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Abstract—Reducing energy consumption has a significant
role in mitigating the total cost of ownership of computing
clusters. Building heterogeneous clusters by combining high-
end and low-end server nodes (e.g., Xeons and Atoms) is a
recent trend towards achieving energy-efficient computing. This
requires a cluster-level power manager that has the ability to
predict future load, and server nodes that can quickly transition
between active and low-power sleep states. In practice however,
the load is unpredictable and often punctuated by spikes,
necessitating a number of extra “idling” servers. We design
a cluster-level power manager that (1) identifies the optimal
cluster configuration based on the power profiles of servers
and workload characteristics, and (2) maximizes work done per
watt by assigning P-states and S-states to the cluster servers
dynamically based on current request rate. We carry out an
experimental study on a web server cluster composed of high-
end Xeon servers and low-end Atom-based Netbooks and share
our findings.

I. INTRODUCTION

The cost of powering servers and cooling infrastructure

together accounts for more than 30% of the total cost of

ownership (TCO) of data centers, while capital expenditure

on servers accounts for more than 50% [1], [2] (over a time

period of 3 years). In order to reduce TCO, both power and

capital expenditure must be reduced by maximizing work

done per watt.

Ignoring the unintentional heterogeneity that arises from

server refresh, data centers are typically composed of homo-

geneous servers with similar power-performance profiles. Re-

cently, there have been proposals to deploy low performance

energy efficient servers in data centers [3], [4] in an attempt to

maximize work done per watt at the server level. For instance,

our experiments show that the most recent Atom N550 based

servers can yield significantly higher throughput per watt

for light web service workloads as compared to Xeon-based

servers. However, heterogeneity in data centers is organized

across tiers, with a single tier typically consisting of a

homogeneous set of servers. This is based on the assumption

that for a given workload a homogeneous server configuration

would yield satisfactory efficiency, while providing ease of

maintenance. For certain kind of workloads, a homogeneous

configuration per tier may also correspond to optimal energy

efficiency; for others, the results may be suboptimal.

For web service workloads, characteristics of a particular

workload together with the client request rate determine

the resource and power utilization of the deployed servers.

Prior studies [5] have shown that the request rate can vary

significantly, with the average CPU utilization for most data

center servers varying between 10% and 50% of the peak

utilization. In this paper, we observe that a heterogeneous

cluster configuration per tier can be more energy efficient

than a homogeneous one and that the relative composi-

tion can be experimentally determined based on the power-

performance profiles of the different servers, characteristics

of the workload and the expected variation in request rate.

Dynamic Voltage and Frequency Scaling [6] (DVFS) is a

popular power optimization technique. Typically each server

node runs a default policy (such as on-demand) that scales

the frequency of the processor based on operating system

performance counters. The power consumption of the CPU

constitutes a portion of the total power consumption of a

system; therefore the gains from DVFS (i.e., P-states) are

relatively small as compared to low power sleep states (i.e., S-

states). However, in order to provision for peak load which is

hard to anticipate, and due to high wake-up times, servers are

typically kept awake. Idle power for servers is usually more

than 50% of the peak power. High idle power together with

hard-to-predict load spikes limits the effectiveness of sleep

states. In this paper, we observe that performing DVFS at the

cluster level and combining it with sleep states yields slightly

better energy efficiency than using the either approach in

isolation or at the node level. The contributions of this paper

are as follows:

• We design a cluster-level power manager that: (1) pro-

files a given web service workload, (2) determines the

optimal cluster configuration for the workload, and (3)

implements a policy manager that maximizes throughput

per watt for a given QoS by dynamically assigning P-

states and S-states to the different servers in the cluster

based on current request rate.

• We evaluate the power manager with representative web

server applications, and compare it with different node-

level and cluster-level power management policies on

a cluster composed of Atom and Xeon based servers.

Although ACPI-based power saving mechanisms have

been well studied, we argue that since the gains from

these mechanisms are closely tied to hardware charac-

teristics (such as idle and peak power, availability of P-

states and S-states, transition time) as well as the nature

of workloads, it is important to periodically re-evaluate

them on prevalent or anticipated server configurations

in data centers.978-1-4577-1221-0/11/$26.00 c© 2011 IEEE



II. RELATED WORK

Power management of server clusters is an active area

of research. Placing idle servers in sleep states (hiber-

nate/standby) has been shown to be effective in maximizing

energy efficiency [7]–[9]. These schemes are often com-

plemented by load consolidation so as to allow servers to

go idle. The usefulness of this mechanism is limited by

the time it takes to transition machines in and out of the

sleep states, since load spikes are often hard to predict. The

other downside of workload consolidation is that it leads

to the creation of thermal hotspots, which can increase the

power consumption of the cooling infrastructure [10]. Despite

the cons, use of the sleep states along with the workload

consolidation is one of the most effective techniques for

energy efficiency in data centers.

DVFS allows the operating system to change the frequency

(and consequently the power consumption) of the CPU.

Modern operating systems provide default DVFS policies

such as on-demand, which vary the CPU frequency based

on the measured load using OS counters. Typically data

center servers run a local DVFS policy governor, although

coordinated frequency scaling (for the entire cluster) has

been proposed as an alternative [11]. Since CPU power is

a portion of the total power consumption of the systems,

the gains from DVFS are often smaller than techniques

that cut down on total system power (use of S-states, load

distribution/consolidation).
While most prior studies have been carried out in the

context of homogeneous clusters, there is some work on

the use of DVFS and standby/hibernate in the context of

heterogeneous clusters [12], [13]. We argue that since the

gains from energy efficiency mechanisms are closely tied to

the hardware characteristics (such as idle power, peak power,

availability of P-states and S-states) as well as the nature

of workloads, it is important to periodically revisit and re-

evaluate them on prevalent or anticipated server configura-

tions in data centers.
There have been proposals to incorporate low performance

energy efficient servers (based on Intel Atom) in data cen-

ters [3], [14]. NapSac [5] demonstrates the benefits of using

a centralized policy for predicting workloads and putting

machines to sleep in a heterogeneous cluster composed of

Atom and Xeon nodes. They study web server workloads

and make a case for power-proportional computing.
Our work is closest to NapSac, although there are some key

differences. NapSac focuses on the use of standby/hibernate

modes along with workload prediction without incorporating

DVFS. Also, many of the results are based on simulations.

In the server configuration used in NapSac, Xeon nodes are

found to be more energy efficient than Atom nodes at low

request rates, and the use of Atom nodes is justified by the

low transition times (2.4 sec. for wake up from standby).

Xeon servers are used for handling average loads while Atom

nodes are woken up when the load spikes.

Our experiments are carried out on a cluster composed

of Atom N550 and Xeon E5620. Atom N550 is the most

recent in the line of Atom processors and the only one

to support DVFS. To the best of our knowledge, there is

no prior study to explore the benefits of using DVFS in

server clusters composed of low performance energy efficient

processors such as Atom. In contrast to the results in NapSac,

for the same workload (MediaWiki) we find that Atom

N550 nodes are more energy efficient than Xeon nodes

for processing low request rates and should be used for

handling average loads, while Xeon based servers are better

suited for handling load spikes. The difference in results

is probably due to the significant difference in the power-

performance characteristics of Atom 330 (used in NapSac)

and Atom N550 (used in our experiments) including idle

power, peak power, transition time, performance etc. This

justifies researching existing mechanisms in the context of

new architectures.

There is some prior effort on combining DVFS and sleep

states for clusters [13]. In our design, instead of working with

a fixed policy the power manager derives the optimal policy

for a given cluster configuration and workload at runtime.

The algorithm used for generating the policy simply maxi-

mizes throughput per watt. The combination of DVFS and

standby mode along with workload consolidation is found

to be the most profitable, although the relative gains from

DVFS are found to be small (3-6%). In addition, we develop

a module for identifying the optimal cluster composition for

a given workload.

III. MOTIVATIONAL DATA

Our experimental heterogeneous cluster consists of Atom

N550-based Netbooks and Xeon E5620-based servers. The

Atom N550 [15] is the most recent in the line of Atom

processors and the only one to support DVFS. It runs at two

frequencies: 1.0 GHz. and 1.5 GHz. Table I shows the power-

performance profile of Atom N550 with respect to the two

web workloads. Table II shows the power-performance profile

of the Xeon server. The power range of Xeon (difference

between peak and idle power) is much higher as compared

to Atom for the two workloads. Similarly the throughput

range of Xeon is much higher than that of Atom. This

motivates a scale-out approach for Atom’s (adding Atom

servers incrementally to handle increasing load).

The idle power of Xeon is about 14 times that of the Atom,

while the energy efficiency of Atom (throughput per watt) is

much higher than that of the Xeon (as shown in Fig. 1(b)

and 2(b)). This makes Atom-based servers good candidates

for handling light web server workloads.

Fig. 1(a) and 2(a) show the raw power consumption

of Atom and Xeon as a function of increasing load (re-

quests per second) for the two applications (such that er-

rors/violations=0). As we increase the request rate, a single

Atom server cannot sustain the QoS. Therefore, we scale
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Fig. 1: Atom cluster vs. Xeon for MediaWiki.
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Fig. 2: Atom cluster vs. Xeon for Dynamic Content Server.

Application Freq. (GHz.) Peak Power (W) Req/sec. Response Time (ms) Max. Efficiency (throughput/W)

MediaWiki 1.0 12.9 7 391.0 0.54
MediaWiki 1.5 14.5 10 263.0 0.69

Dynamic Content Server 1.0 12.6 105 20.6 8.33
Dynamic Content Server 1.5 14.2 180 14.2 11.2

TABLE I: Power/performance profile of Atom N550 machines for the two workloads, Errors/Violations=0

Application Freq. (GHz.) Peak Power (W) Req/sec. Response Time (ms) Max. Efficiency (throughput/W)

MediaWiki 1.6 257.3 110 186.0 0.43
MediaWiki 2.4 316.0 175 110.0 0.55

Dynamic Content Server 1.6 248.5 2250 10.5 9.05
Dynamic Content Server 2.4 281.1 3000 8.9 10.67

TABLE II: Power/performance profile of Xeon E5620 machines for the two workloads, Errors/Violations=0.

out and provision more Atom servers; the number of Atoms

provisioned is shown on the right vertical axis. Even with

scaling out, the Atoms come out on top in terms of power

consumption. When we consider energy efficiency (through-

put per watt) shown in Fig. 1(b) and Fig. 2(b), we see that

as request rate increases, Xeon starts to catch up with Atom,

although the Atom stays ahead.

However, as Table I and Table II show, Atom has a

significantly higher latency (response time per request) than

the Xeon for both workloads. Since this has implications

on both QoS as well energy consumption, we normalize

energy efficiency by response time. This is shown in Fig. 1(c)

and Fig. 2(c). For low request rates, Atom does better than

Xeon on this metric, while the Xeon performs better for high

request rates. This motivates heterogeneous clusters for the

two workloads (explained in Section IV).

There is a significant difference in the maximum through-

put being handled by both Atom and Xeon at low and

Power State Atom Xeon

Idle 11.7 201.1
Standby (S-State) 2.4 24.1
Hibernate 1.0 21.1

TABLE III: Power consumption (in Watts).

high clock frequency. The efficiency (throughput per watt)

is higher at peak frequency for both. This would suggest

that consolidating and directing requests to a few servers and

running them at higher frequency would result in good energy

efficiency. This would certainly be true if the unused servers

could be put into hibernation or standby mode. However,

in order to provision for unforeseen load spikes, a certain

number of servers would have to be kept awake. The total

power consumption in this case would be obtained by adding

the power consumed by the heavily utilized servers and the

power consumed by the idle servers. The other strategy would

be to run the servers at low frequency and distribute the

workload among them. In this paper, we compare the differ-



ent strategies. Our power manager is able to automatically

deduce the correct strategy based on the current request rate

and power profiles of the different servers involved (Atom

and Xeon in this case).

Minimizing the power spent on idle servers by keeping the

minimum number of servers awake for handling spikes would

improve energy efficiency [5]. Since the idle power of our

Xeon is 14 times that of the Atom, it would be profitable to

keep Atom-based servers awake and put Xeon-based servers

to sleep. When a spike comes, the idle Atom servers can

handle the increasing load, while a Wake-on-Lan signal is

sent to Xeon servers. Prior studies [16], [17] have shown that

it usually takes a few minutes for a load spike to peak. Xeon

servers take around 90 sec. to be brought up from standby.

Therefore, in order to plan for load spikes, we need enough

idle Atom-based servers to handle the load till the Xeons are

brought back into operational state. Our power manager is

able to deduce this automatically.

IV. DESIGN

A. Setup

The server cluster is composed of 16 Intel Atom N550

1.5 GHz. nodes each with two cores and 2 GB RAM, and 2

Intel Xeon E5620 2.4 GHz. nodes each with four cores and

48 GB RAM. Both Atom N550 and Xeon E5620 support

DVFS, standby and hibernate modes. Atom takes 35 sec. and

90 sec. to wake up from the standby and hibernate modes

respectively. Xeon takes 90 sec. and 120 sec. to wake up

from the standby and hibernate modes respectively.

For the purpose of informing the design of the power man-

ager, we study two web server workloads. The first workload

is a web server application serving dynamic content from the

local filesystem. This workload is hosted on a single tier. The

second is the MediaWiki+MySQL application. MediaWiki

and MySQL are hosted by two separate server tiers; we focus

on the front-end tier running the MediaWiki. We studied

lightweight workloads to make sure that the QoS/latency is

within acceptable bounds. Our experience with Atom and

prior studies [18] suggest that Atom is not suitable for

computationally intensive workloads.

B. Architecture

Fig. 3 shows the power manager architecture. Input Han-

dler receives client requests and stores them in a request

queue. Policy Manager is the central component. It interacts

with the other components and implements the power man-

agement policy for the cluster. It reads the requests from the

queue, and redirects them to the appropriate server. During

the initialization process, Policy Manager invokes Profiler

and Cluster Configurator, which profiles the given workload

on the cluster, generates lookup tables and identifies the

optimal cluster configuration (described later in this section).

DVFS Driver remotely sets the appropriate CPU frequency on

a given server node. Standby/Hibernate Driver implements

Fig. 3: System architecture.

the functionality for putting servers to standby mode and

waking them over LAN. Load Analyzer interacts with the In-

put Handler and monitors the rate of incoming user requests.

The Policy Manager periodically polls the Load Analyzer to

detect any spikes in the incoming user requests.

C. Power Manager

The input to the power manager is workload-independent

power-performance characteristics of the different server

types in the cluster, such as CPU model, idle power, P-

states (CPU frequencies) and S-states (hibernate/suspend).

We assume that the characteristics of the workload (e.g.,

average request rate, peak request rate and transition time)

are available to the power manager in the form of traces

or otherwise, as well as the SLA. The power manager

profiles the workload and derives workload-specific power-

performance characteristics for each server, such as power

consumption, CPU utilization and response time for different

request rates at different CPU frequencies. A lookup table is

created for each server type for a given workload.

1) Response Time and Cluster Configuration: The re-

sponse time knob is crucial in assessing the right composition

of a cluster for a given workload. Fig. 4 shows how the

response time for the dynamic content server workload varies

with the request rate for Atom and Xeon (at peak frequency).

The response time increases slowly with increasing request

rate and then jumps to a high value (at which point the

error rate becomes non-zero). If we assume that 14 ms as

response time is acceptable QoS for this particular workload,

we find that a cluster composed entirely of Atom nodes would

maximize the throughput per watt (as shown in Fig. 2(b)).

From Fig. 2(a) it can be seen that around 16 Atom nodes

can handle as much load as the Xeon node for this particular

workload. Since a Xeon node would typically cost as much

as a cluster of 10 Atom nodes or more and the throughput

per watt difference is significant, it is safe to say that the

TCO for a cluster of 16 Atom nodes would be less than that

of a Xeon. The only reason to have Xeon nodes in the cluster

at that point would be because the data center already had

them before acquiring Atom nodes.

However, if the acceptable response time were 9 ms, the

scale-out factor for Atom nodes would increase and so would
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Fig. 4: Response time profiles for Atom and Xeon for Dynamic Content Server.

the capital expenditure as well as power consumption (as

suggested in [18]). Fig. 2(c) incorporates the response time

factor in the cost analysis. The Y-axis shows throughput per

watt normalized by the response time. If the response time

for a cluster of Atom nodes were to be matched with that

of a Xeon, then for a request rate of more than 50 req/sec.

for MediaWiki (and 600 req/sec. for dynamic content server)

a Xeon would be preferred over an Atom cluster, while for

lower request rates, an Atom cluster would do better (in terms

of power consumption), thus motivating a heterogeneous

composition. In real life, the QoS would typically be defined

by an SLA and the normalization factor would be a function

of the response time. Our power manager incorporates the

normalization function (response time for now) in deciding

the optimal cluster composition/configuration.
In order to identify the optimal cluster configuration, the

power manager runs the workload and finds the throughput

per watt for different request rates for both Atom and Xeon

(such that the number of violations/errors is zero). It notes the

corresponding response times. It then divides the throughput

per watt by the response time (which is assumed to be the

normalization function for the purpose of this paper) and

stores the values in a table (one for each server type) indexed

by the request rate. From the two tables, it estimates the

point at which the normalized throughput per watt values

for an Atom cluster would match that of a Xeon (i.e., the

intersection point in Fig. 1(c)). If such a point is found

then the cluster configuration would be heterogeneous. The

number of Atom nodes per Xeon would be equal to the

number of Atom nodes needed to handle the request rate at

the intersection point while keeping the response time within

specified bounds (5 Atom nodes per Xeon for the dynamic

content server). If such a point is not found then the cluster

configuration is homogeneous. If the normalized values for

Atom are higher across the board, the cluster should be

composed entirely of Atom nodes. If the normalized values

for Xeon are higher then the cluster should be composed

entirely of Xeon nodes.
2) Policy Manager: Once the cluster configuration is iden-

tified, the policy manager attempts to maximize throughput

per watt by assigning P-states and S-states to the server

nodes in the cluster for a given request rate such that the

response time is within specified bounds and the error rate

is zero. In the current implementation, the policy manager

only works with the minimum and maximum frequency. That

corresponds to 1 GHz. and 1.5 GHz. For Atom N550, and

1.6 GHz. and 2.4 GHz. for Xeon E5620. Only S3 sleep state

(i.e., standby) is used. The following values are associated

with each server type: Pidle (idle power), Pminf (peak

power for the given workload at the lowest CPU frequency),

Pmaxf (peak power for the given workload for the highest

CPU frequency), Pstdby (power consumed in standby mode),

Tminf (max throughput handled at lowest CPU frequency

for given response time), Tmaxf (max throughput handled

at highest CPU frequency for given response time). As

mentioned before, these values are stored in a lookup table for

each server type. For a given request rate, the policy manager

tries to find the tuple {Nidle, Nminf , Nmaxf , Nstdby} for

each server type (Atom and Xeon in this case) such that

throughput per watt represented as:∑

servertype

NminfTminf+NmaxfTmaxf

NidlePidle+NminfPminf+NmaxfPpeakf+NstdbyPstdby

is maximized and∑

servertype

((Nminf +Nmaxf +Nidle)× Tmaxf )− k × reqRate

is minimized, subject to the constraints:∑

servertype

((Nminf +Nmaxf +Nidle)× Tmaxf )− k × reqRate ≥ 0

and Nidle +Nminf +Nmaxf +Nstdby ≤ Nmax.

Nmax is the maximum number of servers of each type

available in the cluster. The factor k is determined by the

nature of the workload. We set k as 2 in our experiments

implying that the cluster is always ready for handling twice

the current request rate. k is typically greater than 1 so as to

handle unanticipated increase in load.

Under normal operation, the policy manager executes peri-

odically and sets the power states of the servers appropriately.

In order to handle load spikes, the policy manager constantly

monitors the request rate and whenever it detects a sudden

increase in request rate that persists for some time, the

standby servers are alerted. The value of k (as mentioned

before) is chosen in such a way that there are enough servers

to handle the increase in load till the standby servers are ready

for work. This design decision is based on the assumption
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Fig. 5: Response time profiles for Atom and Xeon for MediaWiki.

that most load spikes take a minute or more to peak, which

would give enough time for the standby servers to become

operational. Once the spike subsides, the policy manager

returns to its normal operation.

The power manager automatically derives a policy that

uses both DVFS and standby mode. Under normal operation,

the Xeon nodes are put to sleep, and the Atom nodes operate

at low frequency (with the load distributed among the them

intelligently). While a spike detector is used, no explicit

workload prediction is carried out.

V. EVALUATION

We experiment with two web server workloads: dynamic

content server (serving HTML pages from the local filesys-

tem) and MediaWiki+MySQL. We compare the performance

of Atom and Xeon nodes for the two applications to under-

stand the power/performance tradeoffs (as shown in Fig. 1, 2)

in order to identify the scale-out factor for Atom nodes.

The acceptable response time and corresponding request rate

handled for both workloads at different CPU frequencies

is shown in Tables I, II. The acceptable response times

were set so that the throughput is maximized while keeping

errors/violations=0 (this happens at the knee of the curve such

as the one shown in Fig. 5). For instance, at peak frequency

Xeon node starts to drop requests and response time shoots

up at about 176 req/sec.

In our evaluation, we focus on understanding the perfor-

mance of different power management policies for a fixed

cluster composition and workload. Since 1 Xeon can handle

as much load as about 16-17 Atom machines for the two

workloads, we fix the cluster size at 16 Atom netbooks + 1

Xeon server. We provision for twice the peak load, therefore

peak is set at the capacity of 1 Xeon/16 Atoms (which is

about 3000 req/sec. for dynamic content server and around

160 req/sec. for MediaWiki). 1 Xeon and 32 Atom D510

servers are used for for generating client side requests using

httperf. Power is measured using Watts Up Pro power meters.

Before evaluating the power manager on a cluster of Atoms

and Xeon, we try to understand the potential of DVFS on a

cluster of Atom nodes alone.

A. Impact of DVFS on Power Consumption of Atom Cluster

Since Atom N550 is the most recent in the line of Atom

processors and the only one to support DVFS, we believe

this is the first attempt at evaluating DVFS on Atom for

web server workloads. For this experiment, we turn the

Xeon server off completely and use only 8 Atom nodes.

100% load corresponds to the capacity of 8 Atom nodes i.e.,

1500 req/sec. for dynamic content server and 80 req/sec. for

MediaWiki. Standby/hibernate modes are not used, therefore

all the 8 Atoms are awake at all times. The load is gradually

increased from 20-90%. We compare five different policies:

No DVFS: All the Atom nodes run at peak frequency

(1.5 GHz.). No power management policy is used; the load

is equally distributed among all the nodes.

No DVFS (Consolidated): All the nodes run at peak

frequency. The load is consolidated and directed to the fewest

number of nodes in the cluster.

Node Level DVFS: The default Linux policy governor (on-

demand) is activated on all Atom nodes; each node is respon-

sible for scaling its frequency based on CPU utilization. The

load is equally distributed among the nodes.

Node Level DVFS (Consolidated): This policy is similar to

the previous one, however the input requests are consolidated

and directed to the fewest number of nodes possible.

Cluster Level DVFS: All the Atom nodes are initialized

to low frequency (1 GHz.). The load is balanced among the

nodes. The frequency of a node is scaled up only when the

capacity of the entire cluster at low frequency is saturated,

which would happen when the load exceeds around 60%,

since the maximum capacity of an Atom at low frequency is

about 60% of the capacity at high frequency.

Fig. 6 shows the power consumption of the cluster with

respect to MediaWiki and Dynamic Content Server. Both ap-

plications show similar power consumption trends for the five

policies. Interestingly enough, Node Level DVFS is the least

power efficient among the five while Cluster Level DVFS

comes out on top. Workload consolidation also helps: we

observe an average improvement of 2.5% between No DVFS

and No DVFS (Consolidated), and 4.6% between Node Level

DVFS and Node Level DVFS (Consolidated). We observe

an average gain of 6.5%, 4.3%, 7.6%, and 4% when using

Cluster Level DVFS as compared to No DVFS, No DVFS

(Consolidated), Node Level DVFS and Node Level DVFS

(Consolidated) respectively. Although the relative gains with

Cluster Level DVFS are small (4-7%), they could translate
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Fig. 6: Evaluation of DVFS on Atom cluster.

to a few hundred thousand dollars to a corporation in energy

savings per year.

B. Evaluation of Power Manager

We now evaluate our power manager on a cluster of

16 Atom nodes and 1 Xeon server. The power manager

implements a meta-policy, which is to assign P-states and

S-states to the cluster servers such that throughput per watt

is maximized. In our design, the use of P-states and S-states

is optional not mandatory. The policy generated by the power

manager is compared against other well known policies:

No DVFS or Standby: All nodes run at peak frequency,

no power management is carried out. The load is distributed

among the nodes in the cluster.

No DVFS or Standby (Consolidated): All the nodes run at

peak frequency. The load is consolidated and directed to the

fewest number of nodes in the cluster.

Cluster Level DVFS: Described in Section V-A.

Cluster Level Standby:All the nodes run at peak frequency.

The load is consolidated and directed to the fewest number

of nodes in the cluster. The remaining nodes are put into

standby mode.

As described in Section IV, in order to be able to sustain

sudden load increases, when the request rate is r req/sec.,

the cluster should be prepared to handle 2 ∗ r req/sec. (value

of k = 2). The policy generated by the power manager uses

a combination of P-states and S-states. At any given point in

time, some of the nodes are in standby mode, some are idle,

some are running at low frequency and others are running at

peak frequency.

Fig. 7 shows the power consumption of the policy gener-

ated by the power manager at equilibrium point. We find that
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Fig. 7: Power consumption with different power policies under increasing
input load using heterogeneous cluster. DVFS+Standby gives an additional
3-4% savings as compared to Standby alone.

when the load is low: 10-40%, the Xeon is in standby mode

along with some of the Atom nodes, while others operate at

either low or high frequency. When the load exceeds 50%

all the standby nodes in the cluster are alerted. Note that the

power consumption of the cluster suddenly goes up when the

load exceeds 50%, which is due to the waking up of Xeon.

As evident from Fig. 7, the gains from standby are most

significant when the load is < 50%. Due to the scale of Fig. 7,

the power consumption curve of our policy manager seems

to coincide with that of Cluster Level Standby. A closer look

(as shown in the nested graph) reveals that there is a 3-4%

net average gain with our policy manager when the load is

< 40%, which is due to DVFS. For higher load (> 50%), the

different policies tend to converge, and the gains from our

policy manager (relative to Cluster Level Standby) become

more pronounced (around 6%).

1) Workload Emulation: In order to evaluate the power

manager in the presence of load spikes, we emulate a web

server workload as shown in Fig. 8. The request rate is

varied such that the load is between 30-50% for about 27

minutes, around 95-100% for about 6 minutes, 195-200%

for about 9 minutes and the remaining 8 minutes are spent

in between. Taking a cue from prior studies, we model the

spikes such that it takes 90 sec. or more from the time the

spike occurs till it reaches the peak. This gives enough time

for the standby servers to wake up. Note that this workload

pattern will not benefit our power manager, which yields

higher energy savings when the load is between 50-80%

(Fig. 7). The workload emulation is meant to stress test the

power manager.
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Fig. 8: Generated workload.

Power Management Scheme Energy (kJ) Energy Savings (%)

No DVFS/Standby (Consolidated) 413.5 0
Cluster Level Standby 304.9 26.2
Our Power Manager 295.2 28.6

TABLE IV: Energy consumption with different power management schemes
for MediaWiki for the generated workload. Our power manager yields 3.2%
improvement relative to Cluster Level Standby.

We measure the total energy consumed by the cluster

for MediaWiki application with the generated workload.

Table IV shows the energy savings obtained with our power

manager and Cluster Level Standby as compared to the

baseline: No DVFS or Standby (Consolidated). The relative

gain from the power manager with respect to the baseline is

about 28.6%. The relative gain with respect to Cluster Level

Standby is about 3.2%.

VI. CONCLUSION

In conclusion, we find that the composition of a cluster

depends on the workload characteristics and the character-

istics of the servers involved–the decision of whether or

not a cluster should be heterogeneous and if so what the

right composition should be can be automated as part of

cluster/power management. We find that Atom N550 nodes

are more energy efficient than Xeon nodes for processing

low request rates and should be used for handling aver-

age loads, while Xeon based servers are better suited for

handling load spikes. We conclude that working with a

generic policy manager that maximizes throughput per watt

is beneficial. Our policy manager was able to generate the

policy that yields maximum energy savings. The generated

policy suggests the use of cluster-level DVFS and standby

mode. The relative gains from DVFS were found to be small

(3-6% in our setup). Although, 3-6% energy savings might

translate to a few hundred thousand dollars per year for

a corporation. As compared to the baseline, our generated

policy shows significant energy savings (28.6%) for the

generated workload.

In summary, we have presented the design of a power

manager that finds the optimal cluster configuration for a

given workload and then goes on to maximize the work done

per watt by assigning P-states and S-states to cluster servers

dynamically based on current request rate. We have evaluated

the power manager on a cluster composed of Atom and Xeon

servers for lightweight web server workloads. To the best

of our knowledge, this is the first attempt at exploring the

potential of frequency/voltage scaling on low performance

high efficiency mobile processors such as Atom in the context

of web servers.

We plan to extend this work to handle frequency scaling

for GPUs with a different set of workloads. We also plan to

understand the implications of a wider frequency range and

more P-states on Atom processors using simulations. As it

has been noted before, the significant gains will come from

reducing idle power, minimizing transition time and/or being

able to predict load spikes.

ACKNOWLEDGMENT

This work is supported in part by NSF (CNS-1016408).

M. Mustafa Rafique is partially supported by a scholarship

from the Fulbright Foreign Student Program.

REFERENCES

[1] APC-American Power Conversion, “Determining Total Cost of Own-
ership for Data Center and Network Room Infrastructure,” 2003,
http://www.apcmedia.com/salestools/CMRP-5T9PQG R2 EN.pdf.

[2] U.S. Environmental Protection Agency, “Report to congress on server
and data center energy efficiency,” Aug. 2007.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan, “Fawn: a fast array of wimpy nodes,” in Proc. ACM

SOSP, 2009.
[4] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-

hardt, “Understanding and designing new server architectures for
emerging warehouse-computing environments,” in Proc. IEEE ISCA,
2008.

[5] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz,
“Napsac: design and implementation of a power-proportional web
cluster,” SIGCOMM Comput. Commun. Rev., vol. 41.

[6] I. Corporation, “Enhanced Intel SpeedStep Technology for the Intel
Pentium M Processor,” March 2004.

[7] R. Bianchini and R. Rajamony, “Power and energy management for
server systems,” Computer, vol. 37, Nov 2004.

[8] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath, Dynamic

cluster reconfiguration for power and performance. Kluwer Academic
Publishers, 2003, pp. 75–93.

[9] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” in Proc. ACM ASPLOS, 2009.

[10] F. Ahmad and T. N. Vijaykumar, “Joint optimization of idle and cooling
power in data centers while maintaining response time,” in Proc. ACM

ASPLOS, 2010.
[11] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server

clusters,” in Proc. PACS, 2003.
[12] T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr., and R. Bianchini,

“Energy conservation in heterogeneous server clusters,” in Proc. ACM

PPoPP, 2005.
[13] C. Rusu, A. Ferreira, C. Scordino, and A. Watson, “Energy-efficient

real-time heterogeneous server clusters,” in Proc. IEEE RTAS, 2006.
[14] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, and

L. Niccolini, “An energy case for hybrid datacenters,” SIGOPS Oper.

Syst. Rev., vol. 44, March 2010.
[15] I. Corporation, “Intel Atom Processor N550,” Jan 2011, http://ark.intel.

com.
[16] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson,

“Characterizing, modeling, and generating workload spikes for stateful
services,” in Proc. ACM SoCC, 2010.

[17] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Workload
analysis and demand prediction of enterprise data center applications,”
in Proc. IEEE IISWC, 2007.

[18] W. Lang, J. M. Patel, and S. Shankar, “Wimpy node clusters: what
about non-wimpy workloads?” in Proc. ACM DaMoN, 2010.


