand the accuracy of Job Simulator, we

divide prediction of task execution time provided by Task

Predictor and prediction of task start time provided by Job

Simulator. We compare the start time of each task predicted

by Job Simulator against the actual start time of the task.

Since Job Simulator runs periodically, the information is

most useful for a short time window in the near future, when

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  5  10  15  20  25  30  35  40  45  50

P
re

d
ic

te
d
 e

x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Prediction

job 1
job 2
job 3
job 4
job 5
job 6
job 7
job 8
job 9

job 10
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Figure 6. Prediction of job execution time under Fair Scheduler.

the scheduler can act on the information. To test this, we

determine all tasks that start to run in a 30-second or 60-

second window after each simulation run, and compare the

error of actual start time and predicted start time of these

tasks. Figures 7 and 8 show average prediction error of start

time of all tasks within each window. FCFS results show

almost perfect predictions with average errors of less than 2

seconds for the 900 second workload for both the cases of

30-second windows and 60-second windows. Fair Scheduler

results, however, show much higher average errors, up to 70

seconds. This is because Fair Scheduler is more sensitive to

small differences in task execution time. A small difference

may result in a task from a different job scheduled, or a

task scheduled to another node or after a long interval.

Some tasks are predicted out-of-order as compared to actual

execution trace, so the error could be very large.

To avoid bias due to high-error tasks, we calculated

average percentage of tasks within each window that are

predicted to start within an error bound. Moreover, map tasks

must be predicted to run on the same nodes that they are

actually scheduled on. The result is shown in Figure 9 and

shows that under Fair Scheduler, nearly 80% of tasks in a

30-second window are predicted correctly with an error of

less than 2 seconds. Hence, we observe that Job Simulator

is accurate for most of the tasks, even though 20% tasks are

predicted to run out-of-order with much higher errors.

C. Performance Overhead of Online Simulation

To study the overhead of our online prediction framework

caused by the periodic running of the online simulation,
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we run the same workload of 10 grep and 10 word-

count jobs with and without Job Simulator. We vary the

simulation period and measure the impact of running the

extra simulations on our workload performance. We use the

Fair Scheduler for this purpose (though not shown, FCFS

shows similar results). We summarize average job execution

time, maximum job execution time (workload execution

time), and heartbeat processing rate (calculated by number

of heartbeats processed divided by length of experiment) in

Table I. Running Job Simulator every 20 seconds incurs a

1.29% overhead in workload execution time and a 5.29%

reduction in heartbeat processing rate. In larger clusters,

we expect higher overhead on JobTracker and as a result

propose separating Job Simulator process in order to lower

the overhead on JobTracker.

In summary, our results show that Job Simulator can help

in improving scheduling performance while imparting small

overhead.

IV. CASE STUDIES: DYNAMIC SCHEDULING AND DATA

PREFETCHING

In this section, we introduce two use cases for our

online simulations framework, namely data caching and

prefetching, and dynamic scheduler selection (Figure 10),

and outline how it can be employed to improve the overall

performance and efficiency in each case.

A. Data Caching and Prefetching

Data caching for MapReduce systems has been the focus

of recent research. For instance, PACMan [10] is a caching
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Job Simulator average maximum heartbeat
interval exec. time (s) exec. time (s) proc. rate

off 735 1293 1.00
60s 728 1297 0.98
30s 743 1302 0.96
20s 751 1310 0.94
10s 769 1331 0.89
5s 825 1384 0.80

Table I
OVERHEAD OF RUNNING Job Simulator MEASURED IN TERMS OF

AVERAGE JOB EXECUTION TIME, MAXIMUM JOB EXECUTION TIME AND

HEARTBEAT PROCESSING RATE.

service for data-intensive parallel computing frameworks

such as MapReduce. While PACMan is effective in reducing

average completion time of jobs by over 50%, the authors

also note that data processed by over 30% of tasks is

accessed only once, which cannot benefit from caching.

Thus, even with large amounts of RAM, e.g. 20 GB per

node in PACMan, caching efficiency can still be improved.

Our system can facilitate much higher efficiency than gen-

eralized caching. Rather than caching previously accessed

data in memory and hoping that some tasks will access

the cached data, we can use our system to predict which

data blocks will be accessed on which node. Then, we can

prefetch or retain only the needed data blocks into memory

just before tasks start to run. Thus, the I/O latency of the

data access is hidden from the task when it starts, and

depending on the accuracy of our predictions (that is high as

shown in our evaluation), we can achieve significantly higher

hit ratio. Moreover, data that is not likely to be accessed

again can be discarded immediately, e.g., the 30% of jobs

observed in PACMan will have their data prefetched and see

a performance gain, but their data will be discarded after

the first use to free the cache and benefit other jobs. Thus,

using our approach also eliminates the need for reserving

large amounts of RAM for caching, which would otherwise

be needed to support such jobs.

Prefetching is good at reducing data loading time for all

tasks with modest RAM usage. However, it can impose

increased load on disk if we discard data from RAM as

soon as the processing is finished. Prefetching works best if

a long queue of jobs are waiting to run. In contrast, caching

can reduce load on disks by absorbing recurring access to the
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same data block from disks. To get the best performance and

efficiency, scheduler should work together with both caching

and prefetching.

We will use an example to illustrate how caching and

prefetching can improve performance and efficiency of

Hadoop. Suppose 3 jobs as shown in Table II are submitted

to a MapReduce system. The finish column shows estimated

finish time of each job in the baseline MapReduce system.

With these numbers, in a baseline system, the 3 jobs account

for 340 cluster-seconds in a baseline MapReduce system.

With caching enabled, only job 3 can benefit from caching

because it accesses data d1 which was also accessed by job

1. Job 1 and job 2 access data for the first time, so these data

cannot be cached and cannot be sped up. Assume job 3 get a

speed up of 50%, and it runs for 50 seconds. Therefore, The

3 jobs account for 290 cluster-seconds in total with caching

enabled. If we can predict task locations and prefetch data

blocks for all tasks, we can preload data into RAM for each

job and we can speed up each job by 50%, regardless of

whether data has ever been accessed before. The 3 jobs

account for 170 cluster-seconds in total with prefetching

enbaled. In terms of performance, Prefetching outperforms

baseline by 100% and caching by 70%. Prefetching can

improve performance of the system, but it imposes more

load on underlining disk resource. Because we prefetch data

d1 again for job 3, d1 is read twice – once for job 1 and

once for job 3. Total data read for prefetching is 3 GB, the

same as baseline. In comparison, with caching enabled, we

do not need to read data d1 again for job 3, because d1 is

already cached in RAM. Total data read for caching is 2 GB,

a 50% improvement over baseline and prefetching.

Job Start Finish Accessing data

1 0 100 d1 (1GB)
2 10 150 d2 (1GB)
3 200 300 d1 (1GB)

Table II
JOBS IN A MAPREDUCE SYSTEM.

Job Baseline w/ caching w/ prefetching w/ both

1 100 100 50 50
1GB 1GB 1GB 1GB

2 140 140 70 70
1GB 1GB 1GB 1GB

3 100 50 50 50
1GB 0GB 1GB 0GB

Overall 340 290 170 170
3GB 2GB 3GB 2GB

Table III
PERFORMANCE AND RESOURCE CONSUMPTION OF THE JOBS.

In fact, caching and prefetching can work together and

make the system optimal. Consider the same example

with caching and prefetching both enabled. Consider with

prefetching enabled, and we keep data prefetched and pro-

cessed in RAM, as we would do with caching enabled. All

jobs can be sped up by 50%, and total CPU used is 170

cluster-seconds. For data read from disks, we don’t need to

read d1 again for job 3, so total data read from disks is

2 GB. Overall, Table III summarizes the pros and cons of

caching and prefetching.

B. Dynamic Scheduling

The default scheduler in MapReduce, JobQueue-

TaskScheduler, is a first-come-first-serve (FCFS) scheduler.

Under JobQueueTaskScheduler, all jobs are sorted by

submission order into a queue, and the scheduler always

picks new tasks from the first job in the queue, until the

first job finishes and the second job is promoted to be the

new first job. A major drawback of FCFS is that subsequent

jobs must wait until preceding jobs finish. If the first job in

the queue is a large job, subsequent small jobs must wait

for a long period before they are executed. A new class of

schedulers, including Quincy [13] and Delay Scheduling [9],

tries to solve the problem of long delays for small jobs in

FCFS. Multiple jobs are allowed to run concurrently and

share the resource of a cluster in term of task slots fairly,

so small jobs are not blocked by long-running large jobs.

Wang et. al. [11] have shown different workloads perform

differently under different scheduler. Hence, the scheduling

strategy should be determined at runtime, based on the

properties of the jobs currently running in the cluster and

the ones waiting in the queue.

Our online prediction framework can solve exactly that

problem, by predicting the execution time of the current

workload under different scheduler policies in faster virtual

time. In Section III we have shown that running the simula-

tion every 20 seconds is sufficiently frequent to be accurate,

as running time of most tasks is in the minutes. Thus, the

system can provide feedback in time to make the next real

scheduling decision. Of course, this technique should not be



taken to an extreme where the system is forced to switch

back and forth between two schedulers that produce very

similar results for the current workload. To prevent this,

and any overhead associated with that scenario, the system

should change to a different scheduler only if that results in

significant performance gain.

V. RELATED WORKS

Job Simulator shares its goal of integrated simulation with

another MapReduce simulator, Mumak [14], but differs from

it in that Mumak is designed to run offline driven by a

trace, whereas our Job Simulator runs online along with the

real JobTracker and is driven by the live workload on the

cluster. In Job Simulator, we must predict execution time of

a new task based on historical. Another difference is that Job

Simulator runs periodically, and each time it runs, we must

take snapshots of JobTracker, task scheduler, and worker

nodes and replicate them into Job Simulator.

Several recent works [12], [7], [8] are based on pre-

defined performance models within each MapReduce task.

We adopt a simple linear model in this paper. Since MapRe-

duce jobs are a collection of a large number of smaller tasks,

simple linear model is accurate enough for a computation

framework like Hadoop. There has been other extensive

previous research in simulation of MapReduce workloads

and setups [14], [15], [12], [16], [17], [18].

Job Simulator is unique in its goal of predicting a live

MapReduce task. Compared to all other MapReduce simu-

lators, our prediction framework is arguably more realistic,

easier to verify and evaluate, and can directly benefit system

performance. Our framework predicts what is about to

happen in the current system in the near future, and therefore

predictions can be verified and evaluated. The results from

the prediction can be readily used to improve performance

of the live system. In contrast other simulators either try to

match what has already happened in the past, or simulate a

particular cluster environment offline.

VI. CONCLUSION

In this paper, we have described a simulation-based

online prediction framework for Hadoop. We design and

employ our simulator to predict near-future system behavior

based on the current state of the Hadoop scheduler. The

information can then be incorporated into the scheduler to

better allocate jobs to nodes, and achieve overall higher

performance. We evaluate the proposed simulation frame-

work using TeraGen, TeraSort, grep, and wordcount. We

find that for studied applications, 95% of the predicted task

execution times are within 10% of the actual values, and

80% of predicted task start times (in a 30-second window)

are within 2 seconds of the actual start times. In our future

work, we plan to leverage the prediction framework to

implement prefetching for MapReduce to improve latency

of initial I/O, and a dynamic multi-strategy scheduler that

can switch between multiple scheduling strategies based on

current workload.
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