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Abstract

Modern desktop grid environments and shared comput-

ing platforms have popularized the use of contributory re-

sources, such as desktop computers, as computing sub-

strates for a variety of applications. However, addressing

the exponentially growing storage demands of applications,

especially in a contributory environment, remains a chal-

lenging research problem. In this paper, we propose a trans-

parent distributed storage system that harnesses the stor-

age contributed by desktop grid participants arranged in

a peer-to-peer network to yield a scalable, robust, and self-

organizing system. The novelty of our work lies in (i) design

simplicity to facilitate actual use; (ii) support for easy inte-

gration with grid platforms; (iii) innovative use of striping

and error coding techniques to support very large data files;

and (iv) the use of multicast techniques for data replication.

Experimental results through large-scale simulations, veri-

fication on PlanetLab, and an actual implementation show

that our system can provide reliable and efficient storage

with support for large files for desktop grid applications.

1. Introduction

In recent years, the desktop computer has become a pow-

erful resource that has the capability to support far more

complex and demanding applications than those of a typi-

cal desktop user. This advancement has paved the way for

large-scale distributed computing systems based on desktop

machines referred to as desktop grids. As more and more

efficient desktop grid systems such as Condor [19] and En-

tropia PC Grids [6] are being designed and deployed, their

use as resource providers for modern scientific applications

is becoming increasingly popular [15, 18].

While the focus of desktop grids has mainly been on pro-

viding computational resources to execute user submitted

jobs, e.g., Condor [19], addressing the ever-increasing stor-

age demands of applications has largely been ignored. Mul-

timedia files, high-resolutionmedical images, weather fore-

cast data, and virtual environment data for human-computer

interaction applications are just a few of the examples of

large files that can be processed using desktop grid re-

sources. The existing I/O model of storing all the appli-

cation input/output files on either the job submission ma-

chine, e.g., as in Condor [19], or copying between the sub-

mission and execution machines, e.g., as in Globus [11],

implies that the submission as well as the execution ma-

chine should have the capacity to store the required files in

their entirety, or the application is explicitly aware of the

distributed locations of all the data it will access [5]. The

large size and dynamic nature of data used by modern grid

applications [33] implies that neither limiting the size of the

data by available space on a single machine, nor explicitly

specifying data location, is a feasible approach.

Recently, a number of distributed storage systems [2,

9, 23, 29, 31, 35] have leveraged peer-to-peer (p2p) over-

lay networks to provide scalability, self-organization, and

reliability. These systems have shown that p2p networks

can serve as a suitable communication substrate for large-

scale storage applications. While the issues of distribution,

location, replica management, and fault-tolerance are dis-

cussed in varying details in these systems for a variety of

target environments, these systems either do not address

how large data files can be stored, or they rely on com-

plex solutions that result in non-standard interfaces. This

makes an easy adaptation of such storage systems into to-

day’s desktop grids an uphill battle.

In this paper, we develop a p2p storage system, Peer-

Stripe1, that provides an economical and efficient storage

solution for large data files. Our goal is an elegant and

simple system design that allows for files to be stored on

participating nodes that have joined a p2p overlay network.

Our use of p2p networks ensures that the proposed system

can support the features of scalability, self-organization, re-

liability, and composability for target environments of var-

ious sizes. A unique feature of PeerStripe is that instead

of storing entire files on individual nodes, it splits the files

into varying sized chunks and then stores these chunks sep-

1An initial version of PeerStripe was explored in [22].



arately on heterogeneous nodes distributed across a wide-

area network. This approach is inspired by the data strip-

ing techniques employed in local-area RAID [25] clusters.

As a result, unlike previously proposed approaches such as

PAST [31], the size of a file that can be stored in PeerStripe

is not limited by the capacity of an individual participating

node. Moreover, to protect against losing data due to los-

ing a chunk of a distributed file, we employ error coding

at the granularity of the chunks. Error coding also ensures

that PeerStripe provides fault-tolerance and data availability

despite churn of system participants.

Users and applications can access the distributed storage

exported by PeerStripe either explicitly by using its API

that allows storing and retrieval of entire as well as por-

tions of files, or implicitly by linking an application with the

PeerStripe library that intercepts application I/O and per-

forms the necessary redirection. In this way, our system

can easily be interfaced with existing as well as new appli-

cations. PeerStripe supports transparent distribution, strip-

ing, and look up of data files across participating nodes, and

hence can serve as robust and easy-to-use storage for desk-

top grids.

The main contributions of this paper are as follows:

1. A simple yet efficient storage system design that sup-

ports storing large data files on participants in a struc-

tured p2p network, and provides a rich set of fea-

tures such as mobility and location transparency, self-

organization, load-balancing, and decentralized opera-

tion;

2. An innovative adaptation of striping and data error

coding techniques to provide fault tolerance in a wide-

area p2p-based distributed storage system;

3. An exploration of multicast techniques for data repli-

cation;

4. An implementation that allows easy integration with

applications; and

5. A detailed evaluation via large-scale simulations, ver-

ification on the PlanetLab [26] testbed, and an imple-

mentation study of how the system can be interfaced

with Condor [19].

The rest of the paper is organized as follows. Section 2

presents a survey of related work and describes the building

blocks used in the design of our system. Section 3 gives

the motivation for our design. Section 4 presents the system

design. Section 5 describes our implementation. Section 6

presents the evaluation of PeerStripe, and finally Section 7

concludes the paper.

2. Survey of Related Work

The design of PeerStripe is based on the observation that

typical desktop machines in academic and corporate set-

tings have a large amount of unused disk space [14, 35].

We assume that the owners of the machines are willing to

share their unused storage space along with their compu-

tational resources as part of a desktop grid environment.

These assumptions are in line with those made by other re-

source sharing systems [6, 11, 19, 31, 35].

In the following sections, we discuss related work and

technologies that serve as building blocks for PeerStripe.

P2P-based storage Structured p2p overlay networks such

as Chord[32], CAN[28], Pastry[30], and Tapestry[36] es-

sentially provide a distributed hash table (DHT) abstrac-

tion. Each node in a structured p2p network has a unique

node identifier (nodeId) and each data item stored in the

network has a unique key. The nodeIds and keys live in

the same name space, and each key is mapped to a unique

node in the network. Thus DHTs allow data to be inserted

without knowing where it will be stored and requests for

data to be routed without requiring any knowledge of where

the corresponding data items are stored. The DHTs have

been successfully used for distribution of files on participat-

ing nodes in p2p-based storage systems such as PAST [31],

CFS [9], Pond [29], IVY [23], and FARSITE [2]. These

systems provide strong persistence and reliability, and are

complimentary to the design of PeerStripe. Next, we dis-

cuss in more detail two such systems that we have used in

our evaluation.

PAST [31] is a large-scale, Internet-based, storage util-

ity, which uses the p2p network provided by Pastry [30] as a

communication substrate. PAST provides scalability, high

availability, persistence and security. Any online machine

can act as a PAST node by installing the PAST software, and

joining the PAST overlay network. A collection of PAST

nodes forms a distributed storage facility, and store a file as

follows. First, a unique identifier for the file is created by

performing a universal hashing function such as SHA-1 [1]

on the file name. Next, this unique identifier is used as a key

to route a message to a destination node in the underlying

Pastry network. The destination node serves as the storage

point for the file. Similarly, to locate a file, the unique iden-

tifier is created from the file name, and the node on which

the file is stored is determined through Pastry routing. PAST

utilizes the excellent distribution and network locality prop-

erties inherent in Pastry. It also automatically negotiates

node failures and node additions. PAST employs replica-

tion for fault tolerance, and achieves load-balancing among

the participating nodes. Our work builds on the functions

provided by PAST to store and retrieve portions of file, and

adapts the core PAST functions to handle large files.



CFS [9] provides a scalable, wide-area storage infras-

tructure for content distribution. CFS exports a file system

(hierarchical organization of files) interface to clients. It

distributes a file over many servers by chopping every file

into small (8 KB) blocks thereby solving the problem of

load balancing for the storage and the retrieval of popular

big files. This also results in higher download throughput

for big files, which can be retrieved in parallel from many

nodes. The component that stores data is referred to as a

publisher. A publisher identifies a data block by a hash of

its contents, and also makes this hash value known for oth-

ers. Similarly, a client uses the identifier hash of a block

and Chord [32] routing to locate and retrieve the block. To

ensure authenticity of retrieved data, each block is signed

using the publisher’s well known public-key. Also, to main-

tain data integrity, blocks can only be updated by their pub-

lishers. Finally, CFS deals with fault tolerance by replicat-

ing each data block on k successors, where one successor is

made in charge of regenerating new replicas when existing

ones fail.

In contrast to the p2p-based storage systems, the Google

File System (GFS) [12] employs a hierarchical scheme

to provide large-scale storage at high-speeds. The files

are statically split into chunks, and distributed to multiple

chunkservers for storage. GFS employs large-scale replica-

tion to ensure data integrity under failures, and the overall

GFS design is optimized for append writes. However, the

design of GFS is limited to a single organization where all

resources are owned/controlled by one entity. GFS cannot

be simply extended to work across organizations which is

required for contributory storage.

Another participant-based system is LOCKSS [20], that

is aimed at providing storage for large data sets. The key

idea is to use participating computers as back-up locations

for files in case the main computers that are serving the

content fail. This system is similar to ours in that it uti-

lizes unused storage on remote participant nodes. However,

LOCKSS is targeted at storing digital publications, which

are typically much smaller in size compared to the applica-

tion data targeted in this work.

Finally, systems such as Kosha [35] and TFS [7] provide

transparent access to p2p-storage. Kosha provides a Net-

work File System interface to a p2p storage system, and al-

lows users and applications to transparently access their dis-

tributed files using a virtual directory hierarchy. This work

differs from Kosha in two main aspects. First, the maxi-

mum size of a file that can be stored using Kosha is limited

by the capacity of an individual participating node, whereas

PeerStripe employs striping and error coding techniques to

allow storage of very large files. Second, PeerStripe allows

users to utilize the system either implicitly by requiring to

link with special libraries or explicitly by using the insert

and lookup API. This implies that no special administra-

tive privileges are required to use PeerStripe, which is in

contrast to Kosha, where administrative privileges are re-

quired for the setup. Hence, PeerStripe’s approach is more

portable and easier to use.

The focus of TFS [7] is on how to contribute maximum

disk space with the least effect on the file system in terms

of performance and capacity. The key is that TFS doesn’t

require the host OS to keep track of which blocks are con-

tributed. The host OS can overwrite any block at any time

and TFS keeps track of each block’s status. TFS comprises

of an in-kernel file system and a user space tool, setpri,

for designating files and directories as either transparent or

opaque.

Our system shares with these works the goal of us-

ing peer nodes to establish a participant-based contributory

storage facility, but differ in that our work targets trans-

parently providing storage for grid applications, utilizes a

simple and effective design, and focuses on how large data

files can be efficiently stored. We do not aim to provide a

general-purpose file system but rather a distributed storage

facility that can be easily integrated into grid applications,

and, in that, avoid the overhead and complexity of support-

ing a distributed file system abstraction.

Erasure codes The techniques of striping and error cod-

ing used in our system are the hallmark of RAID [25],

which uses several storage devices in parallel to provide re-

liable storage for files. However, RAID is generally used

in local storage devices, which are identical, fixed in num-

ber, and have low failure rates. We extend and adapt these

concepts to a wide-area distributed setting where nodes are

heterogeneous and highly dynamic.

In order to ensure availability of data when nodes fail,

we utilize erasure codes. In general, erasure codes break a

message or chunk of data into several blocks (n) and encode

each block. Due to the addition of redundancy information,

the size of the encoded block is greater than the original

block. Thus, encoding of n blocks results in (n + k) en-
coded blocks, where k is an overhead due to the redundancy

information for all the n blocks and depends on the kind of

erasure code used. The goal is to support recovery of the

original data given a partial subset of the (n+k) blocks [27].

Recently, a new class of sub-optimal erasure codes,

called online code [21, 27] have been proposed. Online

code allow creation of as many blocks of encoded data as

necessary (not limited to (n + k) as before) for a given en-
vironment, but still supports data decoding using a much

smaller subset of the total encoded blocks. Online code ex-

hibitsO(1) encode time andO(n) decode time per block. In
the context of our system, the online code has the additional

advantage that if nodes storing some of the encoded blocks

fail, new encoded blocks can be created without loss of data.

Such re-creation of encoded data entails a processing over-



head. However, online code allows encoded blocks to be

decoded independently and simultaneously, which implies

that a significant portion of the block re-creation overhead

can be hidden from the user by overlapping the re-creation

process with retrieval and decoding of other blocks.

Data transfer using multicast A number of systems such

as Bullet [17], Shark [3], and CoBlitz [24] have explored the

use of multicast and p2p-techniques for transferring large

amounts of data between a source and a destination. Large

Internet data transfers are also explored by BitTorrent [8],

which divides a file into chunks and then each chunk is

replicated a large number of times to allow for fast down-

loads from different replicas. Glacier [13] provides a mas-

sive storage system and handles correlated failures of repli-

cas. Finally, IBP [4] leverages strategic data placement to

support faster file downloads and to store sensor data, e.g.,

Network Weather Service [34] data, close to the sensors for

improving data access times. Inspired by these systems,

we have investigated data replication using multicast tech-

niques similar to those of Bullet.

3. Motivation

While current p2p storage systems provide a number of

features necessary for utilizing them in a desktop grid en-

vironment, we observed several shortcomings: maximum

size of data files that can be stored in the system limited to

storage capacity of individual contributors [31]; use of sim-

ple replication to k replicas, which only provides reliability

against k simultaneous failures [9, 31, 35] and wastes stor-

age space if k is set too large; and supporting large files by

dividing them into fixed size chunks [9], which results in

scalability issues as the chunks per file increase proportion-

ally to the file size. This work aims to address some of these

challenges, in particular the handling of large data files.

Several systems such as CFS [9] store large data files

using a shared pool of storage resources by dividing files

into fixed size chunks. However, dividing the file into fixed

size chunks poses a hurdle to the performance and utility

of the system. In systems that do not split stored files, e.g.,

PAST [31], only a single p2p message is required to locate

the participant that stores a file. In contrast, for CFS the

number of such messages is proportional to the number of

chunks and hence the size of the file. This implies that CFS

is unlikely to efficiently scale with the size of files.

A motivation for using fixed size chunks is that given the

small size of a chunk compared to the file, the probability

to find a node that can store a chunk is higher than that for

the entire file. However, we note that due to the heteroge-

neous storage capacities of the nodes, some nodes (E’s) will

have little capacity left even if the overall system utilization

is low. Let the probability of a store to fail because it is

mapped to E be p. Then the probability of a store to fail in

PAST is simply p, and PAST addresses this problem by in-

corporating a retry mechanism that essentially rehashes the

file name with a new salt value and repeats the p2p look-

up procedure. Now, lets assume that p remains unchanged

during the store of all the chunks of a file in CFS. Then in

a simple scenario without any replication, the probability

that the store of a file with n chunks will fail is given by

1− (1−p)n. This probability of failure is clearly very high,

e.g., for a very lightly utilized system with p = 0.1%, a
store of 4 GB file using a chunk size of 4 MB has a failure

probability of 64.1%, which increases to 98.3% for a 16 GB

file. CFS does incorporate a retry mechanism per chunk, but

that does not reduce the number of chunks, and hence the

above discussed problem remains. Because of such scala-

bility issues with using fixed-sized chunks, we investigate

the use of varying chunk sizes to alleviate these problems,

and therefore aim to provide robust support for large data

files.

4. Design

In this section, we present the design of PeerStripe. For

the following discussion, we refer to the machines that par-

ticipate in our system as “nodes”.

4.1. Overview

The first task of PeerStripe is to establish a pool of shared

storage resources. We accomplish this by using the decen-

tralized and robust communication substrate provided by

Pastry [30] to arrange the nodes in a p2p overlay network.

Once nodes become part of the overlay, they can reach each

other and utilize and contribute to the shared storage.

A key feature of our design is to provide storage for large

files whose size is larger than the capacity of any individual

node. For this purpose, we split a file into chunks, and store

the chunks in the storage pool. When it is desired to retrieve

a file, all the chunks making up the file are located and as-

sembled together. An advantage of splitting files is that the

system does not have to retrieve an entire file if only a por-

tion of the file is accessed, rather, only the chunk(s) contain-

ing that portion are retrieved. However, a possible problem

is that the loss of a chunk of a file due to node failures may

result in the entire data in the file becoming useless. We

employ erasure codes to address this issue and to provide

fault tolerance.

To manage storing and retrieval of chunks, we utilize

Pastry’s DHT abstraction of the nodes to map the chunks

to nodes. To store a chunk from a node S, a unique identi-

fier (UID) for the chunk is first calculated by performing a

SHA-1 hash on the chunk name. The UID is then used as

a key to send out a lookUp message in the overlay. The



(1) 0,5242880

(2) 5242881,26083328

(3) 26083329,52297728

(4) 52297729,86114304

(5) 86114305,86114304

(6) 86114305,104856576

Figure 1. Example contents of a CAT file.
Each line represents a chunk. The total size

of the file is about 100 MB. Chunk #5 is empty.

DHT guarantees that the message will be received at some

target node T in the overlay. Upon receipt of the lookUp

message, T replies with an acknowledgment message that

contains the IP address of T. When S receives the acknowl-

edgment from T, the instance of PeerStripe on S concludes

that the chunk should be stored on T. Note that the actual

store of the chunk is done directly over the IP network and

does not involve the overlay. Similarly, to retrieve a stored

chunk, a lookUp message is used to determine the target

node that stores the chunk, and the actual retrieval is done

over the IP network.

We note that most scientific data in the target environ-

ment is immutable after it is recorded, e.g., climate ob-

servations, or created, e.g., output of high-energy particle

physics simulations. For this reason, our design focus on

storage and preservation of immutable data, and does not

concern with issues such as maintaining consistency among

various replicas, and node-level issues of cache consistency

between local cache and remote file data. We do however

support append writes, which are supported at the granular-

ity of chunks so that chunk rewriting and associated consis-

tency issues can be avoided.

4.2. Chunk Storage and Error Coding

A file is stored in PeerStripe as follows. The file is first

split into chunks. Each chunk is then divided into n blocks

of equal size and error coded to give m encoded blocks,

which are also of the same size. Next, instead of storing

the original chunks as described in the previous section, we

store the encoded blocks in the shared storage pool. The

storing process is similar to that described for chunks ear-

lier.

The size of chunks is not fixed and can vary, which raises

the issue that there is no direct mapping between a file offset

and the chunk that stores the offset. This is remedied by

maintaining a chunk allocation table. Each row in this table

represents a chunk and lists the portion of the file contained

in that chunk expressed as minimum and maximum byte

offset values. PeerStripe creates the chunk allocation table

when a file is stored, and stores it in the p2p storage under

Splitter

Data File

x Chunks

Get capacity from the nodes

n blocks/
chunk

Nodesx*m Error coded blocks

m blocks/
chunk

Encoder

Figure 2. The various steps of storing a file in
PeerStripe.

the name filename.CAT. Figure 1 shows an example CAT

file.

Retrieval of an entire file or a portion of the file involves

the following sequence of events. PeerStripe first retrieves

the associated CAT file by doing a DHT lookup for file-

name.CAT, and determines the number of the chunk to re-

trieve. Next, enough blocks are retrieved to allow decoding

of the chunk. The process is repeated until the desired num-

ber of chunks is decoded. These chunks are then assembled

into the file and returned to the user. For example, to retrieve

an entire file myTestFile that contains three chunks under an

XOR coding scheme that requires two encoded blocks to

decode a chunk, PeerStripe will locate the encoded blocks:

myTestF ile x y; 0 ≤ x < 3, y any two in {0, 1, 2}.

4.3. Determining Chunk Sizes

Our design supports varying size chunks, with the goal to

reduce the total number of chunks per-file. For this purpose,

the node on which a chunk will be stored is queried for the

size of a chunk it is willing to store. The size specified by

the remote node is determined by its local policies, current

load, and disk I/O performance, and can also be zero, which

indicates that the remote node is either out of space or un-

willing to store data. If this happens, the system can simply

treat the current chunk as a chunk of size zero, and continue

normally. In addition, PeerStripe factors in a node’s per-

formance in terms of available network bandwidth from the

node in deciding the size. In the current implementation,

PeerStripe simply does not use a node if the available band-

width varies more than a pre-specified threshold2. Once a

size is determined, a chunk of that size is created from the

file. The chunk is then error coded and stored as discussed

in the previous section. The process is repeated until all the

data in the file is stored. Figure 2 illustrates various steps of

this process.

2More advanced techniques for estimating a node’s failure rate such as

relying on Network Weather Service [34] can also be employed, and are

the focus of our future work.



The advantage of using varying size chunks is that the

number of chunks are dependent on the capacity of the sys-

tem and not the length of the file being stored. Moreover, a

system of retries to guard against failures is built in by al-

lowing chunks to be of zero size. We do limit the number of

consecutive zero-sized chunks in a file to protect against un-

bounded retries in case the system utilization is high. If this

limit is exceeded, the file store fails and an error is returned

to the user.

4.4. Fault Tolerance

The primary means of fault tolerance in our system is

error coding. As nodes fail, the error coded blocks stored

on them are lost and should be re-created to maintain re-

dundancy. For this purpose, we leverage the Pastry leaf-set

that maintains information about a node’s neighbors in the

identifier space, and Pastry’s ability to detect a failure of a

neighbor. Moreover, in Pastry the identifier space that is

mapped to a failed node is split between the two immediate

left and right neighbors of the failed node. This implies that

a node whose immediate neighbor has failed becomes re-

sponsible for storing some of the blocks originally stored on

that neighbor. Each node in our system has a list of blocks

stored on its neighbors, and this list is updatedwhen files are

created or removed. When an immediate neighbor of a node

fails, the node examines the list of blocks and determines

which of these blocks will now be mapped to itself. For

these blocks, the node starts the process of re-creating the

lost encoded blocks using the remaining encoded blocks.

Since we employ online code, a re-created block does not

have to be exactly the same as the one that has been lost,

rather functionally equal to support correct decoding of the

stored data.

An interesting problem arises when a node that stores

a large number of chunks fails, and its neighbors may not

have the capacity to take over and store those chunks. This

can possibly be avoided through our use of online code

that allows us to simply drop, i.e. not recreate, an encoded

chunk on a neighbor node, and create another one at a dif-

ferent location.

Finally, we also employ replication for the CAT file as-

sociated with each stored file. Note that the CAT file can be

recreated by incrementally looking up chunks of a file and

determining their size, however, given that active replica-

tion is in place, such recreation is expected to be rare.

Managing Replicas In addition to error coding, we have

also employed simple replication of encoded blocks on

neighboring nodes in the Pastry nodeId space. Instead

of choosing a primary node and making it responsible for

creating replicas as is the case in many systems [9, 31, 35],

R R R R R R R R

S

Figure 3. An example multicast tree struc-

ture for simultaneously creating replicas on

nodes R of a chunk from source S.

we utilized a multicast scheme to simultaneously create k

replicas.

Once a target node has been selected for storing an en-

coded chunk using the p2p-mapping, we determine k−1 of
its neighbors in the identifier space and then leverage Bul-

let [17] to construct an overlay tree with the node starting

the store as the source and the k selected nodes (the target

node and its neighbors) as the leaf nodes. This is illustrated

in Figure 3.

The challenging task is the creation of an effective tree.

This can be achieved if a child is as physically close to its

parent as possible. We leveraged the proximity-aware rout-

ing table of Pastry to realize this tree. Starting from the

source node, we picked K closest nodes from the routing

table as children, and then continue this step at each child

as we moved towards the identifiers of the target nodes. As

a result, the desired locality-aware tree is created. Note that

our greedy approach does not guarantee that the overall tree

follows the shortest path from the source to the destination,

but it does provides strong locality at each step. Once the

tree is created, we use the Bullet algorithm to multicast the

data to the k replicas.

4.5. Discussion

The design of our system results in dividing large files

into relatively few chunks. However, a number of sys-

tems [3, 24] have shown that having a file distributed across

a number of nodes (a large number of chunks in the ter-

minology of this work) can provide better transfer band-

width when accessing the stored data. So, while large chunk

sizes can provide easy location and reduce p2p-lookup over-

head, smaller chunk sizes can provide better transfer band-

widths if portions of files are accessed in parallel by differ-

ent nodes, and also entail faster regeneration of a lost chunk

because of its smaller size. This leads to trade-offs in the se-

lection of lower and upper bounds for chunk sizes. While,



I/O

I/O lib. funcs.

lookup
module

Redirected I/O

cache

application

pre−loaded

p2p overlay

remote
node

Figure 4. Interfacing PeerStripe with applica-
tions. The dotted line shows the I/O as per-

ceived by the application.

we have not explicitly handled limiting chunk sizes based

on such factors, our design allows for selecting chunk sizes

according to local node policies, which can capture such

factors.

5. Implementation

The system as discussed in the previous section was im-

plemented with about 8000 lines of Java code using FreeP-
astry [10] – the publicly available version of the Pastry API.

We do not expect our Java-based implementation to become

a performance bottleneck as the Java code is mainly used

for locating remotely stored chunks where any processing

delay due to use of Java is expected to be overshadowed by

the network latency. Moreover, any actual transfer of data

is done directly between nodes using standard techniques,

and does not involve the p2p overlay.

To allow user programs to access the PeerStripe API

without requiring any special changes to the source code

or recompilation, we developed a library that interposes it-

self between the application and the standard libraries, and

redirects the application’s I/O as shown in Figure 4. The

library consists of 259 lines of C code and utilizes standard
techniques for redirecting library calls.

When an application uses our library, any open I/O call

for files are sent to the lookup module that determines and

locate the chunk that contains the portion of the file being

accessed. Then, the lookup module determines the node

storing the chunk using the p2p overlay as described in Sec-

tion 4.1. For faster operation, the module also maintains

a local cache of recently accessed chunks and the remote

nodes on which the chunks are stored. Once the storing

node is known, the I/O request is sent to it. Any subsequent

read and write calls to the file are redirected to the re-

mote node. Finally, the close call is also redirected to

clear the state of the local file descriptor so it can be reused

later. In this way, our implementation is able to transpar-

ently redirect I/Os from applications to distributed storage

nodes.

6. Evaluation

In this section, we present a detailed evaluation of our

system. Given the dynamic characteristics of our target en-

vironment, we rely on large-scale simulations to test Peer-

Stripe in a controlled environment. However, later we

present a case study and a verification of PeerStripe design

on the PlanetLab [26] test bed using an actual implementa-

tion.

6.1. Simulations Results

Methodology We utilized the simulator mode of Pas-

try [30] to create a 10000-node directly connected network,

where each simulated node runs an instance of our code.

Moreover, to compare PeerStripe with others, we adapted

CFS [9] and PAST [31] to run in our simulated environ-

ment.

We assigned the storage capacities of our simulated

nodes following the recommendations of recent studies

regarding available disk space on typical desktop grid

nodes [14, 35]. Each simulated node was assigned a capac-

ity based on a normal distribution with a mean and variance

of 45 GB and 10 GB, respectively, resulting in a total simu-

lated capacity of 439.1 TB.

To drive our simulations, we collected a file system trace

from various video hosting websites, Linux mirror websites

that serve distribution images, as well as from various de-

partmental servers. Since our system is designed for large

files, we filtered out all files smaller than 50 MB (based on

large files used in works such as [24]). The resulting trace

contained information for about 1.2 million files, with mean

size of 243 MB and a standard deviation of 55 MB. The to-

tal storage size required to store all the files in the trace is

278.7 TB.

For the purpose of these simulations, the limit on con-

secutive zero-sized chunks in our system was set to 5. The
replication factor in PAST and CFS was set to 1, and no
error coding was used in our system. The authors of CFS

used a fixed chunk size of 8 KB [9] in their evaluation, but

given the large size of the files in our simulations we set

the chunk size to 4 MB to reduce unnecessary DHT look-

ups. We considered a file insertion a success only if all the

chunks of the files were successfully stored.

Finally, given the random nodeId assignment in our

simulations, each case was simulated ten times; the results
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Figure 5. Ratio of failed file stores to number
of files inserted.

presented in the following sections represents the average

(at each data point).

Results In the first set of experiments, we measured the

number of successful file stores as files from the trace were

inserted into the system. Figure 5 shows the results for the

three cases of PAST, CFS, and PeerStripe. Initially, the stor-

age is underutilized and the three schemes behave identi-

cally. However, as the storage utilization increases, the re-

maining space on many nodes become less than the size of

the files being inserted. As a result, the number of failed

stores in PAST starts to increase, and it fails to store 36.0%

of the total files. This is of particular concern given that the

total data to be inserted compared to the total available ca-

pacity, i.e., the expected utilization, is less than 64%. Sim-

ilarly, CFS splits the files into blocks, and is therefore able

to perform better than PAST by failing for 15.2% of the

total files, however, this is still a large number of failures.

The performance of CFS is expected to worsen further per

our discussion of Section 3. Finally, PeerStripe is able to

remedy the ill-effects of both PAST and CFS, and results in

only 5.2% failures; an improvement by a factor of 7.0 and

2.9 compared to PAST and CFS, respectively.

Next, we measured the size of data that each of the three

systems failed to store. Figure 6 shows the results. Here,

we observe that PAST and CFS are unable to store as much

as 39.2% and 22.0% of the data, respectively. In contrast

our system was able to store almost all the data until about

800k files were inserted, only after that did it failed to store

some files, with total amount of data that failed to be stored

at 12.7%. This is an improvement by a factor of 3.1 and 1.7

compared to PAST and CFS, respectively.

Next, we determined the average number and size of

chunks created under CFS and our system for these simula-

tions. Since the size of a chunk is fixed at 4 MB in CFS, on

average it results in the files being split into 61.25 chunks,

with a standard deviation (sd) of 13.8. In contrast the av-
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Figure 7. System storage utilization under the

three scenarios.

erage size of chunks created under PeerStripe is 81.28 MB

(sd=19.9 MB), which results in creation of on average 3.72

(sd=3.1) chunks per file. The reduction in the number of

chunks by a factor of 16.5 on average enables PeerStripe to

avoid an unnecessarily large number of p2p look-ups and to

provide performance similar to that of PAST but with the

added capability to store large files.

In the next set of experiments, we determined the overall

system capacity utilization under each of the three schemes

studied. Figure 7 shows that all three schemes behave sim-

ilarly in the beginning when the system is about 15% uti-

lized. However, as more files are added, the utilization

curves diverge. PAST and CFS are unable to store many

of the files that are inserted as shown in earlier results, and

as a result, achieve 16.8% and 6.7% less system utilization

compared to PeerStripe, respectively. This shows that our

system can utilize the available storage capacity more ef-

ficiently than the compared systems even at higher utiliza-

tion.
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6.2. Fault Tolerance

File availability In order to determine the effectiveness of

error coding in our system, we distributed the files from our

trace to the 10000 simulated nodes, and counted the total

number of available files in the system as 1000 randomly

chosen nodes fail one-by-one. For this experiment we used

a (2,3) XOR code, as well as an online code that could tol-

erate two simultaneous failures per chunk. We counted a

file as available only if all the chunks of the file could be

retrieved. We repeated this experiment for the cases of no

error code, XOR code, and online code. Figure 8 shows the

percentage of total files that became unavailable as nodes

failed. The use of error coding resulted in 23% and 32%

less failures for XOR code and online code, respectively,

when 1000 nodes failed. The overall number of failures for

online code was negligible (1.48%), and almost zero for up

to 866 failed nodes. Moreover, these failures can be fur-

ther reduced if encoded block re-creation is employed as

described in Section 4.4.

Performance of error coding schemes We studied two

erasure codes that can be used in our system, namely XOR

and online code, and compared them against a NULL code

that simply copies the input data to the output. For XOR

code, we set the parameter n = 2 so that the number of
blocks encoded per parity block is 2. The particular online

code that we used follows the suggestions in [21], and has

the tuning parameters of q = 3 and ǫ = .01. For these
runs, we used a chunk size of 4 MB, and used 4096 encoded

blocks per chunk.

Table 1 shows the size of encoded blocks and time taken

for encoding averaged over 10 runs. XOR encoding is a fac-

tor of 3.3 faster than that of the online code. However, al-
though the online code is slower, the decoding can be started

as soon as a block becomes available and can be overlapped

with retrieval of other blocks. Moreover, online code has

Erasure Encoded size Encoding time

code size (MB) ovrhd. time ovrhd.

Null 4 0% 11 0%

XOR 6 50% 79 618 %

Online 4.12 3% 264 2300%

Table 1. Error coding overhead.

Nodes failed Data lost Data regenerated

(percentage total total average sd

of total) (GB) (GB) (GB) (GB)

10 percent 0 28044.35 28.04 78.95

20 percent 142.18 58625.78 29.31 80.02

Table 2. Effect of participant failure.

far less storage overhead as seen in the table, and therefore

is a good candidate for use in PeerStripe.

Effects of participant churn In this experiment, we de-

termined the effect of participant churn on PeerStripe. In

particular, we studied the amount of data that is regenerated

from other replicas/error-coded chunks as nodes leave the

system due to failure. Upon failure of a node, its immedi-

ate neighbors spring into action. These neighbors identify

the chunks of files which will now be mapped to them by

the DHT, and start the recovery and chunk regeneration pro-

cess. For this simulation, we failed up to 20% of the total

participating nodes without any node recovery. After each

node failure, we introduced a delay before the node’s data

is recovered on a neighboring node. This delay is propor-

tional to the size of the data being recovered and serves to

simulate the time it would take the data to be recovered in

a real system. This delay also enables us to determine how

the system would behave under multiple consecutive fail-

ures where data recovery due to a previous failure is not yet

complete. For each failure, we logged the size of data that

needs to be regenerated as well as the total size of data that

has become unavailable.

Table 2 shows the results. We observed that for the traces

used, an average of 29.3 GB of data was regenerated per

failure after up to 20% of the nodes had failed, with a to-

tal of 58625.8 GB being regenerated. The experiment also

showed that only 142.2 GB of data was lost even when 20%

of the total nodes had failed. Finally, compared to the total

data size of 278.7 TB, the data recreated per failure is quite

small, i.e., 0.01%.

6.3. Multicast-Based Replica Management

This section evaluates the feasibility of using the Bul-

let [17] algorithm for disseminating replicas in our system.

For this set of experiments we simulated how one source
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Figure 9. Average number of packets re-
ceived per node with different RanSub values

over a period of time.

node will distribute an encoded chunk to a number of repli-

cas (32 in this simulation). We used a binary tree with a

depth of five with the source node as the root of the tree and

the recipient nodes at the leaf nodes. The setup included

a total of 63 nodes. This simulation corresponds to an ex-

treme case of creating 32 replicas, where in reality we ex-

pect the number of replicas to be small (about 3). For these

experiments we divided a chunk into 1000 packets.

Our first experiment tested the replica creation time us-

ing different values of the RanSub [16] set size in the Bullet

algorithm. Figure 9 shows the average number of packets

received through the duration of the simulation for the val-

ues of RanSub set size ranging from 3% to 16% of the total

nodes in the tree. It is observed that as the RanSub size is in-

creased, its effect decreases, and begins to stabilize around

8 percent. This shows that the RanSub size only effects the

distribution time up to a certain point and then the distri-

bution time becomes independent. This gives us an idea of

what RanSub value should be chosen for our system in real

applications.

In the next experiment, we examined how evenly the tree

is saturated with the packets, i.e., how evenly the Bullet al-

gorithm distributes the replica packets. This experiment had

the same setup as the previous experiment but with the Ran-

Sub value fixed at 16% of the total nodes in the tree. As

Figure 10 shows, the distribution of the replica data is close

to linear for the maximum, average, and minimum number

of blocks per node. This shows the even distribution of data

over time, and that the Bullet algorithm can indeed be used

for effective replica creation in our system.

6.4. Case study: Interfacing with Condor

In this section, we discuss how we interfaced PeerStripe

with Condor [19], a well-established grid environment that

enables high throughput computing using off-the-shelf cost-
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File Time taken (s)

size Whole file CFS–Fixed size chunks PeerStripe

(GB) (overhead) (overhead)

1 151.0 169.0 (11.9 %) 176.4 (16.8 %)

2 277.1 330.8 (19.4 %) 302.4 (9.2 %)

4 529.1 654.6 (23.7 %) 554.5 (4.8 %)

8 1051.2 1320.0 (25.6 %) 1076.6 (2.4 %)

16 N/A 2637.0 (N/A ) 2086.2 (N/A)

32 N/A 5243.9 (N/A ) 4156.4 (N/A)

64 N/A 10441.8 (N/A ) 8217.7 (N/A)

128 N/A 20881.5 (N/A ) 16425.8 (N/A)

Table 3. Evaluation of PeerStripe using a sim-

ple Condor application.

effective components. For this case study, we used our

library implementation of Section 5 to redirect I/O calls.

Moreover, all participating nodes run Condor Version 6.4.7.

We created a simple Condor application, bigCopy, that

in essence creates a copy of a specified file. We use this

application to compare the working and performance of a

CFS-based system that uses fixed chunks sizes, PeerStripe,

and the original Condor. We utilized 32 laboratory ma-

chines at our department to set up a Condor pool connected

using 100MB/s Ethernet, where each node has an Intel Pen-

tium 4 3.0 GHz processor, 1 GB RAM, 40 GB hard disk,

and contributed storage space based on a uniform distri-

bution between 2 GB and 15 GB, with mean and standard

deviation of 10 GB and 3 GB, respectively. In this exper-

iment, no error coding was employed, and enough retries

were made for all three cases to store a chunk so as to en-

sure that all blocks can be stored.

Table 3 shows the results of this experiment, where each

row corresponds to a run of bigCopy with increasing file

sizes ranging from 1GB to 128GB. For each run, we started

fresh by deleting all the files from the previous run, and

creating a file with the stated size on a different machine



than the 32 machines in the setup. Next, we ran bigCopy

through Condor to create a copy of the file. The table shows

whether the copying succeeded, and how long it took for

the process.

As expected, we observe that both CFS and PeerStripe

work for smaller file sizes, but the use of DHT introduces

an overhead. There are two components of this overhead:

a fixed component due to I/O redirection and code interpo-

sition, and a variable overhead due to p2p look-up opera-

tions to determine the locations of the chunks. While we

expect the fixed overhead to be implementation dependent,

the variable overhead is directly proportional to the num-

ber of chunks created, which is very large in CFS, but is

dependent on node capacities in our system. For this exper-

iment, since the entire file was accessed, the variable over-

head grows with file size. However, this scenario presents

the worst case, and typically only portions of a large file are

accessed at a time, in which case the overhead is expected

to be much less. Finally, as the file size is increased the

advantage of our system becomes evident; it is able to find

storage for the copy whereas the original scheme of storing

on a single node fails due to unavailability of space. More-

over, note that as the file size increases the total time to run

bigCopy is dominated by the transfer time. As a result,

the relative overhead introduced by PeerStripe for transfer-

ring large files becomes very small (under 2.5% for a 8 GB

file).

This experiment shows that PeerStripe is effective in

storing large files with an acceptable overhead, and implies

that it can be used in practical desktop grid scenarios, where

the file sizes are larger than the capacity of individual par-

ticipating nodes.

6.5. PlanetLab Verification

Next, we tested our implementation on the wide-area dis-

tributed testbed of PlanetLab [26]. For this purpose, we

selected 40 different sites distributed across the country.

Given the smaller storage capacity of PlanetLab nodes than

our simulated nodes, we emulated each site to contribute

storage space based on a scaled-down normal distribution

with a mean and variance of 80 MB and 17 MB respec-

tively. Next, we distributed files from a scaled-down version

of our simulation trace, which contained 12,000 files with

mean and standard deviation in size of 24 MB and 5 MB

respectively.

We observed that compared to PAST and CFS, the num-

ber of failed stores when all files were inserted reduced

by 330% and 105%, respectively. Moreover, PeerStripe

achieved 63% system storage utilization, compared to the

52% and 47% of CFS and PAST, respectively. During the

course of the experiment, 4 nodes failed. Without error cod-

ing, this would have resulted in the loss of about 10% of the

stored data. However, our online codes were able to provide

98.6% availability through these failures.

While individual node lookup times were under a sec-

ond, the actual data transfer time varied a lot. We believe

that heavy use of PlanetLab during the time of our experi-

ments contributed to these fluctuations. However, we were

able to verify the feasibility of our design through these ex-

periments.

6.6. Summary

Our evaluation has shown that PeerStripe can provide a

reliable and robust distributed storage system for modern

scientific applications. In particular, our simulations have

shown that compared to PAST, for large files, PeerStripe re-

duced the number and size of file store failures by a factor

of 7.0 and 3.1, respectively, and achieved 16.8% better over-

all system utilization. PeerStripe also reduced the number

of chunks created compared to CFS by a factor of 16.5 on

average, allowing fewer p2p look-ups and leading to perfor-

mance similar to PAST. Our experiments with error coding

showed that the fault tolerance and data availability needed

for a desktop grid system can be achieved with our system

through the use of error coding. The system also handles

participant churn well with only 0.01% of data regenerated

per failure for the traces used. We also examined the use of

multicast for replica maintenance and found that this tech-

nique can be effectively used in PeerStripe. Moreover, our

case study of interfacing PeerStripe as an I/O library with

Condor proves that the system can be used in practical desk-

top grid scenarios with acceptable overhead. Finally, we

have verified the design of PeerStripe over the PlanetLab

testbed and shown that the proposed design behaves as ex-

pected.

7. Conclusion

In this paper, we have presented the design and evalua-

tion of a contributory storage system, PeerStripe. PeerStripe

uses p2p overlay networks to establish robust, scalable, and

reliable distributed storage. It employs the techniques of

striping and error coding to support transparent storage of

very large data files across multiple distributed nodes, and

exports a simple yet effective interface to users and appli-

cations. The detailed evaluation of our system has shown

that it performs better than existing systems in a dynamic

setting, can store files that are larger than the capacity of in-

dividual participants, is reliable, and responds well to par-

ticipant churn. We have also proposed the use of multicast

for replica maintenance and believe that such an approach

can be used in target environments. The efficient and simple

design of PeerStripe implies that it can be readily deployed

and interfaced with different applications, and therefore can



serve as a storage system for today’s desktop grid environ-

ments.
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