
CellMR: A Framework for Supporting MapReduce on Asymmetric
Cell-Based Clusters

M. Mustafa Rafique1, Benjamin Rose1, Ali R. Butt1
1Dept. of Computer Science

Virginia Tech.
Blacksburg, Virginia, USA

Email: {mustafa, bar234, butta, dsn}@cs.vt.edu

Dimitrios S. Nikolopoulos1,2

2Institute of Computer Science
Foundation for Research and Technology Hellas (FORTH)

GR 700 13, Heraklion Crete
Email: dsn@ics.forth.gr

Abstract

The use of asymmetric multi-core processors with on-
chip computational accelerators is becoming common in a
variety of environments ranging from scientific computing
to enterprise applications. The focus of current research
has been on making efficient use of individual systems, and
porting applications to asymmetric processors. In this paper,
we take the next step by investigating the use of multi-core-
based systems, especially the popular Cell processor, in a
cluster setting. We present CellMR, an efficient and scalable
implementation of the MapReduce framework for asymmet-
ric Cell-based clusters. The novelty of CellMR lies in its
adoption of a streaming approach to supporting MapReduce,
and its adaptive resource scheduling schemes: Instead of
allocating workloads to the components once, CellMR slices
the input into small work units and streams them to the
asymmetric nodes for efficient processing. Moreover, CellMR
removes I/O bottlenecks by design, using a number of
techniques, such as double-buffering and asynchronous I/O,
to maximize cluster performance. Our evaluation of CellMR
using typical MapReduce applications shows that it achieves
50.5% better performance compared to the standard non-
streaming approach, introduces a very small overhead on
the manager irrespective of application input size, scales
almost linearly with increasing number of compute nodes
(a speedup of 6.9 on average, when using eight nodes
compared to a single node), and adapts effectively the
parameters of its resource management policy between ap-
plications with varying computation density.

1. Introduction

Asymmetric parallel architectures are rapidly being es-
tablished in emerging systems as the sine qua non for
achieving high performance without compromising relia-
bility. The model has been realized in asymmetric multi-
core processors, where a fixed transistor budget is heavily
invested on many simple, tightly coupled, accelerator-type
cores. These cores provide custom features that enable

acceleration of computational kernels operating on vector
data. Accelerator cores are controlled by relatively few
conventional processor cores, which also run system services
and manage off-chip communication. Researchers have col-
lected mounting evidence on the superiority of asymmetric
multi-core processors in terms of performance, scalability,
and power-efficiency [1], [2], [3]. The recent advent of
the Cell Broadband Engine (Cell) processor and GPUs as
High-Performance Computing (HPC) and data processing
engines [4], [5], [6], [7], [8], [9], [10], [11], further attests
to the potential of asymmetric architectures.

The accelerator-based approach is not only limited to the
processor level, it also lends itself to be extended for design-
ing distributed asymmetric clusters, such as LANL’s Road-
Runner [10]. In the distributed setting, the accelerators are
packaged compute nodes with customized components, such
as GPGPU, FPGAs, Clearspeed CSX600 [12] coprocessors,
IBM Cell/BE processors, and NVIDIA G8800 GPUs [13],
connected over a high-speed network to a powerful front-
end component that manages the whole cluster. The rapid
growth in high-speed networks and the use of low cost
commodity off-the-shelf hardware, makes such distributed
asymmetric clusters natural substitutes for expensive high-
end supercomputers.

While parallel programming models for symmetric clus-
ters have been studied at length, the synthesis of parallel
programming models for asymmetric parallel architectures
is an open problem. In particular, hiding the architectural
asymmetry from the programming model, and exploiting
the vast computational density of accelerators while they
communicate with inherently slower system components
remain major challenges. Towards this end, we adapt the
MapReduce [14] model for asymmetric HPC clusters boast-
ing accelerator-type compute nodes. MapReduce is a sim-
ple model for machine-independent parallel programming
at large scales. It provides minimal abstractions, hides
architectural details including heterogeneity, and supports
transparent fault tolerance. While current implementations
of MapReduce accommodate standalone accelerators, e.g.,
Cell [15], and take into consideration heterogeneity of com-

pute nodes due to virtualization in the task scheduler [16],
they do not cope with the asymmetry between the com-
putational density of accelerators and data processing and
forwarding capabilities of manager nodes. This asymmetry
can lead to severe performance penalties by exposing com-
munication or I/O bottlenecks.

In this paper, we design, develop and evaluate CellMR, an
implementation of the MapReduce programming model on
asymmetric HPC clusters with large-memory general pur-
pose head nodes and accelerator-type compute nodes.
CellMR hides asymmetry and enables high-performance,
cost-effective, and scalable data processing. We target HPC
clusters with heterogeneous processor architectures, similar
to LANL’s RoadRunner [10], built however with low-cost
compute nodes that capitalize on the compute density of
graphics and gaming processors. While our work can be ex-
tended to arbitrary hybrid parallel architectures, we evaluate
our efforts on a cluster that uses the Cell, arguably one of the
dominant asymmetric multi-core processors, as an accelera-
tor. The novelty of CellMR lies in its use of a data streaming
approach to effectively support MapReduce computations,
and its adaptive resource scheduling that factors in the
performance and capabilities of asymmetric components,
and strives to overlap completely I/O and communication
latencies. CellMR supersedes data transfer and task man-
agement libraries for asymmetric accelerator-based archi-
tectures, such as IBM’s ALF [17], which delegate param-
eterization and optimization of scheduling data transfers to
the application developers. CellMR transparently adapts the
parameters of data streaming and task scheduling to the
application at runtime, thereby relieving developers of some
significant programming effort. CellMR also removes I/O
bottlenecks via use of techniques such as asynchronous ac-
cesses and double-buffering at multiple levels of the system.

Specifically, this paper makes the following contributions:
• A detailed design of the CellMR framework that en-

ables realizing the MapReduce programming model ef-
ficiently on asymmetric clusters comprising accelerator-
type compute nodes;

• An exploration of alternative design choices for data
streaming and processing and their impact on overall
system performance on asymmetric architectures;

• A runtime technique for regulating data distribution and
streaming in MapReduce, which is inherently “static”
in the way it manages the distribution of data, so as to
best bridge the asymmetry between the head node and
the accelerator-type compute nodes.

• An adaptation of several well-known MapReduce ap-
plications to utilize CellMR and leverage highly cost-
efficient Cell-based clusters; and

• A thorough evaluation of CellMR, in particular its data
streaming and computation scheduling framework, in
terms of scalability, adaptation to varying computation
densities, and resource conservation capability.

Our evaluation of CellMR using representative MapRe-
duce applications on an asymmetric cluster shows that
CellMR significantly improves system performance (as
much as 82.3% for Word Count benchmark) compared to
the standard non-streaming scheme used in MapReduce.
CellMR adapts effectively to the relative computation to data
transfer density of applications by converging to existentially
optimal parameters for data decomposition and streaming
at runtime. Moreover, for our benchmark applications, the
load on the manager node is small and remains constant
irrespective of the application input data size. These results
indicate that CellMR provides a viable framework for effi-
ciently supporting MapReduce applications on asymmetric
HPC clusters.

The rest of this paper is organized as follows. Section 2
details the motivation and background of the technologies
that we use in CellMR. Section 3 discusses possible design
choices, and details the one we have chosen. Section 4
gives CellMR implementation details. Section 5 presents
evaluation of CellMR. Section 6 discusses the implications
of the observed results. Finally, Section 7 concludes the
paper.

2. Enabling Technologies

In this section, we discuss the technologies that serve as
the motivator for CellMR and enable its design.

2.1. Using commodity components

The use of cheap off-the-shelf components in large-
scale clusters is well established. Setups from academia,
e.g., Condor [18], etc., to commercial data centers, e.g.,
Google [19], Amazon’s EC2 [20], etc., routinely employ
such components to meet their high-performance computing
needs. Commoditization is now becoming true for asymmet-
ric accelerator-type processors such as Cell/BE-based Sony
Play Station 3 (PS3) [21], [22] and NVIDIA GPGPU-based
graphics engines [23], [24]. Consequently, there is a down-
ward cost trend for such components, which facilitates the
building of asymmetric accelerator-based clusters, similar to
the framework that we consider in this study.

Accelerator engines provide much higher performance to
cost ratio compared to conventional processors, and have
also been shown to support better thermal and energy effi-
ciency [23]. Thus, a properly designed asymmetric cluster
comprising accelerators has the potential to provide very
high performance at a fraction of the cost and operating
budget of a traditional symmetric cluster.

Unfortunately, accelerators also pose challenges to pro-
gramming and resource management. Programming accel-
erators requires working with multiple ISAs and multiple
compilation targets. Accelerators typically have much higher
compute density and raw performance than conventional

PPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE

SPE
BIC

MIC
E I B

Figure 1. Cell architecture.

processors, therefore coupling accelerators with conven-
tional processors may introduce imbalance between the two.
Accelerators also typically have limited on-board storage
and limited – if any – support for system services such as
I/O. To ensure overall high efficiency, resource management
on accelerator-based systems needs to orchestrate carefully
data transfers and work distribution between heterogeneous
components.

2.2. IBM’s Cell Broadband Engine

The Cell processor [25] provides a suitable resource
that can serve as an accelerator component in CellMR.
The availability of the Cell processor in the commodity
Sony PS3 setup further makes it economically attractive for
deployment on clusters.

The Cell [26], [27], shown in Figure 1, is composed of a
single PowerPC Processing Element (PPE), which acts as a
manager of cores, and eight Synergistic Processing Elements
(SPE), which are specialized for high-performance data-
parallel computation. A fast Element Interconnect Bus (EIB)
connects all the cores with memory and an external I/O
channel to access other devices (such as the disk and network
controller). The SPEs have private address spaces and the
programmer is responsible for moving data between the
main memory and each SPE’s local storage using the Cell’s
coherent DMA mechanism. The programmer can overlap
data transfer latency with computation, by issuing multiple
asynchronous DMA requests on the SPE or PPE side. In
current installations, the PPE runs Linux with Cell-specific
extensions that provide user-space libraries access to the
accelerator-type cores of the processor.

We use Sony PS3’s as compute nodes in this work. A
shortcoming of using PS3 for high performance computing
is that it has only 256 MB of XDR RAM out of which only
about 200 MB is available to user applications. In a cluster
setting, this shortcoming may be addressed with proper data
streaming and staging. The Cell gives the programmer the
ability to explicitly manage the flow of data between the
main memory and each individual SPE’s local store. Based
on our previous work [11], where we leveraged this facility
to improve I/O performance, we believe that the explicit data
management can be exploited and extended by the system
manager to provide individual PS3’s with necessary data
directly in their memories. We use this approach in CellMR.

2.3. MapReduce

MapReduce is an emergent programming model for large-
scale data processing on clusters and multi-core proces-
sors [14]. The model is simple and intuitive, comprising
of two basic primitives, a map operation which processes
key/value pairs to produce intermediate key/value results,
and a reduce operation which collects the results in groups
that have the same key. MapReduce is highly suitable
for massive data searching and processing operations. The
model has shown excellent I/O characteristics for traditional
clusters, as evident by its successful application in large-
scale search applications by Google [14]. Current trends
show that the model is considered as a high-productivity
alternative to traditional parallel programming paradigms
for a variety of applications, ranging from enterprise com-
puting [28], [20] to peta-scale scientific computing [29],
[15], [30]. Interestingly enough, MapReduce is chosen as
a programming front-end for Intel’s Exo-skeleton architec-
ture [31], a heterogeneous multi-core architecture combining
Intel CoreDuo cores with graphics accelerators.

Although attractive, MapReduce typically assumes ho-
mogeneous components such that any work item can be
scheduled for any of the available components. Recent
work [16] on Amazon’s EC2 [20] addresses performance
heterogeneity, but is limited only to issues arising from using
virtual machines to support nodes. Inherent architecture het-
erogeneity remains a problem when the cluster components
include specialized accelerators, as the mapping function
needs to be extended to factor in differences in the indi-
vidual component capabilities and limitations. Furthermore,
MapReduce in recently developed large-scale systems such
as Hadoop [28] assumes that necessary data is available
on local disks of processing components. Given limited I/O
capabilities of accelerators, this assumption may not hold,
thus posing the challenge of providing components with the
necessary data in a distributed setting. In this work, we
address the challenge of balancing data supply and demand
between heterogeneous components.

3. Design

In this section we present the detailed design of our
framework, CellMR, which we have developed to efficiently
support MapReduce [14] programming model on an asym-
metric accelerator-based cluster.

3.1. System Architecture Overview

A typical MapReduce setup consists of a dedicated front-
end machine that handles job scheduling and resource
management for a number of back-end resources. Since
application programmers expect such a setup, we preserve
it in CellMR. Similarly as in typical symmetric clusters,

Manager

High Bandwidth
Interconnects

NFS
Server

PS3 Node

PS3 Node

PS3 Node

...
Figure 2. CellMR system architecture.

the front-end node is a general purpose multi-core server
with a large amount of DRAM, which acts as a cluster
manager. The difference is that, in CellMR, the back-end
compute nodes are asymmetric cell-based accelerators, PS3s,
instead of generic computers. The manager distributes and
schedules the workload to the compute nodes. The generic
core on the compute nodes then uses MapReduce to map
its assigned workload to the accelerator cores. In essence,
the programming model of CellMR resembles a two-level
MapReduce: the front-end maps workloads to the cell-based
back-ends, and the back-end generic core maps the workload
to its accelerators.

A high-level view of the CellMR architecture is illustrated
by Figure 2. The manager and all the compute nodes are
connected via a high-speed network, e.g., Gigabit Ethernet.
Application data is hosted on a distributed file system, such
as the Network File System (NFS) [32] (used in our im-
plementation) or Lustre [33]. The file service can be hosted
either on a dedicated server, or in less demanding setups,
on the manager. The manager is primarily responsible for
invoking the jobs at the compute nodes, distributing data
and allocating work between compute nodes, and providing
other support services as the front-end of the cluster. The
brunt of the processing load is carried by the PS3 nodes.
This setup mimics, in a distributed setting, the architecture
adopted in emerging asymmetric multi-core processors and
asymmetric hybrid clusters, such as the PS3 and LANL’s
RoadRunner, respectively. Thus, CellMR is expected to yield
a high performance to cost ratio.

The novelty of CellMR lies in its adoption of a streaming
approach to supporting MapReduce. Allocating huge work-
loads to compute nodes in a single map operation, as is
the case in standard MapReduce setups, would choke the
limited non-computation resources on the asymmetric com-
pute nodes and negate any performance benefits. Instead,
CellMR slices the input into small work units and streams
them to the compute nodes, which can then be processed
efficiently. CellMR employs a number of techniques, such
as double-buffering to avoid stalls due to I/O operations and

asynchronous data mapping and collection, with the aim to
derive peak performance from all system components.

3.2. Design Alternatives

A crucial task of CellMR is to efficiently manage chunks
of large application data mapped to compute nodes. This
poses several alternatives. A straw man approach is to simply
divide the total input data into as many chunks as the number
of available processing nodes, and copy the chunk to the
compute node’s local disk. The application on the compute
node can then retrieve the data from the local disk as needed,
as well as write the results back to the local disk. When
the task completes, the result-data can be read from the
disk and returned to the manager. This approach is easy to
implement, and potentially lightweight for the manager node
as it reduces the allocation task to a single data distribution.
However, there are several drawbacks to this approach: (i) it
requires creation of additional copies of the input data from
the manager’s storage to the local disk, and vice versa for
the result data, which can quickly become a bottleneck,
especially if the compute node disks are much slower than
those available to the manager; (ii) it entails changing the
workload to account for explicit copying, which is undesir-
able as it burdens the application programmer with system-
level details, thus making the application non-portable across
different setups; (iii) it entails extra communication between
the manager and the compute nodes, which can slow the
nodes and affect overall performance. Hence, we do not
adopt such an approach in CellMR.

Another alternative is to still divide the input data as
before, but instead of copying a chunk to the compute
node’s disk as in the previous case, map the chunk directly
into the virtual memory of the compute node. The goal
here is to leverage the high-speed disks available to the
manager and avoid unnecessary data copying. However, this
approach can create chunks that are very large compared to
the (small) physical memory available at the compute nodes,
thus leading to memory thrashing and reduced performance.
This is exacerbated by the fact that the available MapReduce
runtime implementation [15] for the Cell processor itself
requires a lot of memory to store internal data structures.
Hence, single division of input data is not a viable approach
for CellMR.

The third alternative that we consider is dividing the input
data into small size chunks that can be efficiently processed
at the compute nodes without thrashing and without requir-
ing explicit data copying to local disk. Instead of a single
division of data, the approach streams chunks to the compute
nodes until all the data has been processed. This approach
can improve the performance from the compute nodes, at the
cost of increasing the manager’s load. However, with careful
design an efficient balance between the manager’s load and

Memory

NFS

2

1

User Application

MergeInit MapReduce

...

3

4

Offload

Reader

Writer

4b 4c

Buffers

4a 4d

6

SPESPE

5

Compute Node

Compute Node

Prefetching
Thread

Handler
Threads

Global Merger

Manager

...

PPE

Data Allocator

Compute Node

...

Figure 3. Interactions between CellMR components.

compute node performance can be achieved. We adopt this
data streaming approach in CellMR.

3.3. CellMR Operations

In this section, we describe the runtime interactions be-
tween CellMR components at the manager and each of the
compute nodes. These interactions are depicted in Figure 3.

3.3.1. Manager Operation. The manager is responsible for
a number of tasks such as job queuing, scheduling, data
hosting, and managing compute nodes. We assume that well-
established standard techniques can be used for such man-
ager tasks, and focus on compute-node management role in
this discussion. Once an application begins execution (Step 1
in Figure 3), the manager loads a portion of the associated
input data from the NFS into its memory (Step 2). This is
done to ensure that sufficient data is readily available for
compute nodes, and to avoid any I/O bottleneck that can
hinder performance. Next, client tasks are started on the
available compute nodes (Step 3). These tasks essentially
self-schedule their work by requesting input data from the
manager, processing it, and returning the results back to the
manager in a continuous loop (Step 4). Once the manager
receives the results, it merges them (Step 6) to produce
the final result set for the application. Note that the merge
operation on the manager is overlapped with MapReduce
operations on the compute nodes. When all the in-memory
loaded data has been processed by the clients, the manager
loads another portion of the input data into memory (Step 2),
and the whole process continues until the entire input has
been consumed. This model is similar to using a large
number of small map operations in standard MapReduce.

The model described so far can suffer from two potential
I/O bottlenecks: the manager can stall while reading data

from the disk (NFS), and the compute nodes can stall while
data is being copied from the manager to their memories. At
both levels, we employ double buffering to avoid delays. The
manager uses an asynchronous prefetch thread to pre-load
data into a second buffer, while the data in the first buffer
is being processed by the compute nodes, and vice versa.
Similarly, the compute nodes also use double buffering while
copying data from the manager to their memories.

It is critical to handle all communication with the com-
pute nodes asynchronously, otherwise data distribution and
collection operations will become sequential, thus reducing
the performance to effectively that of a single compute
node. This is of course undesirable. Making the interactions
between the manager and the compute nodes asynchronous
needs careful consideration. If chunks from consecutive
input data are distributed to multiple compute nodes, it
would require time-consuming complex sorting and ordering
to ensure proper merging of the results from individual
compute nodes into a consolidated result set. Such sorting
would also drastically increase the memory pressure on the
manager node and reduce system performance. We address
this issue by using a separate handler thread for each of the
compute nodes on the manager. Each handler thread works
with a consecutive fixed portion of the in-memory data to
avoid costly ordering operations. The size of each portion
is determined by simply dividing the size of in-memory
buffer by the number of available compute nodes. Each
handler thread is responsible for receiving all the results
from its associated compute node, and for performing an
application-specific merge operation on the received data.
This design leverages multi-core or multi-processor head
nodes effectively.

3.3.2. Compute Node Operation. Application tasks are
invoked on the compute nodes (Step 3), and begin to execute
the request, process, and reply (Steps 4a to 4d) loop as stated
earlier. We refer to the amount of application data processed
in a single iteration on a compute node as a work unit. With
the exception of an application-specific Offload function 1

to perform the computational work on the incoming data,
the CellMR framework on the compute nodes provides
all other functionality, including communication with the
manager and preparing data buffers for input and output.
Each compute node has three main threads that operate on
multiple buffers for working on and transferring data to/from
the manager. One thread is responsible for requesting and
receiving new data to work on from the manager (Step 4a).
The data is placed in a receiving buffer. When the thread
has received the data, it hands off the receiving buffer to an
offload thread (Step 4b), and then requests more data until all

1. The user-specified function that processes each work unit on the
accelerator-type cores of the compute node. The result from the Offload
function is merged by the generic core to produce the output data that is
returned to the manager.

free receiving buffers have been utilized. The offload thread
invokes the Offload function (Step 5) on the accelerator
cores with a pointer to the receiving buffer, the data type
of the work unit (specified by the User Application on the
manager node), and size of the work unit. Since the input
buffer passed to the Offload function is also its output buffer,
all of these parameters are read-write parameters. This is
to allow the Offload function with the abilities to resize
the buffer, change the data type, and change the data size
depending on the demands of the output. When the Offload
function completes, the recent output buffer is handed off
to a writing thread (Step 4c), which returns the results back
to the manager and also frees the buffer for reuse by the
receiving thread (Step 4d). Note that the compute node
supports variable size work units, and can dynamically adjust
the size of buffers at runtime.

3.4. Dynamic Work Unit Scaling

Efficient utilization of compute nodes is crucial for overall
system performance. A key observation in CellMR is that
a compute node’s performance can be increased many fold
by reducing memory pressure, which is in turn tied to the
work unit size. A very large work unit results in thrashing
on the compute nodes, while an unnecessarily small work
unit increases the workload of the manager. In either case,
system performance is reduced. The challenge is finding an
optimally-sized work unit, which offers the best trade-off
between the compute node performance and manager load.

An optimum work unit for running an application on
a particular cluster can be manually determined by hard
coding different work unit sizes, executing the application,
and measuring the execution time for each size. The best
unit size is the one for which the application execution time
is minimized. However, this is a tedious and error-prone
process, and requires unnecessary “test” access to resources,
which is difficult to obtain given the ever increasing need for
executing “production” tasks on a cluster to maintain high
serviceability.

To remedy this, CellMR provides the manager with
the option to automatically determine the best work unit
size for a particular application. This is done by sending
compute nodes varying work unit sizes at the start of
the application and recording the completion time corre-
sponding to each work unit. A binary search technique
is used to modify the work unit size to determine one
that gives the highest processing rate calculated using
(work unit size)/(execution time). If the processing
rate is the same for two work unit sizes, the larger one
is preferred as that minimizes load on the manager. The
determined work unit size is chosen as the most efficient
for use with the application and employed for the rest of
the application run.

All available compute nodes participate in finding the
optimal work unit size. Increasing work units are sent
to multiple compute nodes simultaneously, although one
size is sent to at least two compute nodes to determine
average performance. Once a size is determined, it can also
be reported to the application user to possibly facilitate
optimization for a future run.

3.5. Using CellMR

From an application programmer’s point of view the
extended MapReduce of CellMR is used as follows. The
application is divided into three parts as shown earlier
in Figure 3. (i) The code to initialize and utilize the
CellMR framework. This corresponds to the time spent in a
MapReduce application but outside of the actual MapReduce
work (initialization, intermediate data movement, finaliza-
tion). This part is unique to CellMR and does not have a
corresponding operation in standard MapReduce. (ii) The
code that runs on the compute node and does the actual work
of the application. This is similar to a standard MapReduce
application running on a small portion of the input data that
has been assigned to the compute node. It includes both the
map phase to distribute the workload to the accelerator cores,
and the reduce phase to merge the data from them. (iii) The
code to merge partial results from each compute node into
a complete result set. This is called every time a result is
received from a compute node, and constitute the Global
Merge phase that is identical in operation to the reduce phase
on each compute node. The only difference is that the Global
Merge on the manager works with all the data sets and
produces the final results. All these functions are application-
specific and should be supplied by the programmer.

4. Implementation

We have implemented CellMR as lightweight static li-
braries for each of the platforms, i.e., x86 on the manager
and PowerPC on the compute nodes, using only about
1400 lines of C code. The libraries provide the application
programmers with necessary constructs for using CellMR.

A goal of our implementation is to maintain a constant
memory footprint and keep the memory pressure in check on
the compute nodes even with large input data. This required
some experimenting to determine the number of buffers to
use on the compute nodes: too few buffers and the nodes
will have to stall for data to be transferred from the manager,
too many and the application has less memory to use for
computation. In either case, performance is reduced. Initially
we started by giving each of the three compute node threads
a dedicated buffer. However, during the course of our de-
velopment we observed that for the majority of applications,
the computation time far outweighs the communication time
and the output data was considerably less than the input data.

Thus, the Reader and Writer threads spend only a fraction
of the total time working with their associated buffers. So,
we decided to eliminate one of the buffers. Having two
buffers gives the compute node more memory to use for
computation but still allows overlapping the communication
with computation. Moreover, to accommodate applications
that do not exhibit such behavior, we do allow the users to
modify the number of buffers as necessary.

Another implementation decision is determining how best
to transfer data between the compute nodes and the manager.
In an initial design, the manager provided a compute node
with information regarding input file location, starting offset,
and size of the chunk to process. The compute node would
then use this information and read the file chunk into its
memory. However, the large number of compute nodes
created contention at the NFS server and increased the I/O
times for all nodes. Moreover, applications typically reuse
data, and this approach required rereading of data from disk
whenever it was needed. We addressed this by letting the
manager read the input data in its memory, which is then
distributed to compute nodes using any standard communi-
cation scheme. We used MPI [34] in our implementation
due to its robust performance and our familiarity with it.

5. Evaluation

In this section, we detail our evaluation of CellMR
using the implementation of Section 4. We describe our
experimental testbed, the benchmarks that we have used,
and present the results.

5.1. Experimental Setup

Our testbed has eight Sony PS3s as compute nodes
connected via 1 Gbps Ethernet to a manager node. The
manager has two quad-core Intel Xeon processors clocked
at 3 GHz, 16 GB main memory, 650 GB hard disk, and runs
Linux Fedora Core 8. The manager also runs an NFS server
to provide user data to the PS3s. The PS3 is a hypervisor-
controlled platform, and has 256 MB of main memory (of
which only about 200 MB are available for applications), and
a 60 GB hard disk. The Cell runs at 3.2 GHz. Of the 8 SPEs
of the Cell, only 6 SPEs are visible to the programmer [11],
[35] in the PS3. Each PS3 node has a swap space of 512 MB,
and runs Linux Fedora Core 7.

We used three different configurations of our resources
for the experiments. (1) Single configuration that runs the
benchmarks on a standalone PS3, with data provided from an
NFS server to factor out any effects of the PS3’s slower local
disk. Single provides a measure of one PS3’s performance in
running the benchmarks. (2) Basic configuration that uses all
nodes. In this case, the manager equally divides the input
at the beginning of the job and assigns it to the PS3s in
one go. The manager then waits for the PS3s to process the

data, before merging their output to produce the final results.
Basic serves as the baseline for evaluating the dynamic work
unit scaling of CellMR. (3) CellMR configuration that also
uses all nodes but employs CellMR for work unit scaling and
scheduling. These configurations allow us to study various
aspects of CellMR in detail.

5.2. Methodology

We conducted the experiments using the only publicly
available MapReduce implementation [15] for Cell proces-
sors. We focus on how CellMR design decisions affect
system performance when using the MapReduce model on
our cluster.

For our evaluation, we used a number of well-known
MapReduce applications. These applications are classified
based on the MapReduce phase where they spend most of
the execution time, i.e., as either map-dominated or partition-
dominated. Map-dominated applications spend more time in
distributing the data than processing the partitions, while
vice versa is true for partition-dominated applications. A
brief description of the benchmark applications that we have
ported to CellMR is provided below. More details on these
applications can be found in [15].

• Linear Regression: This application takes as input a
large set of two dimensional points, and determines
a line of best fit for them. This is a map-dominated
application.

• Word Count: This application counts the frequency of
each unique word in a given input file. The output is a
list of unique words found in the input along with their
corresponding occurrence counts. This is a partition-
dominated application.

• Histogram: This application takes as input a bitmap
image, and produces the frequency count of each color
composition in the image. This is a partition-dominated
application.

• K-Means: This application takes a set of points in
an N-dimensional space and groups them into a set
number of clusters with approximately an equal number
of points in each cluster. This is a partition-dominated
application.

For each benchmark, we measured the total execution
time under our setup configurations. We also measured the
time and number of iterations it takes our dynamic scaling
to determine an appropriate work unit size, and how the
determined value compares to a manually found one.

5.3. Results

In this section, we first examine how the benchmarks
behave under our test configurations. Second, we evaluate
the dynamic work unit scaling of CellMR. Third, we study

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Input Size (MB)

Single
Basic

CellMR

Figure 4. Linear Regression execution time with increas-
ing input size.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Input Size (MB)

Single
Basic

CellMR

 0
 20
 40
 60
 80

 100
 120
 140

 0 20 40 60 80 100

Figure 5. Word Count execution time with increasing input
size.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Input Size (MB)

Single
Basic

CellMR

Figure 6. Histogram execution time with increasing input
size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Input Size (MB)

Single
Basic

CellMR

Figure 7. K-Means execution time with increasing input
size.

the impact of CellMR on the manager. Finally, we determine
how CellMR scales as the number of compute nodes is
increased.

5.3.1. Benchmark Performance.
Linear Regression. For this benchmark, we chose

input sizes ranging from 222 points (file size 4 MB) to 229

points (512 MB). Figure 4 shows the results. Under Single,
the input data quickly becomes larger than the available
physical memory, resulting in increased swapping, and con-
sequently increases the execution time. In Basic, a smaller
fraction of the data is sent to each of the PS3s, which relieves
the memory pressure on them somewhat. Initially, CellMR
performs slightly better than Basic, 18.9% on average for
input size less than 400 MB, mostly due to its data streaming
characteristics and work unit size optimizations. However,
as the input size is increased beyond 400 MB, the peak
virtual memory footprint for Basic is observed to grow
over 338 MB, much greater than the 200 MB available
memory, leading to increased swapping. Once Basic starts
to swap, its execution time increases noticeably. In contrast,
CellMR is able to dynamically adjust the work unit size to
avoid swapping on the PS3s, thus, achieving 24.3% average

speedup across all the considered input sizes compared to
Basic.

Word Count. During our experiments with Word
Count, we observed exponential growth in memory con-
sumption relative to the input data size, since each input
word would emit additional intermediate data out of the
map function. Therefore, for any input size greater than
44 MB, Single experienced excessive thrashing that caused
the PS3 node to run out of available swap space (512 MB)
and ultimately crash. Similarly, Basic was also unable to
handle input data sizes greater than 176 MB, and took 631.9
seconds for an input size of 164 MB. Figure 5 shows the
results. Here, CellMR is not only able to process any input
size, it outperforms Basic by 65.3% on average for the
points, emphasized in the inset in the figure, where Basic
completed without thrashing (input data size < 96 MB).

Histogram. Figure 6 shows the result for running
Histogram under the three test configurations. It can be
observed that CellMR scales linearly with the input data size.
In contrast, Basic only scales initially, but then looses per-
formance as the increased input size triggers swapping, e.g.,
for an input size of 160 MB, the peak virtual memory size

 0

 20

 40

 60

 80

 100

 120

 1 10 100

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Work Unit Size (MB)

Linear Regression

Figure 8. Effect of work unit size on execution time.

grows to 285 MB and it takes 285.3 seconds to complete. On
average across all input points less than 192 MB, CellMR
does 68.2% better than Basic for Histogram. The maximum
input size that Single and Basic can handle without crashing
is 192 MB, for which the execution times are 394.8 and
328.6 seconds, respectively.

K-Means. The results for the K-Means benchmark
are shown in Figure 7. Note that K-Means use a different
number of iterations for different input sizes. Therefore,
considering total execution times for different inputs does
not provide a fair comparison of the effect of increasing
input size. We remedy this by reporting the execution time
per iteration in the figure. While the CellMR implementation
scales linearly, Single and Basic use up all the available
virtual memory with relatively low input sizes. Both Single
and Basic crash for an input size greater than 8 MB and
32 MB, respectively. For 32 MB input size, Basic takes over
319 seconds/iteration compared to 5.5 seconds/iteration of
CellMR. The only input size where the Basic case doesn’t
thrash is for 1 MB. In this instance Basic outperforms
CellMR by 17%, as this input size is too small to amortize
the management function overhead of CellMR. However,
this is not of concern, as with any input size greater than
1 MB, CellMR does significantly better than Basic.

In summary, memory constraints non-withstanding,
CellMR outperforms static data distributions due to bet-
ter overlap of computation with communication and I/O.
CellMR also improves memory usage and enables efficient
handling of larger data sets compared to static data distri-
bution approaches.

5.3.2. Work Unit Size Determination. As discussed earlier
in Section 3, the work unit size affects the performance
of compute nodes, and consequently the whole system. In
this experiment, we first show how varying work unit sizes
affect the processing time on a node. For this purpose, we
use a single PS3 node connected to the manager, and run

Application
Hand-Tuned CellMR
Size (Mb) Size (MB) # Iterations Time (s)

Linear Regression 32 30 16 0.65
Word Count 3 2 8 1.82
Histogram 2 1 4 0.15
K-Means 0.37 0.12 16 1.09

Table 1. Performance of work unit size determination.

Linear Regression with an input size of 512 MB2. Figure 8
shows that as the work unit size is increased, the execution
time first decreases to a minimum, and eventually increases
exponentially. The valley point (shown by the dashed line)
indicates the size after which the compute node starts to
page. Using a larger size reduces performance. Using a size
smaller than this point wastes resources: notice that the curve
is almost flat before the valley indicating no extra overhead
for processing more data. Also, using a smaller work unit
size increases the manager’s load, as the manager now has
to handle larger number of chunks for a given input size. We
argue that using the valley point work unit size is optimal
as it provides the best trade-off between the node’s and the
manager’s performance.

Next, we evaluate CellMR’s ability to dynamically deter-
mine the optimal work unit size. In principle, the optimal
unit size depends on the relative computation to data transfer
ratios of the applications and machine parameters. We follow
an experimental process to discover optimal work unit size.
We manually determined the maximum work unit size for
each application that can run on a single PS3 without paging
to be the optimal work unit size. We compared the manual
work unit size to that determined by CellMR at runtime.
For each application, Table 1 shows: the work unit size
both determined manually and automatically, the number of
iterations done by CellMR to determine the work unit, and
the time it takes for the determination.

CellMR is able to dynamically determine an appropriate
work unit that is close to the one found manually, and the
determination on average across our benchmarks takes under
0.93 seconds. This is negligible, i.e., less than 0.5% of the
total application execution times when input size is 2 GB.
Thus, dynamic work unit scaling in CellMR is efficient as
well as reasonably accurate.

5.3.3. Impact on the Manager. In this experiment, we
determine the affect of varying work unit sizes on manager
performance. This is done as follows. First, we start a long
running job (Linear Regression) on the cluster. Next, we
determine the time it takes to compile a large project (Linux
kernel 2.6) on the manager, while the MapReduce task is
running. We repeat the steps as the work unit size is de-
creased, potentially increasing the processing requirements
from the manager. For each work unit size, we repeat the

2. The results are the similar in other applications and input sizes.

 0

 100

 200

 300

 400

 500

 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Work Unit Size (MB)

make

Figure 9. Impact of work unit size on the manager.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8

S
pe

ed
up

of Cluster Nodes

Linear Regression
Word Count

Histogram
K-Means

Figure 10. Effect of scaling on CellMR.

experiment 10 times, and record the minimum, maximum,
and average time for the compilation as shown in Figure 9.
The horizontal dashed line in the figure shows the overall
average of average compile time across all work unit sizes.
Given that the overall average remains within the minimum
and maximum times, we can infer that the variations in the
compile time curve is within the margin of error. Thus, the
relatively flat curve indicates that CellMR has a constant
load on the manager and our framework can support various
workloads without the manager becoming a bottleneck.

5.3.4. Scaling Characteristics. In the next experiment, we
observed how the performance of our benchmarks scale with
the number of compute nodes. Figure 10 shows the speedup
in performance normalized to the case of 1 compute node.
We use the same input size for all runs of an application.
However, the input sizes for the different applications are
chosen to be large enough to benefit from using 8 nodes:
512 MB for Linear Regression and Histogram, 200 MB
for Word Count, and 128 MB for K-Means. The curve
of K-Means is based on time per iteration, as explained
earlier in this section. The figure shows that CellMR scales
almost linearly as the number of compute nodes is increased,
and this behavior is true for all the benchmarks. However,
we observed that the improvement trend does not hold
for all benchmarks when the eighth node is added. Upon
further investigation, we found that the network bandwidth
utilization for such cases was quite high, as much as
107 MB/s compared to the maximum observed value of
111 MB/s on our network, measured using remote copy of a
large file. This introduced communication delays even with
double buffering, and prevented CellMR from achieving
a linear speedup. However, if the ratio of time spent in
computation compared to that in communication is high,
as is the case in scientific applications, near perfect speedup
can be obtained. We tested this hypothesis by artificially
increasing our compute time for Linear Regression by a
factor of 10, which resulted in a speedup of 7.8.

5.3.5. Summary. Our evaluation of CellMR using typical
MapReduce benchmark applications on an asymmetric clus-
ter with 8 PS3 compute nodes shows that, compared to
a non-streaming approach, CellMR achieves 50.5% better
performance on average. Moreover, CellMR adapts effec-
tively to the relative computation to data transfer density
of applications by converging optimal work unit size, min-
imally loads the manager, and scales well with increasing
number of compute nodes (a speedup by a factor of 6.9
on average for an 8 node cluster). Thus, CellMR provides
a viable framework for efficiently supporting MapReduce
applications on asymmetric HPC clusters.

6. Discussion

Our evaluation has shown that asymmetric multi-core
processors coupled with general-purpose processors, can be
used effectively in asymmetric distributed clusters using our
highly scalable programming model, CellMR, for compute-
and data-intensive applications. Furthermore, we observed a
clear benefit of adopting a streaming approach to bridge the
computational and I/O gaps between manager and accelera-
tor based compute nodes by feeding them with the required
data to overcome some of their significant shortcomings, i.e.
small memory and limited I/O capabilities.

Adopting the streaming approach also exploits strong
attributes of asymmetric multi-core processors, such as low-
latency and fast internal memory. By careful tuning of the
design parameters at runtime, such as optimal work unit size,
synchronization and communication parameters, asymmetric
multi-core processors can serve as a cost-effective compute
nodes for high performance clusters. To this end, an obstacle
is the saturation of network bandwidth between the cluster
manager and the compute nodes due to their dependency on
the manager for OS services such as I/O.

A possible remedy is the use of multiple managers to
create a tiered cluster model, where each manager manages
a set of compute nodes on a dedicated network. However,
such a setup would require an extra merge phase to combine

the results on each manager node. Nonetheless, the global
merge would be very similar to the reduce function on
each manager, which combines the results from associated
compute nodes. Consequently, the programming effort for
this extra merge function is only a small delta in addition
to the programming effort for result consolidation on the
compute nodes, but with considerable benefit of mitigating
a bandwidth bottleneck.

7. Conclusion

This paper advocates a streaming approach to imple-
menting programming models for asymmetric distributed
clusters, featuring accelerators at their compute nodes and
conventional servers at their head nodes. We presented
the design, implementation and evaluation of CellMR, a
scalable implementation of MapReduce for asymmetric clus-
ters. CellMR retains the simple, portable, and fault-tolerant
programming interface of MapReduce, while exploiting mul-
tiple interconnected computational accelerators for higher
performance. CellMR implements dynamic schemes for
memory management and work allocation, so as to best
adapt work and data distribution to the relative computation
density of the application. These dynamic schemes enable
higher performance and better utilization of the available
memory resources, which in turn helps economizing on
capacity planning for large cluster installations.

Future work on CellMR includes extension in several
directions. We plan on exploring the performance of CellMR
in accelerator-based systems at large scales, using multiple
types of accelerators, including GPUs, as well as multiple
head and I/O nodes. This paper provides initial clues on
addressing capacity and resource planning issues for asym-
metric clusters. We also plan on deploying CellMR for
capacity planning and rightsizing of clusters given specific
budgets. CellMR has been evaluated as a dedicated resource
for running standalone applications, and we intend to eval-
uate it also in a virtualized setting, to explore performance
robustness under dynamic execution conditions. Finally, one
of our near-term goals is to use CellMR as a production-level
programming framework for scientific data processing.

Acknowledgment

This research is supported by NSF (grants CCF-
0746832, CCF-0346867, CCF-0715051, CNS-0521381,
CNS-0720673, CNS-0709025, CNS-0720750), DOE (grants
DE-FG02-06ER25751, DE-FG02-05ER25689), and IBM
through IBM Faculty Awards (grants VTF-874574, VTF-
874197). M. Mustafa Rafique is supported through a Ful-
bright scholarship.

References

[1] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The
Impact of Performance Asymmetry in Emerging Multicore
Architectures. In Proc. ACM ISCA., June 2005.

[2] M. Pericàs, A. Cristal, F. Cazorla, R. González, D. Jiménez,
and M. Valero. A Flexible Heterogeneous Multi-core Archi-
tecture. In Proc. IEEE PACT., 2007.

[3] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K.I. Farkas. Single-ISA Heterogeneous Multi-core Architec-
tures for Multithreaded Workload Performance. In Proc. IEEE
ISCA., 2004.

[4] D. Bader and V. Agarwal. FFTC: Fastest Fourier Transform
for the IBM Cell Broadband Engine. In Proc. HiPC., 2007.

[5] F. Blagojevic, A. Stamatakis, C. Antonopoulos, and
D. Nikolopoulos. RAxML-CELL: Parallel Phylogenetic Tree
Construction on the Cell Broadband Engine. In Proc.
IEEE/ACM IPDPS., 2007.

[6] G. Buehrer and S. Parthasarathy. The Potential of the Cell
Broadband Engine for Data Mining. Technical Report TR-
2007-22, Department of Computer Science and Engg., Ohio
State University, 2007.

[7] B. Gedik, R. Bordawekar, and P. S. Yu. CellSort: High
Performance Sorting on the Cell Processor. In Proc. VLDB.,
2007.

[8] S. Heman, N. Nes, M. Zukowski, and P. Boncz. Vectorized
Data Processing on the Cell Broadband Engine. In Proc. ACM
DaMoN., 2007.

[9] F. Petrini, G. Fossum, J. Fernández, A. L. Varbanescu,
M. Kistler, and M. Perrone. Multicore Surprises: Lessons
Learned from Optimizing Sweep3D on the Cell Broadband
Engine. In Proc. IEEE/ACM IPDPS., 2007.

[10] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho. Entering the Petaflop Era:
The Architecture and Performance of Roadrunner. In Proc.
ACM/IEEE SC, 2008.

[11] M. M. Rafique, A. R. Butt, and D. S. Nikolopoulos. DMA-
based Prefetching for I/O-Intensive Workloads on the Cell
Architecture. In Proc. ACM CF’08., 2008.

[12] ClearSpeed Technology. ClearSpeed whitepaper: CSX Pro-
cessor Architecture, 2007.

[13] Jason Cross. A Dramatic Leap Forward–GeForce 8800
GT, Oct 2007. http://www.extremetech.com/article2/0,1697,
2209197,00.asp.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proc. USENIX OSDI., 2004.

[15] M. D. Kruijf and K. Sankaralingam. MapReduce for the Cell
B.E. Architecture. Technical Report TR1625, Department of
Computer Sciences, The University of Wisconsin, Madison,
2007.

[16] M. Zaharia, A. Konwinski, and A. D. Joseph. Improving
MapReduce Performance in Heterogeneous Environments. In
Proc. USENIX OSDI., 2008.

[17] C. H. Crawford, P. Henning, M. Kistler, and C. Wright.
Accelerating Computing with the Cell Broadband Engine
Processor. In Proc. ACM CF’08., 2008.

[18] D. Thain, T. Tannenbaum, and M. Livny. Distributed
Computing in Practice: The Condor Experience. Concurr.
Comput.:Pract. Exper., 17(2-4):323–356, 2005.

[19] L. A. Barroso, J. Dean, and U. Holzle. Web Search for
a Planet: The Google Cluster Architecture. IEEE Micro.,
23(2):22–28, 2003.

[20] Amazon. Amazon Elastic Compute Cloud (EC2). http://www.
amazon.com/b?ie=UTF8&node=201590011.

[21] Astrophysicist Replaces Supercomputer with Eight PlaySta-
tion 3s. http://www.wired.com/techbiz/it/news/2007/10/ps3
supercomputer.

[22] Mueller. NC State Engineer Creates First Academic Playsta-
tion 3 Computing Cluster. http://moss.csc.ncsu.edu/∼mueller/
cluster/ps3/coe.html.

[23] GraphStream, Inc. GraphStream Scalable Computing Plat-
form (SCP). 2006. http://www.graphstream.com.

[24] D. Göddeke, R. Strzodka, J. M. Yusof, P. McCormick,
S. H. M. Buijssen, M. Grajewski, and S. Turek. Exploring
weak scalability for FEM calculations on a GPU-enhanced
cluster. Parallel Computing., 33(10-11):685–699, 2007.

[25] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell
Broadband Engine Architecture and its first implementation -
A performance view. IBM J. Res. and Dev., 51(5):559–572,
2007.

[26] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns,
T. R. Maeurer, and D. Shippy. Introduction to the Cell
Multiprocessor. IBM J. Res. and Dev., 49(4/5):589–604, 2005.

[27] IBM Corp. Cell Broadband Engine Architecture (Version
1.02). 2007.

[28] Apache Software Foundation. Hadoop. http://hadoop.apache.
org/core/.

[29] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis. Evaluating MapReduce for Multi-core and
Multiprocessor Systems. In Proc. IEEE HPCA’07., 2007.

[30] Adam Pisoni. Skynet, Apr. 2008. http://skynet.rubyforge.org.

[31] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.
Merge: A Programming Model for Heterogeneous Multi-core
Systems. In Proc. ACM ASPLOS., 2008.

[32] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network
Filesystem. In Proc. Summer USENIX, 1985.

[33] P. Schwan. Lustre: Building a File System for 1,000-node
Clusters. In Proc. Ottawa Linux Symposium, 2003.

[34] Message Passing Interface Forum. MPI2: A Message Passing
Interface Standard. Int. J. of High Performance Computing
Applications, 12(1–2):299, 1998.

[35] J. Kurzak, A. Buttari, P. Luszczek, and J. Dongarra. The
PlayStation 3 for High-Performance Scientific Computing.
Comp. in Sci. and Engg., 10(3):84–87, 2008.

