
LUC: Limiting the Unintended Consequences of power scaling on parallel
transaction-oriented workloads

Hung-Ching Chang, Bo Li, Godmar Back, Ali R Butt, Kirk W Cameron
Department of Computer Science, Virginia Tech

{hcchang, bxl4074, gback, butta, cameron}@vt.edu

Abstract—Following an exhaustive set of experiments, we
identify slowdowns in I/O performance that occur when
processor power and frequency are increased. Our initial
analyses indicate slowdowns are more likely to occur and more
acute when the number of parallel I/O threads increases and
the variability between runs is high. We use a
microbenchmark-driven methodology to simplify isolation of
the root causes of I/O performance loss. We classify the
observed performance loss into two categories: file
synchronization and file write delays. We introduce LUC, a
runtime system to Limit the Unintended Consequences of
power scaling and dynamically improve I/O performance. We
demonstrate the effectiveness of the LUC system running on
two platforms for two critical parallel transaction-oriented
workloads including a mail server (varMail) and online
transaction processing (oltp).

Keywords: parallel and distributed processing, I/O
performance, power, runtime systems

I. INTRODUCTION
Systems continue to grow in complexity. Servers must

be designed to handle hundreds and thousands of user
requests for a finite number of resources. High-performance
systems residing in data centers are designed to support the
growing use of software services and mobile platforms. It is
widely acknowledged that designing future systems that
operate efficiently in increasingly complex environments is
a grand challenge for the community [1].

To address inefficiencies, the components of these
complex systems perform a growing set of tasks themselves.
For example, processors [16], memory [5], and disks [18,
22] are capable of independently managing their power
consumption. Such devices attempt to balance performance
and energy use dynamically to match the changing resource
demands of applications and services.

The combination of device independence with
unprecedented degrees of parallelism in software and
hardware at system scale leads to more complex interactions
among operating systems, middleware, parallel and
distributed applications and services, and hardware. Thus,
identifying the optimal performance configuration at
runtime is exceedingly difficult because the variance among
data points may exceed the best average performance
operating point.

Figure 1 provides an example of this phenomenon. The
figure plots the performance for 64 threads of a parallel

transaction workload at various power/frequency settings
from 1.6 GHz to 3.1 GHz. Performance is the ratio of
speedup versus the slowest frequency and the performance
gets worse with higher frequencies. This slowdown 1 is
difficult to observe in practice because the standard
deviation (shown as the gray/blue area surrounding the line
plot) often exceeds the performance difference between two
data points.

For example, Figure 1 shows the 2.0 GHz frequency has
a standard deviation of 12% while 1.7GHz on average
performs 10% better. Thus, taking a single measured sample
at the low performance range of 1.7 GHz and a single
sample at the high performance range of 2.0 GHz results in
the flawed conclusion that 2.0 GHz should be selected for
better performance. Therefore, a runtime system attempting

1 Characterization of the root causes of this slowdown is a key

contribution. For now, we motivate the need to isolate causation
and address these slowdowns later in the paper.

Figure 1 Filebench varMail speedup ratios normalized to the lowest
available CPU frequency (1.6 GHz) – higher is better. The grey/blue
area shows one standard deviation from the mean. Nehalem (HDD)
System: Dell T3500 using a W3550 3.00 GHz quad-core with 6 GB of
DDR3 RAM and a 250 GB 7200 rpm hard drive.

Figure 2 Filebench varMail speedup ratios normalized to the lowest
available CPU frequency (1.6 GHz) – higher is better. Each line shows
speedup for (number of threads) x (number of files). For 64 threads,
performance drops significantly at higher frequencies.

to adapt processor power/frequency settings [7] and
optimize based on sampled runtime performance
information could be ineffective and result in significant
performance loss.

Additionally, the same code may perform differently at
scale. Figure 2 shows the same example from our
transaction workload for varying the number of threads
from 4 to 64. The slowdown at higher frequencies does not
occur until 64 threads where variance between runs
increases. Beyond 64 up to 256 threads (not shown) the
performance is similar to the 4à32 thread cases.

While dynamic concurrency throttling (DCT) [4] has
received much attention, Figures 1 and 2 show the
assumption that increasing power/frequency improves (or at
least doesn’t hurt) performance is flawed. Without a deeper
understanding of the causes of these types of slowdowns
and isolation of the root causes, runtime systems cannot
avoid these types of slowdowns altogether. A runtime DCT
system using sampling to schedule threads runs the
additional risk of falling victim to the previously discussed
variance issue.

Unfortunately, at the same time complexity threatens
system efficiency, performance has never been more critical
to the worldwide economy. According to Amazon’s Greg
Linden and Google’s Marissa Mayer 2 : “Amazon found
every 100ms of latency cost them 1% in sales. Google
found an extra .5 seconds in search page generation time
dropped traffic by 20%.” High frequency trading also relies
on data centers where power management is considered
critical yet a few milliseconds of latency loss can result in
millions of lost profits3.

To address these Unintended Consequences and
determine the best system configuration or operating
frequencies, we need a deeper understanding of the root
cause of these types of slowdowns on representative
systems and benchmarks. In this paper, we significantly
improve our understanding of the complex interactions
between power scaling and parallel performance for the
varMail and oltp transactional workloads from the Filebench
suite [24]. Our contributions include: detailed identification
of file system characteristics that contribute to slowdowns in
parallel transactional workloads; classification of
slowdowns into file write and synchronization delays;
design and evaluation of a runtime system to address
multiple causes of slowdowns due to file write and
synchronization delays.

2 http://highscalability.com/latency-everywhere-and-it-costs-you-
sales-how-crush-it
3 http://dealbook.nytimes.com/2014/07/07/no-need-to-demonize-
high-frequency-trading/

II. RELATED WORK
To illustrate the growing threat of complexity to

efficiency, in this work our focus is on isolating the root
causes of performance issues in parallel transactional
workloads on a file system with power scalable
components. Anecdotal evidence in the extant research
literature suggests that latency loss occurs with increasing
incidence [6, 9, 11, 12, 14, 19, 20, 23] and magnitude [8, 12,
17] when using common power management techniques
such as dynamic voltage and frequency scaling (DVFS).
Recent work [3, 17] shows that the use of power
management is accompanied by acute increases in latency
for certain file system benchmarks.

Our previous work was the first to show that these types of
performance slowdowns could be traced to synchronization
delays due to global journal commit operations in the Linux
ext4 (or ext3) file system [3]. However, this work was
limited in several ways. First, the focus on
microbenchmarks led to an incomplete understanding of
slowdowns. While the microbenchmarks correctly
implicated journal commit operations, there was an implicit
assumption that there were no other causes of slowdown on
the performance critical path. However, when we attempted
to extend our previous approach to more representative
transactional workloads such as varMail and oltp, some
slowdowns were unaffected. In this work, we explain why
journal commits introduce file write delays (FWD) and file
synchronization delays (FSD) and cause significant
slowdowns in two different ways on parallel transactional
workloads on power scalable systems. These new findings
lead to the development of a runtime system that uses two
different optimization approaches to address both write and
synchronization delay contributions to slowdowns.

Work on dynamic concurrency throttling [4], dynamic
power scaling [7], and their combination [10] are
tangentially related to this work. These approaches assume
that increased processor power and frequencies lead to
better performance. Our proposed solutions can remove file
write delays and reduce file synchronization delays that lead
to slowdowns making power scalable systems better adhere
to this assumption. Thus, our work and the proposed LUC
system increases the likelihood that previous DCT and
DVFS approaches will be effective.

III. FILE SYNCHRONIZATION AND WRITE DELAYS
Figure 3 provides a brief explanation and summary of

our previous findings. We refer the reader to the full paper
for detail [3]. Herein, we give some background to facilitate
a discussion of why our previous approach was not
sufficient to address slowdowns in more representative
transactional workloads of varMail and oltp. Though we
provide details in our experimental results section, for all of
our experiments, results, and conclusions, we performed
repeated testing to achieve 95% statistical confidence on

several different systems running the ext3 and ext4 file
systems default settings common to nearly all Linux
distributions.

A. File Synchronization Delays and Slowdowns
In our previous work, we showed that when power

scaling is enabled, the change in arrival rates of fsync
requests for journal commits at the system level at higher
frequencies can cause file synchronization delays. Figure 3
shows a detailed example where two separate, independent
threads each trigger separate journal commit transactions in
the Linux ext3 and ext4 file systems.

We observed that at slower processor frequencies, fsync
requests would queue on the same journal commit
transaction and be serviced in parallel since there were no
true dependences among the files other than the system
requirement that they update the metadata. We also showed
that at higher processor frequencies, fsync requests were
more likely to queue separately on the journal commit
transaction and be serviced sequentially, because the
open(file2) operation had occurred by the journal commit
start triggered by the fsync(file1) call, then fsync(file2)
would not have triggered a separate commit since file2’s
dirty metadata would have been considered part of
transaction 1, as depicted in Figure 3. Therefore, an
independent transaction (transaction 2 in Figure 3) is unable
to start its journal commit due to the journal commit of the
previous transaction. We measured performance losses up to
47% in the IOzone and Metarates microbenchmarks at
higher processor frequencies which also wasted significant
amounts of energy.

To improve performance and energy efficiency, we
proposed two solutions. First, we removed the file system
journaling for metadata. While this can hurt the reliability of
the system and shouldn’t be used generally, it provided a

performance target for solutions that maintain reliability.
Second, we proposed statically increasing the time the
system allowed fsync requests to queue on the journal
commit transaction. We then studied the impact of various
static settings for the queuing of fsync requests and found
settings that improved the performance of IOzone and
Metarates when scaling processor frequencies and power.

B. The Limits of File Synchronization Optimizations
In our previous work, we focused on the IOzone and

Metarates microbenchmarks. IOzone [13] is a file system
microbenchmark that generates and measures a variety of
file operations including read/write latencies. Metarates is a
file system microbenchmark that measures the performance
of concurrent aggregate metadata transaction rates in
extremely large file systems [15].

These benchmarks were carefully selected for their
relative code simplicity and the fact that they exhibited
significant power scaling slowdowns similar to those we
observed in full applications. This made the task of isolating
the root cause of slowdowns practicable despite the
measurement variability previously discussed and the
number of parallel threads involved (up to 256). We traced
the slowdowns to the fsync operations called directly in
Metarates and indirectly (via a write operation) in IOzone.

As follow on work, and in response to reviewer
comments, in this work, we attempted to determine the
effectiveness of our proposed static optimization methods to
address the synchronization delays identified in Metarates
and IOzone on full benchmarks such as varMail and oltp.
These highly parallel benchmarks represent common tasks
in the datacenter workloads of service providers from
Google to Amazon where slowdowns of the type we’ve
observed encourage users to disable power management
entirely despite the potential energy savings.

Figure 3 Synchronization delays occur when two threads in different transactions write to their respective files and at some later time flush the data and
metadata to nonvolatile storage. In the Linux ext3 and ext4 file systems, the fsync operation causes a journal commit (JC) transaction that ultimately
updates the meta-data on the nonvolatile storage. In this example, an fsync operation in Thread 1 triggers JC transaction 1 in the file system waking up
the jbd2 system process. After JC transaction 1 starts, Thread 2 opens file2 and performs an fsync operation triggering JC transaction 2 in the file system
that blocks and waits on transaction 1 to commit. This effectively serializes the atomic journal commit transactions in the file system.

Our earlier static techniques [3] were measurably
effective on varMail slowdowns but had little to no effect on
slowdowns in oltp. These mixed results and the complexity
of tracing parallel thread performance in oltp caused us to
revisit our analyses of the Metarates and IOzone
microbenchmarks. Generally, we found that while our
previous analyses (summarized in Figure 3) were correct,
we missed a subtlety that results in a different optimization
approach and requires a deeper discussion of the Linux ext3
and ext4 file systems.

C. Write Delays and Slowdowns
For both historical and reliability reasons, Linux ext3

and ext4 file systems default to journal ordering mode4
which refers to the protocol for pushing metadata from
memory to nonvolatile storage. During a journal commit
transaction, dirty metadata is written to nonvolatile storage
via the disk journal. Figure 3 illustrates how two fsync
operations from two independent threads cause performance
synchronization delays. In contrast, Figure 4 demonstrates
how an fsync and write operation from each of two
independent threads cause file write delays (FWD).

To illustrate file write delays, consider the example in
Figure 4. Thread 1 opens file1, writes to file1, and then calls
an fsync operation. This results in a change to the file1’s
metadata and the jbd2 processes is awakened to lock the
metadata. Further modifications to the metadata must block
until the journal commit transaction finishes atomically
writing the dirty metadata to nonvolatile storage.

4 We have experimented with write-back mode for both data and

metadata. Slowdowns were not eliminated. We will explore this
further in future work.

When the open operation is called by Thread 1, a single,
running transaction is launched and records a change to the
metadata for file1. Next, the running transaction records a
write to file1 and an open to file2 in the metadata. When the
Thread 1 fsync operation occurs, the running transaction
becomes a committing transaction and the journal commit
thread starts writing the changed metadata to nonvolatile
storage.

In this scenario, Thread 2 attempts to write to file2 after
the committing transaction has started. All file writes now
block (including the write by Thread 2 to file2) until the full
metadata write to nonvolatile storage is complete. More
precisely, Thread 2’s write to file2 is handled by the kernel
which places the request in a wait queue until the metadata
write back to nonvolatile storage is complete. The kernel
then wakes up Thread 2 so the write to file2 is allowed to
proceed. This can result in a significant performance delay
for Thread 2’s write to file2. The file write delay is likely to
be significant and will depend on the amount of metadata
that must be written back to the nonvolatile storage.

In our previous work, we identified journal commit
transactions triggered by fsync operations as the root cause
of slowdowns. Our static approach to disabling or delaying
the journal commit transaction, based on this analysis,
improved performance in both IOzone and Metarates.

After revisiting the analyses of IOzone and Metarates
herein we determined that Metarates performance was
driven by file synchronization delays while IOzone was
driven by file write delays. For Metarates, the static change
to the timing of the journal commit transaction ensured that
the fsync operations in Thread 1 and Thread 2 of Figure 3
queued up for a single journal commit transaction.

Figure 4. Much like synchronization delays, write delays occur when two threads write to their respective files and at some later time flush the data and
metadata to nonvolatile storage. In the Linux ext3 and ext4 file systems, the fsync operation of Thread 1 causes a journal commit (JC) transaction that
ultimately updates the metadata on the nonvolatile storage. In this example, an fsync operation in Thread 1 triggers JC transaction 1 in the file system
waking up the jbd2 system process. After JC transaction 1 starts, thread 2 attempts to write to file 2. This write operation requires write-access to update
file 2's metadata, which is however locked by the ongoing JC transaction 1. As a result, thread 2 is delayed until the transaction has written file2's
metadata to disk and released the lock. As before, power scaling slowdowns affect the arrival time of file system requests and impact the likelihood of
such delays. The oltp workload suffers from write delays during power scaling experiments, not synchronization delays. Thus, optimization techniques
(such as those in previous work) that only address synchronization delays did not improve the performance of oltp.

There was a subtly different effect in the IOzone
microbenchmark. IOzone consists of a number of parallel
threads following the scenario depicted in Threads 1 and 2
of Figure 3 – namely, file open followed by one or more
writes followed by an fsync operation (which triggers the
journal commit transaction). With a statically-determined,
reasonably long delay of the journal commit transaction, all
of the writes complete before the start of the first fsync
operation and all of the fsync operations are serviced by a
single journal commit transaction.

However, in IOzone there are few interleaving
operations, all the threads perform similar amounts of work
and operate independently of one another. Thus, upon
revisiting the code and digging deeper on the kernel file
system, we determined the slowdowns in IOzone are caused
by the unintended interaction of file writes with ongoing
journal commits, rather than by interactions between
concurrent journal commit requests..

D. Ineffective Copyout Optimization
Write delays occur due to the journal commit that writes

dirty meta-data to nonvolatile storage. In the worst case, any
write or fsync can block (i.e. be kept from updating the
meta-data) until all the dirty meta-data is finished writing
back to nonvolatile storage. It is not inherently necessary for
a committing transaction to prevent further updates to a
file's metadata since only a snapshot of the metadata is
written to disk. In fact, the kernel already provides a “copy-
out'' mechanism by which a snapshot of a file's metadata is
created in a separate page. The journal commit writes this
snapshot to disk without preventing further updates to the
metadata. Unfortunately, in the current implementation,
copyout is done only when write attempts are detected
before the start of the journal commit's I/O operations,
because the file system designers mistakenly assumed that
concurrent write attempts during the journal commit would
be an infrequent case.

For example, in Figure 4, after Thread 1 issues the fsync
command, the kernel begins the journal commit transaction.
To improve performance, the kernel will issue the copyout
command at the start of the journal commit transaction to
copy the current state of dirty meta-data to kernel memory.
However, this only effectively copies the metadata that is
about to be modified by write operations. Prior to the time
when the I/O operation metadata(file2) locks in the jbd2
process (see Figure 4). As a result, the copyout mechanism
does not make a copy of the meta-data for file2 arriving
after the metadata(file2) lock, because the write(file2) is
issued after the copyout command is issued and the
metadata(file2) has submitted for I/O. Any operations (such
as the write to file2 by Thread 2) will block until the
nonvolatile write to storage completes. This causes
unnecessary delays in write operations. We address this
shortcoming in our runtime system discussed in the next
section.

IV. THE LUC RUNTIME SYSTEM
We propose the LUC (pronounced “luck”) runtime

system to improve performance by addressing the file
synchronization delays and file write delays that cause
slowdowns. LUC is designed to Limit the Unintended
Consequences that result from the complex interactions of
power scaling and parallelism. The proposed system
contains two components: a PID batching component to
limit synchronization delays and a heuristic copyout
component to reduce write delays.

A. A PID Controller for Journal Commit Batching
The Linux kernel developers anticipated that frequent

journal commits might be expensive and implemented a
naive mechanism that would delay journal commits under
certain circumstances. Yet, as discussed in Section III, this
mechanism turned out to be largely ineffective, resulting in
the slowdowns due to synchronization delay we observed.
Our first attempt [3] to reduce synchronization delays
required trial and error to determine how long to delay
journal commit transactions for each application. This
manual process was cumbersome and required constant
retuning.

To address these deficiencies, we propose a dynamic
controller that can automatically adapt to changes in system
usage at runtime. We chose to implement this component as
a proportional-integral-derivative (PID) controller [2]
because we can use direct system measurements as inputs
and we have had success with these types of controllers in
runtime systems previously.

Ideally, a journal commit batch control system would
maximize the frequency of journal commits to approach the
number of flush operations while minimizing the number of
synchronization events that cause delays.

Figure 5 shows the three major components of our
controller. The set point is the target number of
synchronization events per journal commit (r value). The set
point can be updated dynamically at runtime. We instrument
the kernel to observe the number of synchronization events
per journal commit (d). The difference between the set point
and the current observation is the error (e=r-d).

To affect the length of time the journal commit allows
synchronization events to queue, we designed a control
mechanism that delays the journal commit. Increasing the

Figure 5 A PID controller for journal commit batching transactions in

the ext3 or ext 4 file system.

delay time can increase the number of synchronization
events per journal commit while decreasing delay may have
the opposite effect.

The correlation between the journal commit delay and
the number of batched synchronization events exhibits a
proportional relationship that maps well to a proportional
function for an input signal u(t):

𝑑 𝑡 + 1 = 𝑑 𝑡 + 𝑐 ∙ 𝑢 𝑡 + 1 . (1)

Here, t is the time step and d is the measured value of
synchronization events per journal commit. d(t) is the
number of synchronization events we can collect in a single
journal commit at time t. d(t+1) is calculated by the
previous value d(t) plus the change specified by our PID
controller. We assume that such change follows a
proportional relationship (c) to the output of the PID
controller u(t) at time t. The value of d(t) is in practice
constrained by the total number of synchronization events
for a certain amount of time we set as threshold (1 ≤
𝑑 𝑡 ≤ 𝑑!"#).

A PID controller is generically described by the
following equation in the continuous time domain:

𝑢 𝑡 = 𝐾!𝑒 𝑡 + 𝐾! 𝑒 𝑡 𝑑𝑡 + 𝐾!
!" !
!"

. (2)

u(t) is the output of the controller at time t based on the
measured error within the system (e=r-d). From Equation
(2), the output of the PID controller is the sum of three
terms:

K!e(t): The first term is proportional to the error. This
causes the system to respond to the error value and
direction.

𝐾!𝑒 𝑡 𝑑𝑡: The second term is proportional to the integral
of the error. This aggregates error over an interval to
eliminate the steady-state error.

𝐾!𝑒(𝑡)𝑑𝑡: The third term is proportional to the rate of
change in the error, reducing overshoot by directionally
damping the response.

The terms 𝐾! , 𝐾! ,and 𝐾! are control gains that are
analytically determined through stability analysis. Poor
selection of these parameters can cause system instability
manifested as output signal oscillation—which in our case
would cause thrashing between overshooting and
undershooting the journal commit delay and potentially
resulting in performance loss. Careful selection of control
gains results in a controller with desirable convergent,
performance properties. The first step in determining these
parameters is to identify the controller transfer function.

Since we monitor the number of synchronization events
per journal commit at runtime, our system is inherently
discrete, thus we use the discrete form of transfer functions.

The z-transform of the discretized, closed-loop, PID
controller transfer function is
𝑑(𝑧)
𝑟(𝑧)

=
𝑐 𝐾! + 𝐾! + 𝐾! 𝑧! − 𝑐 𝐾! + 2𝐾! 𝑧 + 𝑐𝐾!

𝑐𝐾! + 𝑐𝐾! + 𝑐𝐾! + 1 𝑧! − 𝑐𝐾! + 2𝑐𝐾! + 2 𝑧 + 𝑐𝐾! + 1
 .

(3)

This closed-loop transfer function is derived from the z-
transform of the PID controller transfer function and our
controlled system transfer function (Equations 1 and 2). In
other words, the controller parameters are determined by
considering the interaction of the controller function and the
controlled system function. Relating the transfer functions
of the feedback control system and the controller, we can
select and analyze control gains for stability.

We experimentally validated stability of our PID
controller by looking at poles of the closed-loop transfer
function (Equation 3). The poles are defined as the roots of
its denominator. Theoretically, the system is stable if all the
poles locate strictly within the unit circle. We use the
following stable parameter set in the LUC system:
𝐾! = 0.8,𝐾! = 0.25,𝐾! = 0.25.

B. An Improved Copyout Controller
Our analysis indicates that the default copyout

mechanism in the kernel is useful just not applied during the
write delay slowdowns observed in oltp. We propose a
heuristic feedback controller to dynamically enable the
kernel copyout mechanism when it senses unusual write
delay activity at runtime. This feedback controller forces
copyout when the write delays affect performance and
disables copyout when write delays are infrequent.

In the kernel default ordered mode journaling, all
metadata modifications are treated as atomic operations and
attached to the running transaction. After some time (e.g., 5
seconds by default) or upon user-driven synchronization
events, metadata changes are written to nonvolatile storage.

Figure 6 shows the proposed heuristic copyout controller
for the LUC runtime system. The controller is implemented
in the kernel JBD2 process that handles journal commit
transactions. The controller adapts to three inputs: write

Figure 6 The heuristic copyout controller in the LUC system.

delays per journal commit (threshold); observed write
delays per journal commit; and the number of runs without a
write delay (Clean Runs). Threshold is user-defined and can
be changed dynamically at runtime.

The heuristic controller attempts to eliminate the
performance penalty due to excessive write delays, when the
percentage of write delays to total writes exceeds a given
threshold. This is accomplished by enabling the copyout
mechanism before the metadata I/O begins. Enabling
copyout in this manner removes the lock to the metadata in
the file system and eliminates write delays during the
journal commit.

The heuristic copyout controller uses the difference
between the threshold and the number of observed write
delays to determine when to enable and disable the copyout
mechanism. When the number of write delays exceeds the
write delay threshold, the controller signals the kernel jbd2
thread to enable copyout. For example, the controller works
well for the oltp workload with the configuration of
enabling copyout as soon as a threshold of 5% of total
writes were delayed during the previous journal commit
transaction.

A lower percentage of total write delays disables the

copyout mechanism. For example, a Clean Run value of 4
journal commits where no write delays occurred for 4
consecutive journal commits worked well as a default value
after extensive experiments, and takes up to 20 seconds to
disable the copyout when no jbd2 thread is triggered by a
user.

V. EVALUATIONS

A. Experimental Setup
We select systems based on diversity, local availability,

and the presence of power-scalable processors. The first
system we refer to as SandyBridge(HDD). This is a Dell
T1100 using a Xeon E3-1270 3.3 GHz (SandyBridge) quad-
core with 8 GB of DDR3 RAM and a 250 GB 7200 rpm
hard drive. The second system we refer to as
Nehalem(HDD). This is a Dell T3500 using a W3550 3.00
GHz (Nehalem) quad-core with 6 GB of DDR3 RAM and a
250 GB 7200 rpm hard drive. We disable the turbo boost
and hyper-threading features so we can manually isolate
performance at each static frequency and isolate slowdowns.

Both systems run CentOS Linux distribution (6.4) with
the kernel version (3.4.2). We configure the systems with
the ext4 file system and ordered journaling mode. We
disable the periodic background data writeback and journal

Figure 7. Select results for varMail on Nehalem (HDD). Findings are comparable to other systems though not included due to space limitations.

commit to reduce system noise. For the data shown herein,
the number of total repeat experiments (>50 in all cases) for
a given data point was selected to achieve 95% statistical
confidence [21]. Due to space limitations, we focus on
results that reflect the key contributions of this work. 5

B. VarMail Results
Filebench [24] varMail emulates a multi-threaded mail

server workload common to file systems. Figure 7 compares
varMail results for the default ext4 configuration to our PID
journal commit batch controller. VarMail is configured
with 64 threads and 256 files with settings of 1K file size,
1K IO size, and 1K append size. The data points shown here
are averaged from >50 runs for a combination of
configurations (i.e. ext4, PID batching) and frequencies
(1.6GHz, up to 3.1GHz).

Figure 7 illustrates typical findings for the varMail
benchmark where slowdowns occur at higher processor
frequencies. Figure 7a compares the raw performance
(Ops/s) at each available processor frequency for the default
ext4 configuration and the proposed PID batching described
in the previous section. PID batching consistently
outperforms the default method.

Figures 7b and 7c show the performance of the ext4 and
PID batching configurations for the available processor
frequencies normalized to the slowest frequency. These two
graphs show that for the varMail workload PID batching

5 The exhaustive testing necessary for 95% confidence takes

weeks. We have tested on ext3 and ext4 and various versions and
distributions of Linux. In every case, slowdowns were observed
and the details of the file systems herein have been confirmed.

removes nearly all slowdowns. Figure 7d shows the amount
of speedup achieved by PID batching (from 3% up to 23%)
at each frequency.

Figure 7e shows these speedup numbers as the change in
measured synchronization delays for ext4 and PID batching.
These values are the average time that a user-driven
synchronization event delays before it is serviced by the
journal commit (in varMail this is the time spent in the
fsync system call). Notably, PID batching on average (in
every case for this scenario) spends less time in
synchronization delays than the ext4 default case. Figure 7f
shows that PID batching results in less journal commit
transactions than the ext4 case as well. In this case, the trend
is more meaningful than the raw numbers since the journal
commit transaction time is variable (i.e. synchronization
delay time tracks more closely with speedup).

The larger the difference in synchronization delays
between EXT4 and PID batching configurations, the better
the speedup. For example, the PID batching configuration
shows significant speedup of 1.23x over EXT4
configuration at 2.8 GHz for an average 11.6ms reduction in
synchronization delay, and shows only 1.03x speedup over
EXT4 configuration at 1.8 GHz for an average 5.3ms
reduction in synchronization delay.

Figures 8 and 9 show the performance differences
between ext4 and PID batching. Each pair of bars denotes
the performance (Ops/s) for 4 to 64 threads on the

Figure 10 Filebench oltp speedup (line) and performance (bars) for
EXT4(default copyout enabled) and heuristic copyout running at all
available frequencies on SandyBridge(HDD). The heuristic copyout
improves performance for all processor frequencies.

Figure 11 Filebench oltp performance (bars) and speedup normalized
to EXT4 (line) on the SandyBridge(HDD) running at 3.3 GHz for
various configurations. The combined heuristic copyout + PID
batching controller provides comparable performance.

Figure 8 Filebench varMail synchronization delays (lines) and
performance (bars) for increasing number of threads at 3.1 GHz.

Figure 9 Filebench varMail synchronization delays (lines) and
performance (bars) for increasing number of threads at 1.6 GHz.

Nehalem(HDD) system running at 3.1 GHz. The
performance in both cases increases with the number of
threads while the PID batching scenario consistently out
performs ext4. The synchronization delays increase steadily
with the number of threads since the likelihood for lock
collisions across threads increases. The sync delay time for
PID batching is consistently lower than that of the ext4
default. Currently, we are unable to fully explain the dips in
sync delay time at 8 threads (at both 3.1 and 1.6 GHz) and at
64 threads (at 1.6GHz). However, to simplify our
experiments we used a PID set point equal to half of the
number of threads. Thus, this is likely an artifact of this
setting and with further exhaustive testing (which takes
weeks) we could likely find set points that further optimize
the sync delay time for different combinations of threads.

C. Oltp Results
Filebench oltp emulates a TPC-C workload testing the

performance of small random read and write transactions on
a file system using the I/O model from Oracle 9i. The oltp
benchmark is run with 48 threads and 48 files. The data
points are averages over 140 runs.

Figure 10 shows the performance (Ops/s) of the ext4 and
heuristic copyout controller when varying the processor
frequency from 1.6 to 3.3 GHz on the SandyBridge(HDD)
system. In the default ext4 case, slowdowns with processor
frequency increases are minimal. The same is true for the
heuristic copyout results. However, the heuristic copyout
controller consistently outperforms the default ext4 case.
The classification of write delays as separate from
synchronization delays led to the copyout optimizations that
contributed these significant increases in raw performance.
The line curve in Figure 10 shows the performance
improvements vary from 11% up to 25% at 3.3 GHz.

Figure 11 shows oltp performance (Ops/s) in bar graph
form for different optimization strategies on the
SandyBridge(HDD) system. The strategies include: ext4
(default), batching (proposed PID controller), copyout
(proposed heuristic copyout), copyout+batching (the LUC
system with a combined PID and heuristic copyout
controlled), delayJC (our previous static batching technique
optimized for oltp). The line graph shows the speedup
relative to the ext4 case for each configuration.

Initially, we observe that for the oltp workload, ext4,
batching, and delayJC have statistically the same
performance. The similarity between ext4 and delayJC
confirms our earlier finding that batching has little to no
effect on oltp. For batching and delayJC, it is no surprise
that their performance is comparable on oltp given the
workloads insensitivity to synchronization delays.

Furthermore, we notice that copyout performance
confirms our findings in Figure 10 that 25% performance
improvement is achieved. Upon deeper inspection, our
heuristic copyout controller (with tracing enabled) revealed

32% of the total write system calls in oltp suffered write
delays with an average delay of 22.2 ms (not shown in
Figure 11). In contrast, when we ran the copyout controller
with varMail, we measured 0.2% of the total write system
calls in varMail suffered write delays with an average delay
of 0.9 ms.

In the final LUC runtime system, we combined the
copyout and PID batching controllers to provide a single
solution and check whether there were any unexpected
deleterious effects when they are combined. We noticed
none as shown in Figure 11 since the copyout+batching
scenario results in 25% speedup (the same as copyout in
isolation) compared to the ext4 default case.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we improved our understanding of

performance slowdowns that occur at higher frequencies in
power scalable systems. Our novel classification of
performance loss into two causal categories (file
synchronization delays and file write delays) enabled us to
propose the LUC runtime system that leverages a novel PID
controller for batching journal commits and an effective
heuristic copyout controller for enabling copyout when it
will improve performance. Our techniques result in up to
25% performance improvements on the benchmark and
systems studied. Since we are operating in lower power
modes longer, there are power and energy implications we
plan to study further in future work.

There are some limitations to our work. The heuristic
copyout controller currently requires us to statically set
values for threshold and the number of clean runs. While we
found some experimentally acceptable values, we would
like to automate this and have the controller adapt these
inputs dynamically.

For the PID batch controller, the effectiveness is closely
related to the selected set point and while the controller
adapts dynamically, the set point is currently static. This
could limit the controller's effectiveness in environments
where the workloads vary significantly. We hope to address
this in future work.

Lastly, while both proposed controllers substantially
improved performance and reduced energy waste over the
ext4 default case, neither eliminated slowdowns entirely.
Even after applying both controllers in the LUC runtime
system, we observed remaining slowdowns as high as 6%
for varMail and 9% for oltp in some scenarios. We leave
identifying these additional types of inefficiencies to future
work.

VII. ACKNOWLEDGEMENT
This material is based upon work supported by the

National Science Foundation under Grant No. 1422788,
0910784 and 0905187.

VIII. REFERENCES
[1] NITRD LSN Workshop Report on Complex Engineered

Networks, 2012. Available:
http://www.nitrd.gov/Publications/PublicationDetail.aspx
?pubid=52

[2] K. J. Åström and B. Wittenmark, Adaptive control:
Courier Dover Publications, 2008.

[3] H.-C. Chang, B. Li, M. Grove, and K. W. Cameron,
"How processor speedups can slow down I/O
performance," in Proc. of the IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems
(MASCOTS'14), Paris, France, 2014.

[4] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and
D. S. Nikolopoulos, "Online strategies for high-
performance power-aware thread execution on emerging
multiprocessors," in Proc. of the 20th International
Parallel and Distributed Processing Symposium
(IPDPS'06), Rhodes Island, Greece, 2006.

[5] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and
O. Mutlu, "Memory power management via dynamic
voltage/frequency scaling," in Proc. of the 8th ACM
international conference on Autonomic computing
(ICAC'11), Karlsruhe, Germany, 2011, pp. 31-40.

[6] M. Etinski, J. Corbalan, J. Labarta, and M. Valero,
"Understanding the future of energy-performance trade-
off via DVFS in HPC environments," Journal of Parallel
and Distributed Computing, vol. 72, pp. 579-590, 2012.

[7] R. Ge, X. Feng, and K. W. Cameron, "Performance-
constrained Distributed DVS Scheduling for Scientific
Applications on Power-aware Clusters," in Proc. of the
ACM/IEEE conference on Supercomputing (SC'05),
Seatle, WA, 2005, p. 11.

[8] R. Ge, "Evaluating Parallel I/O Energy Efficiency," in
Proc. of the IEEE/ACM Int'l Conference on Green
Computing and Communications (GreenCom'10) & Int'l
Conference on Cyber, Physical and Social Computing
(CPSCom'10), 2010, pp. 213-220.

[9] N. B. Lakshminarayana and H. Kim, "Understanding
performance, power and energy behavior in asymmetric
multiprocessors," in Proc. of the IEEE International
Conference on Computer Design (ICCD'08), 2008, pp.
471-477.

[10] D. Li, B. R. De Supinski, M. Schulz, K. Cameron, and D.
S. Nikolopoulos, "Hybrid MPI/OpenMP power-aware
computing," in Proc. of the IEEE International
Symposium on Parallel & Distributed Processing
(IPDPS'10), 2010, pp. 1-12.

[11] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal,
"Adaptive, transparent frequency and voltage scaling of
communication phases in MPI programs," in Proc. of the
ACM/IEEE conference on Supercomputing (SC'12),
Tampa, Florida, 2006, p. 14.

[12] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony,
and R. Rajkumar, "Critical power slope: understanding
the runtime effects of frequency scaling," in Proc. of
ACM/IEEE conference on Supercomputing (SC'02), New
York, New York, USA, 2002, pp. 35-44.

[13] W. D. Norcott and D. Capps. Iozone filesystem
benchmark, 2006. Available: http://www. iozone. org

[14] F. Pan, V. W. Freeh, and D. M. Smith, "Exploring the
energy-time tradeoff in high-performance computing," in
Proc. of the 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS'05), 2005.

[15] C. Philip, L. Samuel, R. Robert, V. Murali, K. Julian, and
L. Thomas, "Small-file access in parallel file systems," in
Proc. of the IEEE International Symposium on Parallel
& Distributed Processing (IPDPS'09), Rome, 2009, pp.
1-11.

[16] P. Ranganathan, P. Leech, D. Irwin, and J. Chase,
"Ensemble-level power management for dense blade
servers," in Proc. of the 33rd annual international
symposium on Computer Architecture (ISCA'06), 2006,
pp. 66-77.

[17] T. Saito, K. Sato, H. Sato, and S. Matsuoka, "Energy-
aware I/O optimization for checkpoint and restart on a
NAND flash memory system," in Proc. of the 3rd
Workshop on Fault-tolerance for HPC at extreme scale
(FTXS'13), New York, New York, USA, 2013, pp. 41-48.

[18] P. Sehgal, V. Tarasov, and E. Zadok, "Evaluating
Performance and Energy in File System Server
Workloads," in Proc. of the USENIX Conference on File
and Storage Technologies (FAST'10), 2010, pp. 253-266.

[19] S. Srinivasan, L. Zhao, R. Illikkal, and R. Iyer, "Efficient
interaction between OS and architecture in heterogeneous
platforms," ACM SIGOPS Operating Systems Review,
vol. 45, pp. 62-72, 2011.

[20] E. L. Sueur and G. Heiser, "Dynamic voltage and
frequency scaling: the laws of diminishing returns," in
Proc. of the international conference on Power aware
computing and systems (HotPower'10), Vancouver, BC,
Canada, 2010, pp. 1-8.

[21] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, "A
nine year study of file system and storage
benchmarking," ACM Transactions on Storage (TOS),
vol. 4, p. 5, 2008.

[22] A. Verma, R. Koller, L. Useche, and R. Rangaswami,
"SRCMap: Energy Proportional Storage Using Dynamic
Consolidation," in Proc. of the USENIX Conference on
File and Storage Technologies (FAST'10), 2010, pp. 267-
280.

[23] L. Wang, G. v. Laszewski, J. Dayal, and F. Wang,
"Towards Energy Aware Scheduling for Precedence
Constrained Parallel Tasks in a Cluster with DVFS," in
Proc. of the IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing (CCGrid'10),
Melbourne, VIC, 2010, pp. 368-377.

[24] A. Wilson, "The new and improved FileBench," in Proc.
of the USENIX Conference on File and Storage
Technologies (FAST'08), 2008.

