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Abstract—Today’s enterprise computing systems routinely
employ a large number of computers for tasks ranging from
supporting daily business operations to mission-critical back-
end applications. These computers consume a lot of energy
whose monetary cost accounts for a significant portion of
an enterprise’s operating budget. Consequently, enterprises
employ energy saving techniques such as turning machines
off overnight and dynamic energy management during the
business hours. Unfortunately, dynamic energy management,
especially that for disks, introduces delays when an accessed
disk is in a low power state and needs to be brought into
an active state. Existing techniques mainly focus on reducing
energy consumption and do not take advantage of enterprise-
wide resources to mitigate the associated delays. Thus, systems
designers are faced with a critical trade-off: saving energy
reduces operating costs but may increase the delays exposed
to the users, conversely, reducing access latencies and making
the system more responsive may preclude energy management
techniques. In this paper, we propose System-wide Alternative
Retrieval of Data (SARD) that exploits the large number of ma-
chines in an enterprise environment to transparently retrieve
binaries from other nodes, thus avoiding access delays when
the local disk is in a low power mode. SARD uses a software-
based approach to reduce spin-up delays while eliminating the
need for major operating system changes, custom buffering,
or shared memory infrastructure. The main goal of SARD is
not to increase energy savings, rather reduce delays associated
with energy management techniques, which will encourage
users to utilize energy management techniques more frequently
and realize the energy savings. Our evaluation of SARD using
trace-driven simulations as well as an actual implementation
in a real system shows over 71% average reduction in delays
associated with energy management. Moreover, SARD achieves
an additional 5.1% average reduction in energy consumption
for typical desktop applications compared to the widely-used
timeout-based disk energy management.

Keywords-Spin-up delay reduction, disk energy management,
peer memory sharing;

I. INTRODUCTION

Research on energy conservation has traditionally been

focused on battery-operated devices. However, recent works

have also highlighted the positive financial and environ-

mental implications of energy conservation for stand-alone

∗This paper is an extended version of a poster that appeared in
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servers and workstations [2]–[5]. For example, large organi-

zations often require shutting down workstations, unneeded

servers and cooling systems overnight [6] to reduce energy

costs. Setups such as academic institutions and businesses,

where users frequently work remotely and at all hours, also

employ dynamic energy management.

Dynamic management saves energy by identifying periods

of inactivity for a device, and then keeping the device

in a low-power state during such periods. Accurately pre-

dicting such idle periods [7], [8] is critical for energy

reduction and minimization of exposed delays. However,

these mechanisms still expose powering-on delays (e.g.,

disk spin-up delays), even if the predictions are correct and

provide energy savings. Delays can significantly impact sys-

tem performance, irritate users, and also reduce the energy

savings since the system has to operate longer to satisfy user

requests. Furthermore, excessive delays may irritate users

to the point where they simply disable energy management

techniques. Therefore, the challenge lies in realizing the

energy savings, by keeping the system powered down for

as long as possible, yet reducing the performance impact

associated with energy management delays, e.g., response

latencies on powering the device up when it is needed.

Current approaches for reducing energy management de-

lays rely on predicting when I/O requests will arrive and

powering-on the device ahead of time [9]. Alternatively,

energy management delays can be reduced by utilizing

surrogate sources that may be available [10]. The implication

here is that the requests destined for a given device are

somehow satisfied by a lower-power and higher-performance

alternative source. Thus, the delays associated with energy

management are avoided.

In this paper, we focus on reducing disk energy man-

agement delays that are significantly longer than any other

system component due to disks containing mechanical plat-

ters that requires significant amount of time to spin up from

a low-power mode. Moreover, disks are significant energy

consumers [11]–[13]; and disk energy management, e.g.,

shutting down idle disks [7], is a common practice present

on almost every system in some form. Subsequently, we

explore alternative ways of satisfying I/O requests destined

for a typical desktop or workstation disk in low-power mode
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in enterprise environments. The goal of this work is to reduce

the spin-up delays by using existing resources present in such

environments. While hiding latency might not seem directly

related to saving energy, it is crucial in enabling higher

rate of adoption of power-saving techniques. Servicing I/Os

from alternate sources provides opportunities for keeping

the local disks in low-power mode, and may reduce energy

consumption as an additional bonus.

To avoid spinning up the disk on arrival of user requests,

and subsequently exposing spin-up delays to the users, we

exploit the arrangement of local disks/file servers adopted in

enterprise environments. Instead of always going to the local

disk, or the centralized file server, we present System-wide

Alternative Retrieval of Data (SARD) to retrieve application

binaries from other workstations that are loosely arranged in

a peer-to-peer (p2p) network. The key observation in SARD

is that computers in enterprise environments are mostly

uniformly configured to simplify system maintenance. As

a result, the application binaries are identical across many

peers, which allows sharing of the application binaries

among them.

Our approach shares the goal of serving requests from

peer nodes with cooperative caching [14], [15], however,

we stress that SARD is unique in its goal of reducing delays

associated with energy management using loosely-connected

peers, without additional hardware or extensive software

modifications.

SARD is designed in such a way that it: (1) does not

require any custom buffering or shared memory infrastruc-

ture; (2) does not interfere with energy management of other

systems; (3) does not require additional hardware resources;

(4) requires few kernel modifications; and (5) allows par-

ticipants to be loosely coupled and free to leave and join

the system. While an extreme alternative is to have disk-

less workstations with all requests serviced by a central

file server, this solution is not scalable and may require

expensive hardware to support large enterprise environments.

SARD utilizes existing resources by transparently locating

the workstation with requested binaries in the memory and

transmits them to the machine that requested them. We

emphasize that we exploit standard virtual memory mecha-

nisms, and do not require custom buffering that can increase

memory pressure in the systems, or shared virtual memory

that increases overheads of memory systems. Furthermore,

our p2p approach does not require fixed configurations and

does not place any constraints on peer membership in the

system. The individual machines can leave and join the

system freely, significantly reducing system management

that more tightly coupled systems, such as shared virtual

memory, would require. Finally, our p2p infrastructure aims

to select peers that will not be impacted by serving SARD

requests.

The resulting design provides a low-overhead approach

to minimizing energy consumption in enterprise environ-
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Figure 1. Anatomy of a disk idle period.

ments. Our evaluation of SARD using both a trace-driven

simulations and an actual implementation in a real system

shows that SARD can provide over 71% average reduction in

delays associated with energy management, while achieving

an additional 5.1% average reduction in energy consumption

for typical desktop applications compared to the widely-used

timeout-based disk energy management.

We note that the impact of SARD may be affected by

the emergence of newer types of disks and non-mechanical

storage such as Flash-based Solid State Drives (SSDs), as

they have the potential to reduce or eliminate spin-up delays

associated with current mechanical disks. In addition, SSDs

consume much lesser energy compared to mechanical disks,

and elaborate disk energy management schemes might not

even be required in scenarios where the primary mode of

storage are SSDs. However, the cost (i.e., $/GB) of SSDs

remains orders of magnitude higher than that of mechanical

disks. Thus, we envision that mechanical disks will remain

the main storage technology over SSDs in the near and

medium-term future. Consequently, making techniques such

as SARD useful for the foreseeable future.

The rest of the paper is organized as follows. Section II

discuss the observations and opportunities in enterprise

environments that motivate this work. Section III provides

the design of SARD. Section IV presents an evaluation

of SARD. Section V discusses the related work. Finally,

Section VI concludes the paper.

II. OPPORTUNITIES IN ENTERPRISE ENVIRONMENTS

In this section, we present several observations about

desktop and workstations in large-scale enterprise environ-

ments, which serve as the key enablers for SARD.

Energy management is prevalent: Large enterprises are

actively pursuing energy management of employees’ work-

stations, since energy savings can translate into monetary

savings. Users are encouraged to power down their monitors

and computers once they leave work. Remote wake-up tech-

nologies such as Wake-on-LAN [16] are employed to power-

on machines if necessary. After-hours management tasks

such as software updates and virus checks are scheduled so

that machines can remain off for most of the time they are

not in active use. Furthermore, dynamic energy management

is enabled to reduce energy consumption during work hours.

A popular technique for saving energy of disks is to

shut the disk down after a period of idleness, as shown

in Figure 1. After each request, a timer is started and the



device is shut down when the timer exceeds a preset timeout

interval. Any disk activity occurring during the timeout

period resets the timer and prevents the disk from switching

off. If the disk is powered down, it remains so until a new

I/O request arrives, at that time the disk has to be fully

powered up for servicing the request, which typically expose

multi-second delays to the users. Frequent shutdowns/spin-

ups can render energy management useless as disks use

larger amount of energy to spin up, and can also shorten

disk lifetime. Moreover, delays that are noticeable by users

run the risk that users will switch energy management off,

thus foregoing any and all energy savings.

The disk start-up delays following a spin-down due to

energy management, and the associated latency observed

by users, are quite significant — on the order of up to 10

seconds [9]. Thus, our strategy of retrieving binaries from

peers across the network instead of from a local disk (in

standby mode) reduces the delay experienced by users when

employing disk energy management.

Similarly maintained systems: Managing large com-

puting infrastructure is difficult and require large support

staff. To simplify the management, especially in academic

setups, the systems are kept mostly uniform: they run the

same operating system and set of applications, usually on

similar hardware. The similarity in hardware is also due

to the fact that it is acquired in batches, e.g., from an

equipment grant or industry donation. In many cases, disk

duplication is used for quickly bringing new workstations on

line instead of slow and error-prone individual installation

and configuration. This uniformity increases the opportunity

to share binaries among the participants, and individual

workstations do not have to depend only on local disks.

Heterogeneous systems – desktop vs. laptops, slower older

vs. new resources, etc. – do not preclude binary sharing,

however they limit sharing to the binaries that are identical

among sharers.

User data on central file servers: Persistence is crucial

for user data. Unlike system binaries, user data cannot be

simply reconstructed. Thus, it is periodically backed up

to protect against failures. To simplify the backup process

and to provide users transparent access to data from any

workstation, many setups provide central storage for user

data, which is more reliable and cost effective than backing

up individual systems. As a result, individual workstations

usually do not contain any permanent user data. The local

disks are typically utilized to boot OS and supporting

temporary scratch space. Consequently, the data that may be

written to the local disk is temporary, e.g., intermediate files,

system logs, metadata etc. Given that preserving temporary

data is not crucial, we can elongate the timer between the

invocations of daemons that flush the buffer cache to the

disk (e.g., the daemon pdflush in case of Linux) to further

increase energy efficiency.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20

P
ro

b
a
b
ili

ty
 (

%
)

Number of concurrent redundant apps

 

CDF

Figure 2. CDF of concurrent redundant applications.

Similar system usage: The applicability of SARD is

dependent on how often different machines in an enterprise

use the same binary. To investigate this, we conducted

a study using 20 of our departmental machines used by

students for course work, projects, and typical desktop use.

For a period of 13 days, we recorded the applications

that are running on each machine every 5 seconds. Next,

we determined how often different machines run the same

applications.

Figure 2 shows the cumulative distribution of the number

of times when different machines are running the same ap-

plications. For the studied environment, 57% of the time two

or more machines were running an application concurrently,

and 12% of the time more than 10 copies of an application

were running concurrently on different machines. Assuming

a similar application usage distribution, and extrapolating

these results1 show that in a medium-scale setup with

107 machines more than 99% of the time an application

will be running on at least two machines and thus can

be serviced remotely. Consequently, our assumption about

remote application availability holds for typical enterprise

environments, and they can benefit from SARD.

Our goal is to mitigate the energy-management related

delays faced in enterprises by leveraging some of the benefits

provided by the uniform nature of the environment. The

above observations allow us to simplify our system design

for the target environments. In this case, the workstation

that wants to start a new application can get a copy of the

memory image of the application from a remote machine.

The disk is needed only if no other system is currently

running the particular application.

1Analysis shows that for a setup of n (n >> 19) nodes, the proba-
bility that two copies of an application are running at the same time is
1−

Q

[(1 + (n − 1)pi)(1 − pi)
n−1], where pi is the probability that an

application i (0 < i ≤ n) is running on a node at a given time. A detailed
derivation is out of scope of this paper.



Security: Sharing binaries across participants has se-

curity implications in that a compromised workstation may

affect others. There are several techniques we can adopt to

minimize this occurrence. For example, only allow sharing

of binaries from administrator-maintained standard installa-

tion paths and machines, which are protected using standard

system security. Alternatively, advanced crypto-checksums,

e.g., as used in self-certifying binaries [17], for isolation

of tainted binaries or in-memory modified pages can be

used to prevent malicious behavior. There has been con-

siderable work on securely sharing binary executables, e.g.,

by Hollingswork and Miller [18]; however a full discussion

of such techniques and addressing all security concerns is

beyond the scope of this paper.

III. DESIGN

SARD is targeted at desktops and workstations in enter-

prise setups where all machines are centrally owned and

controlled, and have similar software configurations. We

adopt a low-overhead approach in our design that avoids

extensive kernel modifications to support ease of implemen-

tation, maintenance, and porting to future kernel versions.

A. Overview

In SARD, all machines join a p2p overlay network, which

enables them to interact with each other in a decentralized

and dynamic fashion. Participants run our software that

advertises their in-memory applications to others via the

overlay. Advertisements enable participants to learn what

applications (or parts thereof) are available in memory of

peers. When an application is executed on a node, it can

use the remote availability information and decide whether

to retrieve the application from the local disk or remote

memory. Servicing requests from remote memory helps

avoid spin-up delays of powered down disks, and can also

improve energy savings by keeping disks in low-power mode

longer.

In the following, we first discuss how system calls are

rerouted to utilize application images from peer nodes,

then we discuss how actual images are shared across peer

node memory, followed by a discussion of how we enable

nodes to find appropriate nodes in a decentralized fashion.

Finally, we present a number of heuristics for when to use

remote image retrieval versus local disk access. We note that

although SARD can potentially reduce disk spin-up/down

cycles, which reduces mechanical wear and tear and may

improve expected lifetime, such affects are unlikely to affect

the disk’s useful lifetime (often much smaller than expected

lifetime), and thus are not evaluated.

The impact of SARD is evident by the observation

that energy management delays are crucial and all energy

management schemes try to avoid unnecessary spin-ups

exactly for this reason. Our approach is no different, except

that it makes reducing such delays the main objective to
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encourage adoption of energy management techniques. As

stated earlier, up to 10s of delay per disk spin-up following

an energy-related spin-down can be avoided using SARD.

B. Rerouting System Calls

For ease of explanation, we assume that an entire binary

is available in memory. In reality, all modern operating

systems load portions of binaries on demand, and SARD

only advertises those in-memory portions. When needed,

SARD can retrieve required portions from more than one

remote location. As discussed in Section II, the uniformity

and scale of the target environment make finding all the

required portions remotely in the setup quite likely.

Figure 3 shows the architecture of SARD. The only kernel

modification is to intercept and reroute disk I/O requests to

the SARD module. The module consists of a UDP server, a

/proc entry, a hash table, and interfaces required to route

the intercepted I/O calls. The hash table contains information

about file availability on remote nodes. The content of the

hash table is provided by the p2p system (described later).

The /proc entry (/proc/SARD) is used to communicate

the files currently available in local memory to the p2p

system for advertising to remote nodes.

After intercepting an I/O call (in the read_pages()

function of standard Linux kernel), SARD checks the hash

table to determine alternative sources for serving it. If a

remote source is found, a UDP message requesting the image

is sent to that node. The corresponding SARD UDP server

on the remote node receives and serves the request. Once a

reply containing the requested image is received back at the

requester, the image is returned to the kernel just as if the

request was serviced from the local disk.

Figure 3 also shows how an example call is serviced

by SARD. Consider the case where a user wants to load

vi. The user types vi at the command path and the execv

initiates execution by entering the kernel (1) and mapping



the image of vi into virtual memory. SARD intercepts the

I/O requests to the disk (2) and looks up vi in the hash

table. SARD finds vi in its table and that Node 1 has the

image in memory. Then, SARD sends out a UDP packet to

Node 1 with a request for vi’s image (3). The UDP server

at Node 1 retrieves the image from local memory and sends

it back (4) to SARD at Node 0. Once the reply is received,

SARD on Node 0 replies to the kernel I/O request (5). In

this case, a disk access is avoided. In case SARD cannot

find the requested image in memory of any known remote

machine, it routes the request to the disk for servicing (3a,

4a), similarly as in the original kernel.

Additionally, after loading the pages, our module invokes

the p2p module (in user space) (7), and sends out a broadcast

message (8), announcing to everyone in the overlay that

the node (Node 0 in this case) has the application image

available in memory, and is willing to share. Other nodes

then save this information (9) for later user.

C. Retrieving Images from Memory

The SARD module also retrieves application images from

virtual memory on the host machine for servicing requests

for specific parts of binaries from remote machines. To

ensure that remote request information is portable across

remote machines, the inode number in the I/O request

destined for the disk is converted into a filename and path,

and this information is sent to a remote machine instead of

the inode number.

The SARD module first uses the filename and path

information in the remote request to determine the local

inode number corresponding to the requested application.

It then uses the standard Linux function kmap_atomic()

to determine the virtual address of the memory where the

requested offset of the inode is stored. The contents of the

memory are then sent to the requester via a UDP packet

in granularity of 4 KB (the size of typical Linux memory

pages). Given that the application was originally advertised

as being in memory, this remote request is expected to be

successful. However, if the requested image is not found in

memory, a failure is returned. Upon receipt of the failure,

the requester can either attempt to retrieve the image from

other known remote locations, or go to the local disk as

appropriate.

SARD does not share meta data about page cache across

peers, and does not assume that the virtual addresses for a

given application image are the same across nodes. Instead,

only the contents of the page are read from memory and

sent to the requester, just as the contents of a block are read

from disk in a standard I/O. The memory management of the

images is not tampered with and remains as in the original

kernel. Once a requester receives a reply, it reads the UDP

packet, copies the contents of the reply to an appropriate

(already allocated) page and marks the page as ready. This

is similar to what the intercepted read_pages() function

advertise
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Figure 4. P2P-based available application image discovery.

does when reading data pages from the disk. Moreover,

we target application binaries that are read only; therefore,

SARD does not have to be concerned with concurrent page

modifications.

D. Decentralized Application Discovery

SARD must discover and select peer nodes (Np’s) that

have a given application already loaded in memory. To this

end, we are faced with several choices. One solution is to

have a centralized server that collects application availability

information from all nodes, and uses it to assist nodes

in locating alternative remote sources for I/O. The main

drawback of this approach is that a special service, either

on a dedicated node or on one of the central system servers,

has to be maintained. Using a dedicated node is contrary

to our goal of energy efficiency, while running the service

on the central server may result in degraded performance of

the other system services. Moreover, we want to allow the

participants to be loosely connected and free to leave and

join SARD at will. Another solution, which we adopt, is to

utilize a p2p model that allows the participants to directly

interact with each and discover binaries in a decentralized

manner. This approach is motivated by recent successful

application of p2p networks to building robust and scalable

systems [19]–[23].

Structured p2p overlay networks [24] effectively im-

plement scalable and fault-tolerant distributed hash tables

(DHTs), which allow data to be inserted without knowing

a-priori where it will be stored, and requests for data to

be routed without requiring any knowledge of where the

corresponding data items are stored. The functions provided

by DHTs allow for discovering Np’s in a decentralized

manner. We have chosen to use a DHT for peer node

discovery because it avoids the issue of designating a single

entity to manage the system, and thus precludes having to

provide high availability etc. for the manager node. DHTs

provide an elegant, scalable, and plug-and-play solution.

Thus, any latency in discovering nodes due to the use of

a DHT is compensated for by the benefits provided by it.

Moreover, SARD is agnostic of the p2p layer used, and

works equivalently well with other systems.



All nodes in a given setup, e.g., an academic lab., join a

p2p network, which enables them to reliably communicate

with each other. Figure 4 illustrates the discovery process.

A user mode p2p daemon runs on every node and peri-

odically monitors /proc/SARD and sends out a number

of advertisement messages containing information about the

applications that are running on a given node Nx (e.g.,

black node in Figure 4). The advertisements contain the

host machine name, the filename and the complete binary

path (and offsets of available pages). The advertisements

are destined for random destination addresses, and by virtue

of the DHT abstraction provided by p2p routing [24], are

received at some Ny’s (gray nodes). On receiving such

a message, each Ny builds local information about what

applications are available on Nx, and in essence discovers

a peer node that can serve the application remotely if

needed. Ny then uses this information only locally2. The

process is periodically repeated at all participants so nodes

learn about remote application availability at some other

nodes. Note that since we use a random approach, not every

participant will become aware of each and every location of

an application. Finally, to accommodate dynamic availability

of applications, nodes discard information about discovered

applications after a specified period of time and start a fresh

discovery process.

While lightweight, the use of random advertisements does

not guarantee that all nodes can find an alternative source for

an application. Providing such guarantees in a decentralized

manner is hard and possible solutions can lead to complex

and time consuming discovery process, which may exceed

the time it would take to spin-up the local disk. Thus, we

argue that our approach optimizes for the common case, and

we can always rely on the local disk when no alternative

remote source is known.

SARD design also helps to minimize the effect of partic-

ipant churn: (1) nodes only use the advertisements locally,

so their leaving the system does not affect others; (2) ad-

vertisements from failed nodes are discarded periodically;

and (3) new nodes joining the system automatically receive

advertisements from others by virtue of the DHT, and

can advertise to others as appropriate. This is especially

useful in the target enterprise environments where energy

management may switch off nodes resulting in high churn.

Finally, one drawback of using DHT’s is that messages re-

quire multiple hops (O(log(n)) in a network with n nodes).

Given the number of machines in the target environment

is likely to be in the order of thousands or less, we use a

full membership DHT model as advocated by the design

of Amazon’s Dynamo [25]. To achieve full membership we

modified our overlay’s node join process to add a new node’s

2This is in contrast to p2p storage where a node that receives a message
based on a hashed filename, becomes a contact point from where other
nodes in the system can locate the file.
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Figure 5. Local vs. remote retrieval heuristics in SARD.

address to the routing table of all the existing participants.

This allows for O(1) message delivery for all messages.

E. Data Retrieval Heuristics

Several factors affect the decision of whether to retrieve

an application from the local disk or from remote memory.

We set the following intuitive set of heuristics (Figure 5) that

dictate our decisions: (1) if the local disk is on, it serves the

I/O request; (2) if the disk is off and no other node has

the needed information, the disk is spun up and serves the

request; and (3) if the disk is off and other machines have

the image in memory, it is served from the remote machines.

The first heuristic implies that we should attempt to serve

the requests locally when possible. This eliminates unneces-

sary loading of the network and remote machines. Most ap-

plications in the target environments are interactive desktop

applications that involve user think time and generate long

periods of inactivity, therefore the disk will be frequently

in a low-power state and the two remaining heuristics will

come into play. The second heuristic implies that remote

machines should not retrieve needed information from the

disk for a local request. This again minimizes the impact

on the remote nodes and prevents potential performance

degradation and simplifies our design. Alternatively, we

may consider serving the I/O request by remote nodes if

their disks are spinning. In this case, we would encounter

much less delay than spinning the local disk. However, such

an approach requires significant overhead, since the disk

status of every machine would have to be communicated

to all nodes. These decisions complicate the design, but are

viable optimizations that we will explore in our future work.

Finally, the third heuristic is the key idea that allows the local

disk to remain off while I/O requests are served remotely.

IV. EVALUATION

We divide the evaluation of SARD in three parts: im-

plementation based experiments to study the impact on

performance, simulation based experiments to study the

impact on energy savings for typical desktop applications,

and a case study of SARD under real usage conditions.

Unless otherwise noted, the experiments are performed

using Dell PCs, with an Intel 2.4 GHz dual core processor,

4 GB RAM, and a high-end Seagate 250 GB hard disk. The

machines are connected using 1 Gbps Ethernet.



Table I
TIMES TO RETRIEVE A FILE OF SIZE 143 MB USING DIFFERENT

RETRIEVAL SCHEMES. EIGHT PAGES WERE REQUESTED AT A TIME.

Retrieval Scheme time(s)
Disk 1.85
get_page() 9.60
get_pages() 2.54
asyn_get_pages() 1.40

A. Implementation Results

SARD is implemented using about 2300 lines of C code.

Additional 1200 lines of Java code are used to implement the

p2p advertising daemon using FreePastry [24]. Our current

implementation runs on Linux kernel 2.6.

The kernel components are implemented in two parts:

a kernel patch and a module. The kernel patch is kept to

a minimum of adding necessary hooks into the kernel in

the read_pages function. The rest of the functionality

is realized in the kernel module. The p2p component runs

as a user-level daemon and interacts with the module via

/proc/SARD.

1) Image Retrieval Performance: In this experiment, we

measure the performance of SARD at handling requests from

remote memory. We use two machines as the setup for this

experiment. We used the base case of reading a large file

(143 MB tar file) from the local disk, and compared it

with different remote image retrieval schemes. In this set of

tests, one machine served as the requester, while the other

provided the application image. Note that we assume that the

file image is available in memory when needed for testing

purposes only. As stated earlier, we expect binaries to be

loaded on-demand and not available entirely in memory.

We evaluate three schemes: get_page(), a straw man

approach, which requests a single page at a time and waits

for the reply from a remote location before proceeding

further; get_pages() that requests a group of pages in a

single UDP packet, so as to amortize remote communication

cost across pages; and asyn_get_pages() that uses call-

back mechanisms to retrieve data asynchronously. As seen

in Table I, reading a file under this version takes 24.3% less

time than reading it from the disk. Therefore, this technique

is adopted in SARD and used in rest of the evaluation.

2) Remote Binary Serving: Modern operating systems

load portions of applications from disk on-demand. In a

typical system that runs many different applications, on-

demand accesses essentially translate to reading random

pages from the disk. We model this random access behavior

in the controlled experimental setting by using an application

that performs random I/O.

For this purpose, we setup the PostMark [26] benchmark,

which supports many knobs that essentially allow us to

serve files of increasing sizes, in essence emulating on-

demand random page loads of varying lengths. Note that

 0

 2

 4

 6

 8

 10

 12

 14

 16

 4  8  16  32  64  128  256  512

D
is

k
/N

e
tw

o
rk

 T
im

e

File Size (KB)

Figure 6. The ratio of local access time compared to serving the binaries
remotely.

we are not using Postmark as a mail delivery system and

thus not measuring mail delivery performance, rather it is

being used as an emulator of binary retrieval. Consequently,

we are interested in how long it takes for the system to run

Postmark. For each case, we measured the time it would take

to service the request locally from disk or from remote mem-

ory. Figure 6 shows the ratio of the time used for servicing a

request locally compared to that served remotely. Note that

for these measurements the disks were spinning and in ready

state, which is the best case scenario if SARD is absent. We

observe that for smaller files, the disk performance is poor

compared to remote retrieval – servicing from disk takes

order of magnitude longer compared to over the network.

The comparative benefit from remote retrieval is somewhat

reduced for larger file sizes because the time to retrieve

data from the disk improves significantly with increasing

file sizes, i.e. large sequential accesses. Overall, SARD

provides improved performance mainly because of the fact

that while random accesses have poor I/O performance

for disks, the difference between random and sequential

accesses is immaterial for SARD which retrieves contents

from memory and does not require any disk movement.

3) Impact of SARD on Remote Machines: In the next set

of experiments, we study the impact of SARD on remote

node performance.

First, we determined how a node’s overall performance

is impacted when servicing varying rates of page requests.

For this purpose, we designed a benchmark that generates a

controlled number of remote page requests at one of the test

machines. On the other test machine, we compiled the Linux

kernel and observed the compilation time for each case as

we increased the number of requests generated per second

from 1 to the extreme case of 65536. Figure 7 shows the

results. The horizontal line shows the average time it takes to

compile the kernel on a standard setup without any remote

load.
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Figure 7. Impact of servicing remote memory requests.

Table II
REQUESTS-PER-SECOND FOR VARIOUS APPLICATIONS, AND THEIR

ESTIMATED IMPACT ON REMOTE NODE PERFORMANCE.

Application Requests per Impact on
Name Second Remote Node
cscope 112 0%
make 6.25 0%
PostMark (8 KB) 530 0.90%
PostMark (32 KB) 1073 1.63%
PostMark (128 KB) 2064 2.14%
PostMark (512 KB) 2541 2.94%

We observe that up to 256 requests per second are serviced

without any observable performance degradation, and only

5.59% degradation is observed when as much as 16384

requests are serviced per second. Also note that the dip in

the curve as the requests-per-second are increased to 65536

is due to lost requests from either network congestion or

kernel queue overflow at such large rate.

Second, using the above information, we determined how

several test applications will affect remote nodes. For this

experiment, we use: a cscope [27] query on Linux 2.6.22.9

source code, make to compile the same kernel, and Post-

Mark [26] with different file sizes. We observed the average

rate of remote page requests issued by these applications.

Table II shows the request rates. We then used the load

impact numbers of Figure 7 to estimate the impact of the

studied applications on a remote node serving the requests.

Here, it is assumed that all requests from an application

are serviced at a single remote node. In particular, observe

that both cscope and make incur negligible overhead, and

PostMark (8KB) that models on-demand application loading

incurs less than 1% overhead. Furthermore, requests may be

sent to multiple nodes to reduce the performance impact on

individual nodes. We believe that by distributing a node’s

requests across multiple locations in the system, the overall

rate of requests serviced at each node can be maintained

within acceptable limits.

Table III
DISK ENERGY CONSUMPTION SPECIFICATIONS FOR WD2500JD.

State

Read/Write Power 10.6W
Seek Power 13.25W
Idle Power 10W
Standby Power 1.8W
Spin-up Energy 148.5J
Shutdown Energy 6.4J
State Transition

Spin-up time 9 sec.
Shutdown time 4 sec.

B. Simulation Results for SARD’s Energy Impact

SARD can reduce the delays associated with energy

management without using any additional hardware, and

avoid the increase in energy consumption that additional

hardware would cause. In addition to our main goal of

reducing the spin-up delays exposed to the users, SARD also

reduces the overall system energy consumption by servicing

I/O requests from remote machines. We illustrate this by a

simulation study that shows SARD’s energy savings, as well

as by actual system energy measurements.

1) Methodology: Detailed traces of user-interactive ses-

sions for each application were obtained by a strace-

based tracing tool [28] over a number of days. We used

a Western Digital Caviar WD2500JD in our simulation with

specifications shown in Table III. The WD2500JD has a

spin-up time of about 9 seconds from a sleep state, which

is common in high-speed commodity disks.

Table IV shows six desktop applications that are pop-

ular in the enterprise environments: Mozilla web browser,

Mplayer music player, Impress presentation software, Writer

word processor, Calc spreadsheet, and Xemacs text editor.

The table also shows trace length and the details of I/O

activity. Read and write requests satisfied in the buffer

cache are not counted, since they do not cause disk activity.

Finally, Table IV illustrates read activity in the applications

by separating it into user file accesses and application file

accesses. Accesses of application files dominate the read

activity for interactive applications. This is true for all traced

interactive applications except Mplayer traces which show

that a majority of reads are targeting user files, reflecting the

primary function of this particular application. It is clear that

peer nodes mirroring common application files would meet

most of the demand for file reads from the remaining appli-

cations, and that the demand for files other than application

files represents a significantly smaller fraction of the total

observed read requests. Finally, we assume that user files are

stored on a central file server which is a common practice in

an enterprise environment, as discussed in Section II. We can

conclude from this that a relatively low-performance peer

node can adequately meet the demands of other peers, as

long as commonly accessed files are mirrored across them.



Table IV
THE NUMBER AND DURATION OF TRACES COLLECTED FOR THE STUDIED APPLICATIONS.

Trace Number of Referenced [MB] User Application
Appl. Length [hr] Reads Writes Reads Writes Files Files
mozilla 45.97 13005 2483 66.4 19.4 17.92% 82.08%
mplayer 3.03 7980 0 32.3 0 96.37% 3.63%
impress 66.76 13907 1453 92.5 40.1 43.45% 56.55%
writer 54.19 7019 137 43.8 1.2 3.50% 96.50%
calc 53.93 5907 93 36.2 0.4 5.98% 94.02%
xemacs 92.04 23404 1062 162.8 9.4 0.15% 99.85%

Table V
NUMBER AND AVERAGE LENGTH OF APPLICATION IDLE PERIODS AS INCREASING NUMBER OF REQUESTS ARE SERVICED REMOTELY.

% of Reqs. Mozilla calc Impress Writer Mplayer Xemacs
Served Idle Length Idle Length Idle Length Idle Length Idle Length Idle Length
Locally Prds. [s] Prds. [s] Prds. [s] Prds. [s] Prds. [s] Prds. [s]

100 165 985 150 1283 227 1048 136 1423 4 2712 95 3477
15 102 1601 89 2170 122 1959 88 2206 4 2713 59 5604
10 88 1858 77 2511 110 2174 80 2427 4 2712 56 5906
5 82 1995 70 2763 87 2752 70 2776 4 2713 49 6751
2 58 2825 52 3724 66 3631 51 3814 4 2713 41 8070
1 49 3346 34 5701 45 5330 40 4867 2 5435 38 8708

2) Energy Consumption: Serving the I/O from remote

machines increases the length of idle periods by eliminating

spin-ups required to serve the I/O requests from the local

disk. Table V illustrates the impact of serving I/O requests on

the length of idle periods. It shows the number and average

length of idle periods for varying fractions of requests served

by the remote machines. The case of 100% of requests

served locally illustrates the standalone workstation that

serves all requests from the local disk. By serving more

and more requests from other workstations the number of

idle times is reduced since the idle periods are concatenated

resulting in fewer and longer periods. In the case of 1% of

requests served locally, the average number of idle periods

is reduced by 73.2% and the average length is extended

by 205.5%. Based on our study of Section II, 1% of

requests served locally is a reasonable number for a medium-

scale setup (e.g. with more than 107 workstations), since

many will have standard applications loaded in memory.

In addition, we show results for serving 2%, 5%, 10%,

and 15% which may be encountered for a small number

of workstations in the network.

Reduction in number of periods and lengthening the du-

ration of the idle periods has twofold impact on energy effi-

ciency. First, fewer number of periods indicates that there are

fewer spin-ups required to serve the I/O requests resulting in

lower energy spent on powering up the devices and shutting

them down. Second, longer idle periods will allow the disk

to remain in a power saving state also reducing energy

consumption. These can be seen in Figure 8, which shows

distribution of the local disk energy consumption among

three categories: Busy – due to serving the I/O requests,

Idle – due to waiting for more requests to arrive during

timeout interval, and Power-Cycle – due to shutting down

and spinning up the disk. We show numbers normalized to

the case when a standard energy saving mechanism is used in

Table VI
DELAY DUE TO DISK SPIN-UP AS MORE AND MORE REQUESTS ARE

SERVICED FROM REMOTE NODE.

Local Total Delay [s]
% Mozilla Calc Impress Writer Mplayer Xemacs

100 1485 1350 2043 1224 36 855
15 918 801 1098 792 36 531
10 792 693 990 720 36 504
5 738 630 783 630 36 441
2 522 468 594 459 36 369
1 441 306 405 360 18 342

a stand-alone system, i.e., with 100% requests served locally.

All of the states are impacted by SARD. We first observe

that energy spent serving I/O requests is not significant since

most of the applications are interactive with long user think

times or they are accessing user files that are mounted on a

remote file server. The two largest components are power-

cycle and idle energy. The average fraction of energy spent

on spinning up and shutting down the disks in the case

of local disk only is 69.3%. The energy is reduced as we

serve more and more from remote machines and reaches the

average fraction of 22.2% for the case of only 1% of requests

served locally. Similarly, the time spent in idle is reduced

due to fewer timeout periods encountered as we increase

fraction of requests served remotely. The average fraction

of energy consumed at idle is 28.8% for all requests served

locally and is reduced down to 7.9% for when serving only

1% of requests locally. Moreover, compared to an always-

on scheme with no energy saving mechanism, the 100%

approach provides an average savings of 80.6%, which is

further improved to an average of 81.7% for the case with

1% local requests.

Fewer needed spin-ups result in shorter overall delays

exposed to the user. For this experiment, based on our

observations of the network traffic of our test departmental
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Figure 8. Breakdown of energy savings as more and more requests are serviced from remote nodes normalized to the case of a standalone system (100%
local requests).

machines, we assumed network latencies of a 1 Gbps

Ethernet connection with at most 20% degradation due

to contention modeled randomly. Table VI illustrates the

total delay exposed to the user as we vary the fraction

of I/O requests served locally. The average delay across

applications is reduced from 1165.5 seconds for all requests

served locally to 312 seconds, i.e., a 73% reduction, when

we only serve 1% of requests locally. Reduction in delay has

two benefits. First, the user experience is improved since the

user will see fewer lags due to disk spinning up. As a result,

the user is more likely to use energy management techniques

as opposed to turning the energy management off to prevent

the irritating delays. Second, the shorter delays will allow

the user to accomplish the task quicker, which increases the

efficiency of the system.

The increase in energy efficiency of the system can be

illustrated by the energy-delay product (EDP) [29]. Figure 9

shows the EDP for the studied applications, normalized to

the case of a standalone system with 100% requests served

locally. Each point is calculated by multiplying the total

execution time (Table V) of a trace and the corresponding

energy consumed (Figure 8). On average, the energy-delay

product is reduced by 5.8% for the system serving only 1%

of requests locally as compared to a standalone system with

100% requests serviced locally.

An observation here is that while the use of p2p overlay

may lead to increased CPU energy consumption for pro-

cessing the network stack, the power impact of managing

the overlay is encapsulated by the overall power consumed

by SARD. Therefore, we do not need to determine the finer-

grained power consumption of the overlay; we can still claim

that the strategy of retrieving application binary pages over

the network is more efficient than that of retrieving them

from the disk.

We note that, longer delays prevent users from adopting

energy-saving measures. SARD can remedy this by reducing

the exposed delays to the user, who will otherwise opt for no

energy management: SARD reduces energy-delay product

by 81.63% on average, compared to the always on case.

Consequently, SARD can potentially hasten the adaptation

of energy-saving mechanisms.

C. SARD Case Study

In our next experiment, we studied the energy saving and

performance impact of SARD using 10 of our departmental

machines used for typical desktop use. Each machine has

a an Intel Pentium 4 3.0 GHz processor, 1 GB RAM,

40 GB hard disk, and is connected via 1 Gbps Ethernet.

The network interface card (NIC) on all the participating

nodes in our experiment remains in active power-up mode.

Therefore, we do not experience any NIC wakeup latency

when retrieving data remotely. If the NIC is put to sleep

as well, techniques such as Somniloquy [30] can help

mitigate any resulting delays. Nonetheless, given the nodes

in question are actively processing, though not from disk,

our assumption about the NIC being awake is reasonable.

For a period of two week, we traced the system usage

of the workstations. Subsequently, we replayed the traces

on the systems, measuring the energy consumed by the

machines (using Watts up? PRO power meters). Next, we

configured the machines to run SARD, and replayed the

traces and once again measured the energy. We do not take

into account the energy consumed by displays as a simple

timeout mechanism will work equally well for them. Also,

we factor out long idle periods of system inactivity, e.g.,

6PM to 6AM, when SARD has no benefit over a standard

energy saving mechanism. This allows us to focus on cases

where in the absence of SARD, no energy savings are

possible. The total energy consumed by the machines over

the duration of the week reduced from 165312 Watt-hour

(Wh) to 156895 Wh, a saving of 5.1%. This study shows the

potential for SARD to provide energy benefits. Moreover,

as long as a copy of an application is available in-memory

at some machine in the system, disks at other machines
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Figure 9. Energy-delay product for the studied applications under various remote servicing conditions, normalized to case of a standalone system (100%
local requests).

can stay off. Thus, with a large number of machines as in

enterprise environments, SARD has potential to provide even

larger savings by keeping more disks in low-power state.

V. RELATED WORK

A. Remote Data Retrieval

We have presented one design approach to supporting

remote data-retrieval in SARD. Approaches used in such

projects as I/O offloading [31] and p2p-based backup storage

systems [32] can also provide mechanisms that can help

achieve the remote serving goals of SARD. These works

are complementary to SARD, but SARD differs from them

in its main focus of reducing energy management delays.

B. Shutdown Prediction Techniques

High performance hard disks are a significant source of

power consumption [11]. As a result, numerous timeout

based techniques have been proposed to shut down the

disk [33]. Moreover, dynamic predictors that shut down the

device much earlier than the timeout mechanisms have been

investigated [34]. Stochastic modeling techniques have also

been applied to model the idle periods in applications and

shut down the disk based on the resulting models [35], [36].

Automatic generation of application hints to shut down disks

has also been proposed in PCAP [7]. Finally, operating

systems can concurrently evaluate multiple predictors and

select the best one for the current workload [37].

C. Reducing Spin-up Delays

The goal of shutdown mechanisms is to power down the

disk for energy savings. However, every shutdown, even a

correct one, will require a corresponding spin-up to serve

future requests. There are two approaches to reducing the

impact of spin-up delays. Data can be prefetched and cached

either in main memory [38] or alternate storage devices such

as flash memories [10]. Thus traffic shaping using caching

and prefetching can reduce the frequency of spin-ups. By

bringing needed data in memory ahead of time and retaining

it, associated disk access can be avoided when a disk is shut-

down. As a result, fewer spin-up latencies are exposed to the

application and the user, and the disk remains shut down

longer resulting in higher energy savings. Alternatively, the

disk can be actively woken up early by spinning up the

platters before the request arrives and serving the request

without any delays [9]. Both approaches are complementary

to SARD, since the disk will have to be spun up at some

point even if the caching techniques are very efficient.

D. Shared Memory Systems

An alternative source of binaries can be obtained by uti-

lizing other computers in the system. The concept of reading

binaries/files or using the memories of other machines in a

cluster has been discussed in NOW [39]. Given technology

trends, remote memory access over the network may be

faster than local disk access. SARD share this observation

with NOW, however, differ in that SARD does not require

striping of data across disks of participant nodes which keeps

many disks busy, rather SARD aims to create opportunities

for keeping the disks idle. Moreover, in shared memory

approaches, it is crucial to minimize the total cost of memory

references within a cluster [40] to provide high performance

and achieve a low-overhead implementation, unlike SARD.

A simpler approach considers the memory of individual

workstations as belonging to a single large pool [41]. In this

case, caching of files, especially the read-only text segments

of heavily used utilities such as editors and command shells,

can be performed in memories of the systems in the network.

In addition, dedicated servers with large memories can be

used to improve file caching [42]. Alternatively, Cooper-

ative caching [14] relies on a cooperation of machines to

provide sharing of the buffer cache. SARD differs from

cooperative caching because it does not require participants

to have unique data that is necessary for efficiency in

cooperative caching. Furthermore, it allows multiple nodes

to have copies of the same data, thus avoiding many of the

shortcoming due to exclusive data placement that plagues



cooperative caches employed in distributed file systems [43]

and web proxies [44].

From the above discussion, it is clear that SARD is more

than just a simple remote “read” of data over the network.

We deploy a discovery mechanism to avoid the need for a

dedicated network server to serve binaries. In addition, to

the best of our knowledge, such remote retrieval has not

been exploited to hide power-savings latency. Thus, SARD

is indeed novel from this aspect.

VI. CONCLUSION

In this paper, we have presented the design and evaluation

of SARD, a p2p-based system that mitigates delays associ-

ated with disk energy management by allowing sharing of

in-memory application images across peers. SARD transpar-

ently retrieves application images from nodes on which the

applications are already loaded, thus minimizing the need

for costly disk accesses and hiding the spin-up delays from

the users. Remote application retrieval also provides oppor-

tunities for keeping the local disks off, thus saving energy.

Our evaluation of SARD shows an average performance

improvement of 33.5% for typical desktop applications, and

a case study with real usage shows average energy savings

of 5.1%. Most importantly, a 71% reduction in delays

associated with energy management is observed. Finally,

the effect of remote application retrieval on remote nodes

is shown to be minimal (less than 3%), and demonstrates

that SARD can serve as a practical and effective tool for

mitigating energy management delays, which also improves

energy efficiency in enterprise environments.
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