Fine—Grain Access Control for Securing Shared Resources in
Computational Grids*

Al Raza Buttf Sumalatha Adabalaf

Nirav H. Kapadiaf Renato Figueiredoff

José A. B. Fortes?

TSchool of ECE
Purdue University
W Lafayette, IN 47907
{butta, adabala,
kapadia}@purdue.edu

Abstract

Computational grids provide computing power by
sharing resources across administrative domains. This
sharing, coupled with the need to erecute untrusted
code from arbitrary users, introduces security hazards.
This paper addresses the security implications of mak-
g a computing resource available to untrusted appli-
cations via computational grids. It highlights the prob-
lems and limitations of current grid environments and
proposes a technique that employs runtime monitor-
g and a restricted shell. The technique can be used
for setting—up an execution environment that supports
the full legitimate use allowed by the security policy of
a shared resource. Performance analysis shows up to
2.14 times execution overhead improvement for shell-
based applications. The approach proves effective and
provides a substrate for hybrid techniques that combine
static and dynamic mechanisms to minimize monitor-
ing overheads.

Key Phrases: access control, grid environments,
grid security, Unix access model.

1. Introduction

Grid environments of the future will require an abil-
ity to provide a secure execution environment for ap-
plications. The Grid should allow arbitrary code from
untrusted users to legitimately share resources, while

*This work was partially funded by the National Science
Foundation under grants ECS-9809520, EIA-9872516, and ETA-
9975275, by the Army Research Office Defense University Re-
search Initiative in Nanotechnology, and by an academic rein-
vestment grant from Purdue University. Intel, Purdue, SRC,
and HP have provided equipment grants for PUNCH compute—
servers.

TiDept. of ECE
Northwestern University
Evanston, 1L, 60208

renato@ece.nwu.edu

iDept. of ECE
University of Florida
Gainesville, FL. 32611

fortes@ufl.edu

providing an active enforcement of the security policy
of the shared resources. This requirement, if not ad-
dressed, presents significant obstacles to the viability
of computational grids, which typically span multiple
administrative domains.

The ability to share resources i1s a fundamental con-
cept for realization of grids; therefore, resource se-
curity and integrity are prime concerns. If the goal
is to allow arbitrary users to submit applications to
the grid, new dimensions to security issues will be
introduced [2]. The issues of authorization and se-
cure communications are addressed in great length in
Globus [www.globus.org]. However, in this case, the
fact that the users and resources no longer enjoy a mu-
tual relationship complicates the problem. Two scenar-
ios may arise, the shared resource may be malicious and
affects the results of the program utilizing the resource,
or the grid program may be malicious and threatens
the integrity of the resource. Although the first sce-
nario is a crucial issue [25], this paper focuses on the
latter issue providing a step towards achieving better
security.

A two-level approach consisting of a restricted shell
and runtime monitoring is presented, to provide a se-
cure execution environment for unmodified binaries.
The second level provides active runtime monitoring
to prevent any malicious use in programs. However,
development environments generally require an inter-
active shell environment. If only runtime monitoring
were to be employed, the shell itself will also have
to be monitored therefore incurring extra overheads.
To overcome these overheads, the first level of the ap-
proach consists of a restricted shell that is not moni-
tored directly by the second level. The shell utilizes its
own checks to control the user’s ability to freely peruse
resources during an interactive session. For example,
the shell controls reads to otherwise world-readable re-

sources and access to arbitrary directories. The ex-
perimental measurements of execution time overheads
for various shell-based applications show that the two-
level technique is up to two times faster than runtime
monitoring alone.

Traditional methods of controlling access to com-
puting resources are based on choosing a principal [22],
an entity responsible for usage and actions of the re-
sources. In UNIX-based systems, this assignment is
done by creation of an account for users. The process
of assigning such user accounts serves two purposes:
1) it helps to ensure that users are responsible for their
actions (for example, by obtaining personal and contact
information for each user); and 2) it allows administra-
tors to enforce usage policies (for example, by not giv-
ing out accounts on certain machines). The logistical
overheads associated with manual account creation and
maintenance become overwhelming when this approach
is extended to grid environments. Dynamic and tempo-
rary usage, which will constitute a vast majority of grid
users, may be precluded by these overheads. Another
problem is that resource owners must implicitly rely on
the accountability of the users of the resources, making
it difficult and imprudent for resource owners to share
resources outside their administrative domains. An-
other issue results from the inability of resource own-
ers to control how users employ the resources. For
example, resource owners may want some users to use
only certain machines for specified applications, how-
ever given the conventional account paradigm, there is
no easy way to enforce this.

The rest of the paper is organized as follows. Sec-
tion 2 presents a description of the various require-
ments of grid applications and the premises that un-
derlie this investigation. Section 3 describes the var-
ious approaches adopted by current grid systems and
the shortcomings associated with providing a secure
execution environment. Section 4 describes an online
technique to implement access control that can sup-
port arbitrary code from untrusted users. Section 5
provides a brief discussion of other techniques that can
be used to provide the necessary execution environ-
ment required for grid applications. Finally, Section 6
presents concluding remarks.

2. Background

Although this work is applicable to generic grid envi-
ronments, the implementation observations were con-
ducted in the context of Purdue University Network
Computing Hubs (PUNCH) [16] that is a platform for
grid computing that allows users to access and run
unmodified applications on distributed resources via

standard Web browsers (see www.punch.purdue.edu).
As in typical grid environments, users in PUNCH are
also transient and mostly utilize the system for specific
projects. Usage policies associated with machines are
complex and often change. The diversity of PUNCH
users and applications has significant value in terms of
validating research concepts and simulations. However,
operating and supporting such a service in a research
environment is impractical unless the administrative
cost of maintaining security is kept under control.

In this context, there are two categories of grid ap-
plications. There are applications that are provided by
the grid—service providers for use—only purposes. Users
have very restricted access to these applications and
cannot do much damage. However, a more challenging
scenario is presented by research applications that are
typically submitted by the users, and no safety guar-
antees can be provided for the behavior of these appli-
cations.

3. Grid Security

From a security standpoint, the users the applica-
tions, or the grid middleware — or some combination
of the three — must be trusted. In dynamic, scalable,
wide-area computing environments, it is generally im-
practical to expect that all users can be held account-
able for their actions. Accountability comes after the
damage has been done, making this a costly solution.
Another option is to trust the applications. This is typ-
ically accomplished either by constraining the develop-
ment environment to a point where the generated ap-
plications are guaranteed to be safe or by making sure
that the applications come from a trusted source. How-
ever, limiting the functionality of applications also lim-
its the usefulness of the computing environment. His-
tory has shown that it is too easy for applications from
trusted sources to contain bugs that compromise the
integrity of resources. Grid applications can be classi-
fied, as shown in Figure 1, based on the entity trusted
for guaranteeing safety of grid applications, and the
corresponding limitations imposed on allowed grid ap-
plications. At the origin of the plot, we have the 1deal
grid environment that allows the execution of arbitrary
legal code from untrusted users while preventing illegal
code from causing damage. Systems such as PBS [4],
GLOBUS [10], and Sun Grid Engine [24] only allow
accountable users. During the application generation
process, safety checks can be implemented at the source
code level (by using a safe language), at compile-time
or at static link-time (as in Condor [18]). The space
between the region where access checks are applied and
execution time indicates the window of opportunity

A

B o I I I I I I

gk I I I I I I

28

3 S

%5 o !

53 Entropia, distributed.net, SETI@Home etc. !
%) g S |
g i T T T T T I

L o " s L
= 8 £ ! ! [

8 S 8 Java Virt. I I Safe Languages, JAVA I
= § 3 Mach. etc. | | Proof Carrying Codes |
&.‘g_i_ [[[[[[

g g | | | | |
f'g g3 \ \ [\ \ \
G = I I I I I

L I I I
20 PUNCH with_ | | |
= 8 runtime monitoring | | |
:—5‘ s [I I I Sun Grid
S I I I I i
5 s - Engine,

9 Virtyal
v 2 Machines : : : : PBS,
o 8 | | | | | Globus
@ £
8 £ 1 I I I I

Ideal ! ! ! !
Grid I I I I
T I I I I T
I I I I I [
""" T T -
Run-time Application :Static Linking ~ Compiling ~ Source Code : End Users
Environment

executables %Applicalion Generation Process%}

Trusted Entities

Figure 1. Classification of grid environments

when an application can be tampered with to intro-
duce malicious behavior. Grid environments, such as
Distributed.Net [5], Entropia [6], and SETI@Home [23]
control the entire application generation and deploy-
ment process. Though the grid users are not account-
able, the grid—service providers implement or check the
application on behalf of these users and are liable in
their stead. The top rectangle covering many phases
of application generation indicates the large amount of
third—party software that needs to be trusted by the
shared resources. Shadow accounts with runtime mon-
itoring in PUNCH [15] and generic virtual machines,
such as VMWare [26], can apply the access—control
checks at runtime to support arbitrary code and un-
trusted users.

The future grid environments will be as close to the
origin as possible in order to provide legitimate re-
source sharing to arbitrary unmodified binaries. Con-
sequently security is best achieved by way of active
enforcement of policies within grid middleware layers.

For an application to function properly, it should be
provided with an execution environment on a remote
host that grants the least-required privileges, based on
the principle of least privilege [22]. However, the least
required privilege of an application might require more
accesses than a shared resource 1s willing to provide. In
most cases, lack of fine grain control mechanism forces
the grid—service providers to be conservative. Applica-
tions that can be run on a host with a given security

[Point of trust [[Restrictions [Issues
Entire Process Safe APIs Overhead for
Examples: Requires adapting
Entropia, application source application to
Distributed.net, Trusted grid.
Seti@Home programmer, Legacy binaries

compiler, linker
Human
interaction

not supported.
Problems with
arbitrarily
trusting a
third—party.

Compile—time
Examples:
Static Compiler
Analysis

Proof Carrying
Code

Analysis currently
possible only for
restricted subsets
of languages.

For PCC general
verification is

Exponential
binary code
bloat(PCC).
Overhead of
analysis may not
be justified.

(PCC) - proof undecidable Application can
synthesis be tampered with
at a later stage.
Legacy binaries
not supported
Link—time Limit Application can
Examples: functionality be tampered with
Condor at a later stage.
System—call Legacy binaries
wrappers not supported
Disallowing
dynamic linking
Load—time Works for Overhead of

Examples:

Static analysis of
machine code.
PCC - proof
verification

restricted subsets
of languages

analysis may not
be justified.

May not protect
against
self-modification
or stack/data
execution

Table 1. Access control techniques adopted
by grid environments, the corresponding re-
strictions on allowed code/applications and
the associated issues

policy are not permitted, only due to coarse grain of
control. This limits the functionality of applications
more than that could be supported on the host. The
difference in what is allowed to an application and what
is permitted by the host security policy is a function of
the grain of control, and therefore can serve as quanti-
fying criteria for a comparison of relative effectiveness
of the various schemes.

3.1. Trusted Applications

Table 1 summarizes the techniques adopted
by current grid environments for trusting appli-
cations, the corresponding restrictions on allowed
code/applications, and the associated security issues.
The approach adopted by grid-service providers
such as Distributed.Net [5], Entropia [6], and
SETI@Home [23], is only to accept code from a trusted
source and control the entire development process —
generation to deployment — of a grid application. The
code that actually runs on the target host is guaranteed

/* This program loads the
malicious code into the heap /* malicious
and then executes the code */ assembly code */
push %ebp
- mov %esp, $ebp
FILE *fd; —1 g4: mov 0x8 (%ebp) , $eax
void (*f) (int); decl 0x8 (%ebp)
char *codeBuffer; test %eax, %$eax
jg J1
. Jmp J2
fread(codeBuffer,1,fileSize, £fd); Jl: mov $0x2,%eax
int $0x80
. test %eax, $eax
f = (codeBuffer); /*func cast*/ jne J4
f£(5); /*Executing code*/ J6: jmp J6
J2: leave
ret

Figure 2. Sample grid application code that
can invoke the malicious code at run time. It
bypasses the system—call library and invokes
fork() and exec() via the kernel.

to be safe by grid—service providers.

This typically implies that applications have to be
rewritten and prepared for the grid, which in turn
requires that the programmer, compiler, linker, and
loader must all be trusted. Such incurred adaptation
overhead may be large, hence limiting the rate at which
new applications are deployed. Moreover, if a trusted
source is the only protection for a host system, a breach
on the source side can affect all resources. This places
very stringent security requirements on the source.

The compiler has access to the source code and can
perform static analysis to determine code that can pos-
sibly infringe on the host security policy. However, in
the absence of runtime checks, the most a compiler can
do is to either allow or disallow certain actions based
on this analysis. The security enforced in this man-
ner has the drawback that if a malicious piece of code
is imported into the program, the security checks can
easily be avoided.

A dynamic library that allows runtime modification
of a process to act maliciously is described in [19], a se-
curity breach in context of Condor [18] is provided as
an example. It also provides a list of probable meth-
ods for preventing such a breach, however, no actual
prevention technique is described. In the following dis-
cussion, it is shown that the process behavior can also
be modified in a simple way that does not require so-
phisticated libraries. Moreover, a solution that over-
comes the limitations of the current approaches is also
proposed in the next section.

Figure 2 shows a grid application code that does
a stack-smashing attack [1] on its own stack. In this
case, since the grid user owns the target process, in-

voking the malicious code 1is relatively easy compared
to a general case where execution requires knowledge
of loopholes in the target application. The goal of this
code is to access a resource that is protected by the grid
security enforcement. The left panel shows a snippet of
C code that is safe except for the explicit cast of a data
pointer to a function pointer (also a legal C operation).
It loads a file into memory and executes it. The right
panel shows a piece of malicious machine code that is
unavailable at compile—time, but is injected into the ex-
ecution stream. The machine code, in essence, executes
the fork() and exec() system—calls using system trap
interrupt.

These system—calls were chosen as representative of
malicious behavior, because if arbitrary access 1s al-
lowed to these system—calls, all operations allowed to a
local user can be done on the machine executing the
code. The malicious nature of the code is not de-
tectable; even when compiled using special libraries
that do not allow the said system—calls because of the
absence of the malicious part at compile—time.

The static checks can be extended by incorporating
proof—carrying codes [20], enforcing security checks at
link—time, or at load—time. But due to the absence of
any run—time checks, these approaches remain suscep-
tible to the malicious code of Figure 2, because the code
does not rely on specific libraries and calls the kernel di-
rectly at run—time. Such codes practically render these
security checks insufficient. Finally, for techniques im-
plemented via trusting applications, the source code
requirement precludes legacy binaries.

4. Proposed Approach to Grid Security

The analysis of current approaches shows that the
injection of malicious code into an otherwise secure ap-
plication cannot be detected offline using static meth-
ods. In order to support arbitrary user—submitted ap-
plications, irrespective of the language and compiler
used to produce them, an execution environment on the
host machine is necessary to meet the security require-
ments. Runtime monitoring of the system—calls trace
of an application can provide control over the arbitrary
accesses of an application. However, development en-
vironments generally require an interactive shell en-
vironment. Runtime monitoring alone of all the ap-
plications, including the shell, incurs extra overheads.
To avoid these overheads, a two—level approach is pre-
sented: level-one to handle interactive shell sessions,
and level-two to handle arbitrary (user-submitted) ap-
plications.

Applications
) Restricted Shell
estricted Shel
e ‘
! |
'l Command SSheI.I |
| Shell < > ecurity -
I Module I
| |
***** K-~ Ao
Monitoring mode
Configuration
System-call B provided by
Calls Monitoring [~ grid
tothe Module middleware
Kernel
Allow/Deny?)
Operating System
N | e pp

‘ Kernel System-call Mechanism ‘

‘ Kernel routines ‘

|
|
|
I A Allowed calls
|
|
|
|

Figure 3. An illustration of modules and inter-
actions in the two—level approach.

4.1. The Two-level Approach

Figure 3 shows the block diagram of the two—
level approach, comprising of a restricted shell and a
system—call monitoring module. The shell consists of
a standard command shell augmented with a security
module that actively checks the commands issued by
the grid user. The module, via these checks, enforces
the host security policy. The policy is specified in a
configuration file containing a list of options, such as
allowing executables from user—directory or directory
change privilege to directories outside home directory
hierarchy, and a template containing allowed executa-
bles, accessible files, allowed directories outside home
directory etc. These constraints can be captured ei-
ther explicitly by specifying a list or implicitly by using
wildcards.

The file can be configured to be either an allow list
(default behavior) or a deny list, where access to spec-
ified resources is either allowed or denied respectively.
Grid middleware can configure the security module ac-
cording to the needs and privileges of individual grid
users by providing a proper configuration file. On ini-
tialization of each session, the module reads this file for
options and then bases its decisions on them.

The restricted shell works by breaking down a user
issued command into two parts, the actual executable
name and a list of files that are required for completion
of the command. A match of the executable name to
the pre—configured specifications is then searched, fol-
lowed by a similar matching for the list of required files.

In case access to one or more of the required files (or the
executable) is not specifically granted to the user, the
command is not allowed to complete. Even for allowed
commands, the set of checks implemented in level-two
are not completely disabled. However, before actual
execution of a permitted application, the shell informs
level-two to set up proper monitoring mode, based on
the configuration policy for the application. In case a
shell script 1s executed, each line is separately parsed,
and the shell checks can allow or deny the commands
on per line bases.

For sandboxing the user under the control of the se-
curity module, the restricted shell is made the default
shell, and execution of other shell binaries is prohib-
ited. For instance, during an interactive session, the
restricted shell is capable of locking the user in a pre—
specified directory and preventing reads to arbitrary
world-readable files by the remote users. When ar-
bitrary or user—developed programs are executed, the
shell can no longer control the accesses, as programs
can access resources maliciously via direct calls to the
kernel. This is also the case when scripts written in lan-
guages such as Perl are executed. Level-two controls
all the applications spawned by the shell.

The heart of level-two is the process—tracing ca-
pabilities in modern UNIX/LINUX systems provided
by the ptrace systems-call and the /proc file-system.
This functionality allows a parent process to keep a
check on its child process and modify the behavior
of the child process [8]. There have been several at-
tempts [3, 11, 14] to intercept system calls made by an
application and modify the behavior to enforce host se-
curity policies. Janus [28] is also an example of such a
technique. Once the system calls trace is obtained, the
techniques discussed in [9, 17, 27] can be employed to
ascertain whether the application is behaving in a mali-
cious manner. The design of level-two is based on sim-
ilar methods. However, the use of level-one serves two
purposes. First, for shell-based applications it avoids
the extra overheads of monitoring the shell itself. Sec-
ondly, the shell provides a mechanism to switch moni-
toring modes of level-two on per application basis dur-
ing runtime. For example, an application provided by
the system may be allowed to access certain directories,
whereas an application provided by a user may not.

Grid middleware initially configures level-two with
two or more sets of system—calls, those which should
always be monitored for proper operation of the moni-
toring module, for instance fork(), and those specified
in host security policy as malicious and should be moni-
tored for all applications other than the restricted shell,
for instance exec(), socket(). At startup, the mon-
itor defaults to monitoring the first set of calls, switch-

D Without Monitoring
E Monitoring only

700000

. Selective Monitoring and restricted Shell

300000

Execution Time (U secs)
200000

100000

Shell 200 successive Spice 200 fork()
script open() and close() calls
calls

Synthetic—benchmarks

Figure 4. Performance results of the two—
level approach, showing comparative execu-
tion times for various synthetic-benchmarks
used for observations.

ing to another set of higher monitoring, only when an
application is executed as indicated by the restricted
shell. The monitor works by passively waiting until an
application invokes a call that is not permitted. When
such a call 1s invoked, the kernel system—call mecha-
nism transfers control to the security module that can
then analyze the call and inform the kernel of whether
or not, to allow the action to complete. In case the
call is permitted, it is allowed to complete, and con-
trol is finally given back to the application. Otherwise,
the application is returned an abort flag, or even ter-
minated if it continues executing the same restricted
system—call. If the fork() system—call is allowed, it
is always monitored, and a companion monitoring pro-
cess has to be spawned for every child spawned by an
application. This is necessary for preventing an appli-
cation from spawning unmonitored children that can
create security hazards.

4.2. Performance Analysis

Two aspects of the approach are discussed, the effec-
tiveness in preventing malicious program behavior, and
the execution overhead for shell-based applications as
compared to runtime monitoring only.

The two—level approach avoids the ill effects of user—
contributed binaries discussed earlier. For example,
when the code of Figure 2 is executed on a system
configured to prevent the fork() and exec() calls,
level-one signals level-two that the shell is no longer in

control and executes the application. Level-two then
starts monitoring calls. The approach proves effec-
tive by detecting the calls and terminating the mali-
cious process. Attacks such as unauthorized informa-
tion gathering, monitoring of other users, undermining
local systems, and arbitrary communication to remote
resources are prevented as they require the ability to
freely access the world-readable resources; an activity
that can easily be restricted by specifying the allowed
resources and monitoring the system-—calls to enforce
the policy.

Figure 4 shows performance overheads of the two—
level approach, observed utilizing a set of synthetic
benchmarks consisting of a program with repeated
fork() calls, a program with successive pairs of open()
and close() calls, a typical shell session emulation,
and a typical run of Spice. Execution time for each set
of benchmark was observed for three cases: without
any monitoring, with monitoring alone, and with the
proposed two—level scheme. The overhead 1s computed
as a ratio of the execution time of two monitoring meth-
ods to the normal execution time without monitoring.

Since the fork() system—call has to be intercepted
for each occurrence, the first set of observations shows
the effects of monitoring on a program that is composed
of 200 fork () calls. The purpose of this run is to deter-
mine a worst case bound on runtime monitoring over-
head. From 1000 observations, an average overhead of
2.59 times was observed for proposed approach as com-
pared to 2.64 times for full monitoring. The more than
twice overhead is due to an extra fork() call made by
the monitoring module for each fork() call executed
by the program, as well as the processing time of the
system—call monitoring module to determine what ac-
tions to take on specific system—calls. In typical appli-
cations the frequency of fork() calls is much smaller
than other system—calls. The overhead of a fork() call
has a small effect on the overall performance of the ap-
plication. Moreover, the difference in the overheads of
full-monitoring and the proposed scheme is due to the
fact that runtime monitoring alone monitors the shell
as well, where as the proposed scheme does not.

Another set of results consists of 1000 observa-
tions, obtained for 200 pairs of successive open() and
close() calls on a file. Here the purpose is to deter-
mine the effect of monitoring on innocuous calls. In this
scenario, because the calls are not being intercepted,
the average overhead is 1.01 for both runtime monitor-
ing and the proposed scheme. For this scenario, file
caching may affect the time taken by the open() and
close() calls. The relative effect remains the same on
both sets of observations. This run shows that runtime
monitoring alone or with in the proposed scheme in-

cur negligible overheads for unmonitored calls. Hence,
if the shell can determine and change modes of mon-
itoring on per application basis, the overall effect of
monitoring can be minimized.

Next is a shell script that emulates an interactive
shell. It was executed 1000 times and measurements
were taken for each case of no monitoring, runtime
monitoring with a standard shell, and under the pro-
posed scheme. The overhead of monitoring on mali-
cious actions that can be determined via the shell is
evident from the figure, 1.07 times overhead due to the
proposed scheme as compared to the 2.29 times over-
head of monitoring all system calls — a improvement of
2.14 times. This improvement is due to the fact that
the shell employs exec() and fork() system calls for
execution of each command in the script. In case of a
standard shell, these calls are monitored by level-two
and as measured earlier incur large overheads, where
as in the restricted shell they are not, hence the gain
in performance.

Another typical application on PUNCH is
PROPHET, a simulator for solving systems of
partial differential equations. It has a shell interface,
and hence pose a problem when arbitrary users
are allowed to access the shell. However, when the
restricted shell replaces the default shell, and a policy
of minimum system calls is employed, the risk of
an arbitrary user freely accessing local resources
is eliminated. In a typical run, negligible security
overhead is observed, partially because the secure shell
replaces the default shell and has similar runtimes, and
partially due to the fact that malicious calls do not
occur in typical runs, and therefore, the monitoring
module remains dormant.

In the last set of observations, Spice, a commonly
used application, is executed to plot voltage/current
characteristics of a Nanoscale MOSFET (a typical ap-
plication on PUNCH). As Spice does not make any ma-
licious calls in its legal execution, the execution times
with or without system-—call monitoring, and with the
proposed scheme are almost the same with only 1.06
times overhead. As Spice is not necessarily a shell-
based application, the proposed scheme behaves simi-
larly to runtime monitoring alone.

The results show that intercepting system—calls in-
troduce a significant overhead, and there is a need for
minimizing the number of calls that are intercepted.
Static schemes as discussed in [21, 29] have the ca-
pability to determine unsafe portions of code by ex-
tended program analysis. Hence, some of these schemes
can be leveraged in the present setting for minimizing
the overhead of runtime checking, by selecting differ-
ent monitoring modes for different portions of the pro-

gram. The restricted shell of level-one provides a step
towards this goal. Such schemes are currently being in-
vestigated to determine whether they can be employed
efficiently in the grid environment.

5. Discussion

It is clear from the presented scenarios that the
UNIX kernel is not designed for the tasks that are re-
quired in the execution of remote code in grid environ-
ments. The proposed solution has relied on user—-mode
techniques in order to avoid modifications to the ker-
nel. Redesigning the required portions of the kernel
may provide more efficient solutions to the investigated
issues.

Finer—grain access—control in the form of access—
control lists is evolving in the Unix kernel that allows
a finer—grain user access—model. The access—control
list approach is not suitable to the presented scenario
because 1t modifies properties associated with the re-
source rather than the user [7]. The functionality re-
quired for setting—up an execution environment for grid
applications is a means for a user to specify the list
of resources to which access is allowed or denied on
per—process-basis that, in essence, leads to a capability
model.

Another approach for addressing the described se-
curity issues 1s the use of a virtual machine, such as
the sandbox of Java Platform [12]. For grid environ-
ments, the need to write Java code, or port applications
to Java platform can be eliminated by a virtual ma-
chine that is decoupled from applications. Examples
of application—independent virtual machines include
IBM’s Virtual Tmage Facility [13] and VMware [26].
These systems support sandboxing at the level of op-
erating systems and can provide a substrate for exe-
cuting arbitrary untrusted code without compromising
the host machine security.

6. Conclusions

The paper shows that the execution environment
required for allowing user-developed arbitrary binaries
to run on shared resources entails a more constrained
view of the system than provided by the traditional
Unix environment. The access—control model is not
enough to handle the security hazards introduced by
shared resource usage in dynamic, large—scale grid en-
vironments. The proposed approach is to employ run-
time monitoring and process—tracing that allows only
permitted actions. In an attempt to minimize the run-
time monitoring overhead, a secure restricted shell is

utilized that avoids the process—tracing overhead of
the shell environment itself. The proposed two—level

approach provides a reduction of up to 2.14 times in

execution—time overheads for shell-based applications

as compared to monitoring alone. In the future, hy-

brid techniques to minimize the number of system—calls
monitored, as well as virtual machines can also pro-

vide an appropriate execution environment.

Virtual

machines that can efficiently provide desired environ-

ments are a nascent technology and may become key
players in the long run.

References

[1]

[10]

[11]

[12]

N. S. A. Baratloo and T. Tsai. Transparent run-time
defense against stack smashing attacks. In Proceedings
of the USENIX Annual Technical Conference, pages
207-233 June 2000.

S. Adabala, A. R. Butt, R. J. Figueiredo, N. H. Ka-
padia, and J. A. B. Fortes. Security implications of
making computing resources available via computa-
tional grids. Technical Report TR-ECEOQ1-2, Purdue
University, West Lafayette, IN, September 2001.

A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. Ufo: A personal global file system based
on user-level extensions to the operating system. vol-
ume 16, pages 207-233, August 1998.

A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann,
T. Proett, and D. Tweten. Portable batch system: Ex-
ternal reference specification. Technical report, MRJ
Technology Solutions, November 1999.
Distributed Computing Technologies
http://www.distributed.net

Entropia Inc. http://www.entropia.com
EROS-OS. Comparing ACLs
http://www.eros-os.org/essays/aclsvcaps.html

S. E. Fagan. Tracing bsd system calls. Dr. Dobb’s
Journal, pages 38-43, 03 1998.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for Unix processes. In Pro-
ceedinges of the 1996 IEEE Symposium on Research
in Security and Privacy, pages 120128, 1996.

I. Foster and C. Kesselman. Globus: A metacomput-
ing infrastructure toolkit. The International Journal
of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

I. Goldberg, D. Wagner, R. Thomas, and E. A.

Brewer. A secure environment for untrusted helper

Inc.

and Capabilities

applications: Confining the wily hacker. In Proceed-
ings of the 6th Usenix Security Symposium, San Jose,
Ca., 1996.

L. Gong, M. Mueller, H. Prafullchandra,
R. Schemers. Going beyond the sandbox: An overview
of the new security architecture in the java develop-
ment kit 1.2. In USENIX Symposium on Internet
Technologies and Systems, 1997.

and

[13]

[14]

[15]

(18]

[19]

[20]

[21]

[22]

(23]
[24]
[25]
[26]

(27]

28]

[29]

IBM Corporation. White Paper: S/390 Virtual Image
Facility for Linux, Guide and Reference. GC24-5930-
03, February 2001.

M. B. Jones. Interposition agents: Transparently in-
terposing user code at the system interface. In Sym-
posium on Operating Systems Principles, pages 80-93,
1993.

N. H. Kapadia, R. J. Figueiredo, and J. A. B. Fortes.
Enhancing the scalability and usability of computa-
tional grids via logical user accounts and virtual file
systems. In Helerogeneous Computing Workshop at
IPDPS, April 2001.

N. H. Kapadia, R. J. Figueiredo, and J. A. B. Fortes.
Punch: Web portal for running tools. In IEEE Micro,
May—June 2000.

C. Ko, M. Ruschitzka, and K. Levitt. Execution mon-
itoring of security-critical programs in a distributed
system: A specification-based approach. In Proceed-
ings of the 1997 IEEFE Symposium on Securily and
Privacy, Oakland, California, 1997.

M. J. M. J. Litzkow, M. Livny, and M. W. Mutka.
Condor - A hunter of idle workstations.
ings of the 8th International Conference on Distributed
Computing Systems (ICDCS), pages 104-111, Wash-
ington, DC, 1988.

B. P. Miller, M. Christodorescu, R. Iverson, T. Kosar,
A. Mirgorodskii, and F. Popovici. Playing inside
the black box: Using dynamic instrumentation to
create security holes. Parallel Processing Letters,
11(2,3):267-280, 2001.

G. C. Necula and P. Lee. Safe kernel extensions with-
out run-time checking. In USENIX, editor, 2nd Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI ’96), October 28-31, 1996. Seattle, WA,
pages 229-243, Berkeley, CA, USA, 1996.

H. Patil and C. N. Fischer. Efficient run-time mon-
itoring using shadow processing. In Automated and
Algorithmic Debugging, pages 119-132, 1995.

J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IFEEE, 63(9):1278-1308, 1975.

In Proceed-

SETI Institute Online http://www.seti-
inst.edu/science/setiathome.html
Sun (tm) Microsystems Sun Grid FEngine

http://www.sun.ca/software/gridware/

G. Vigna, editor. Mobile Agents and Security, volume
1419 of LNCS. Springer-Verlag, June 1998.

VMware Incorporated. VMware GSX Server
http://www.vmware.com, 2000.

D. Wagner and D. Dean. Intrusion detection via static
analysis. In Proceedings of the 2001 IEEF Symposium
on Security and Privacy, May 2001.

D. A. Wagner. Janus: an approach for confinement
of untrusted applications. Technical Report CSD-99-
1056, 12, 1999.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. In Fourteenth
ACM Symposium on Operating System Principles, vol-
ume 27, pages 203-216, December 1993.

Software fault isolation.

