
LUC: Limiting the Unintended Consequences of power scaling on parallel 
transaction-oriented workloads 

Hung-Ching Chang, Bo Li, Godmar Back, Ali R Butt, Kirk W Cameron 
Department of Computer Science, Virginia Tech 

{hcchang, bxl4074, gback, butta, cameron}@vt.edu 
 

Abstract—Following an exhaustive set of experiments, we 
identify slowdowns in I/O performance that occur when 
processor power and frequency are increased. Our initial 
analyses indicate slowdowns are more likely to occur and more 
acute when the number of parallel I/O threads increases and 
the variability between runs is high. We use a 
microbenchmark-driven methodology to simplify isolation of 
the root causes of I/O performance loss. We classify the 
observed performance loss into two categories: file 
synchronization and file write delays. We introduce LUC, a 
runtime system to Limit the Unintended Consequences of 
power scaling and dynamically improve I/O performance. We 
demonstrate the effectiveness of the LUC system running on 
two platforms for two critical parallel transaction-oriented 
workloads including a mail server (varMail) and online 
transaction processing (oltp). 

Keywords: parallel and distributed processing, I/O 
performance, power, runtime systems 

I.  INTRODUCTION 
Systems continue to grow in complexity. Servers must 

be designed to handle hundreds and thousands of user 
requests for a finite number of resources. High-performance 
systems residing in data centers are designed to support the 
growing use of software services and mobile platforms. It is 
widely acknowledged that designing future systems that 
operate efficiently in increasingly complex environments is 
a grand challenge for the community [1].  

To address inefficiencies, the components of these 
complex systems perform a growing set of tasks themselves. 
For example, processors [16], memory [5], and disks [18, 
22]  are capable of independently managing their power 
consumption. Such devices attempt to balance performance 
and energy use dynamically to match the changing resource 
demands of applications and services. 

The combination of device independence with 
unprecedented degrees of parallelism in software and 
hardware at system scale leads to more complex interactions 
among operating systems, middleware, parallel and 
distributed applications and services, and hardware. Thus, 
identifying the optimal performance configuration at 
runtime is exceedingly difficult because the variance among 
data points may exceed the best average performance 
operating point. 

Figure 1 provides an example of this phenomenon. The 
figure plots the performance for 64 threads of a parallel 

transaction workload at various power/frequency settings 
from 1.6 GHz to 3.1 GHz. Performance is the ratio of 
speedup versus the slowest frequency and the performance 
gets worse with higher frequencies. This slowdown 1  is 
difficult to observe in practice because the standard 
deviation (shown as the gray/blue area surrounding the line 
plot) often exceeds the performance difference between two 
data points. 

For example, Figure 1 shows the 2.0 GHz frequency has 
a standard deviation of 12% while 1.7GHz on average 
performs 10% better. Thus, taking a single measured sample 
at the low performance range of 1.7 GHz and a single 
sample at the high performance range of 2.0 GHz results in 
the flawed conclusion that 2.0 GHz should be selected for 
better performance. Therefore, a runtime system attempting 

                                                             
1 Characterization of the root causes of this slowdown is a key 

contribution. For now, we motivate the need to isolate causation 
and address these slowdowns later in the paper. 

 
Figure 1 Filebench varMail speedup ratios normalized to the lowest 
available CPU frequency (1.6 GHz) – higher is better. The grey/blue 
area shows one standard deviation from the mean. Nehalem (HDD) 
System:  Dell T3500 using a W3550 3.00 GHz quad-core with 6 GB of 
DDR3 RAM and a 250 GB 7200 rpm hard drive. 

 
Figure 2 Filebench varMail speedup ratios normalized to the lowest 
available CPU frequency (1.6 GHz) – higher is better. Each line shows  
speedup for (number of threads) x (number of files). For 64 threads, 
performance drops significantly at higher frequencies. 
 



to adapt processor power/frequency settings [7] and 
optimize based on sampled runtime performance 
information could be ineffective and result in significant 
performance loss. 

Additionally, the same code may perform differently at 
scale. Figure 2 shows the same example from our 
transaction workload for varying the number of threads 
from 4 to 64. The slowdown at higher frequencies does not 
occur until 64 threads where variance between runs 
increases. Beyond 64 up to 256 threads (not shown) the 
performance is similar to the 4à32 thread cases. 

While dynamic concurrency throttling (DCT) [4] has 
received much attention, Figures 1 and 2 show the 
assumption that increasing power/frequency improves (or at 
least doesn’t hurt) performance is flawed. Without a deeper 
understanding of the causes of these types of slowdowns 
and isolation of the root causes, runtime systems cannot 
avoid these types of slowdowns altogether. A runtime DCT 
system using sampling to schedule threads runs the 
additional risk of falling victim to the previously discussed 
variance issue. 

Unfortunately, at the same time complexity threatens 
system efficiency, performance has never been more critical 
to the worldwide economy. According to Amazon’s Greg 
Linden and Google’s Marissa Mayer 2 : “Amazon found 
every 100ms of latency cost them 1% in sales. Google 
found an extra .5 seconds in search page generation time 
dropped traffic by 20%.” High frequency trading also relies 
on data centers where power management is considered 
critical yet a few milliseconds of latency loss can result in 
millions of lost profits3. 

To address these Unintended Consequences and 
determine the best system configuration or operating 
frequencies, we need a deeper understanding of the root 
cause of these types of slowdowns on representative 
systems and benchmarks. In this paper, we significantly 
improve our understanding of the complex interactions 
between power scaling and parallel performance for the 
varMail and oltp transactional workloads from the Filebench 
suite [24]. Our contributions include: detailed identification 
of file system characteristics that contribute to slowdowns in 
parallel transactional workloads; classification of 
slowdowns into file write and synchronization delays; 
design and evaluation of a runtime system to address 
multiple causes of slowdowns due to file write and 
synchronization delays. 

                                                             
2 http://highscalability.com/latency-everywhere-and-it-costs-you-
sales-how-crush-it 
3 http://dealbook.nytimes.com/2014/07/07/no-need-to-demonize-
high-frequency-trading/ 

II. RELATED WORK 
To illustrate the growing threat of complexity to 

efficiency, in this work our focus is on isolating the root 
causes of performance issues in parallel transactional 
workloads on a file system with power scalable 
components. Anecdotal evidence in the extant research 
literature suggests that latency loss occurs with increasing 
incidence [6, 9, 11, 12, 14, 19, 20, 23] and magnitude [8, 12, 
17]  when using common power management techniques 
such as dynamic voltage and frequency scaling (DVFS). 
Recent work [3, 17] shows that the use of power 
management is accompanied by acute increases in latency 
for certain file system benchmarks. 

Our previous work was the first to show that these types of 
performance slowdowns could be traced to synchronization 
delays due to global journal commit operations in the Linux 
ext4 (or ext3) file system [3]. However, this work was 
limited in several ways. First, the focus on 
microbenchmarks led to an incomplete understanding of 
slowdowns. While the microbenchmarks correctly 
implicated journal commit operations, there was an implicit 
assumption that there were no other causes of slowdown on 
the performance critical path. However, when we attempted 
to extend our previous approach to more representative 
transactional workloads such as varMail and oltp, some 
slowdowns were unaffected. In this work, we explain why 
journal commits introduce file write delays (FWD) and file 
synchronization delays (FSD) and cause significant 
slowdowns in two different ways on parallel transactional 
workloads on power scalable systems. These new findings 
lead to the development of a runtime system that uses two 
different optimization approaches to address both write and 
synchronization delay contributions to slowdowns. 

Work on dynamic concurrency throttling [4], dynamic 
power scaling [7], and their combination [10] are 
tangentially related to this work. These approaches assume 
that increased processor power and frequencies lead to 
better performance. Our proposed solutions can remove file 
write delays and reduce file synchronization delays that lead 
to slowdowns making power scalable systems better adhere 
to this assumption. Thus, our work and the proposed LUC 
system increases the likelihood that previous DCT and 
DVFS approaches will be effective. 

III. FILE SYNCHRONIZATION AND WRITE DELAYS 
Figure 3 provides a brief explanation and summary of 

our previous findings. We refer the reader to the full paper 
for detail [3]. Herein, we give some background to facilitate 
a discussion of why our previous approach was not 
sufficient to address slowdowns in more representative 
transactional workloads of varMail and oltp. Though we 
provide details in our experimental results section, for all of 
our experiments, results, and conclusions, we performed 
repeated testing to achieve 95% statistical confidence on  



several different systems running the ext3 and ext4 file 
systems default settings common to nearly all Linux 
distributions. 

A. File Synchronization Delays and Slowdowns 
In our previous work, we showed that when power 

scaling is enabled, the change in arrival rates of fsync 
requests for journal commits at the system level at higher 
frequencies can cause file synchronization delays. Figure 3 
shows a detailed example where two separate, independent 
threads each trigger separate journal commit transactions in 
the Linux ext3 and ext4 file systems. 

We observed that at slower processor frequencies, fsync 
requests would queue on the same journal commit 
transaction and be serviced in parallel since there were no 
true dependences among the files other than the system 
requirement that they update the metadata. We also showed 
that at higher processor frequencies, fsync requests were 
more likely to queue separately on the journal commit 
transaction and be serviced sequentially, because the 
open(file2) operation had occurred by the journal commit 
start triggered by the fsync(file1) call, then fsync(file2) 
would not have triggered a separate commit since file2’s 
dirty metadata would have been considered part of 
transaction 1, as depicted in Figure 3. Therefore, an 
independent transaction (transaction 2 in Figure 3) is unable 
to start its journal commit due to the journal commit of the 
previous transaction. We measured performance losses up to 
47% in the IOzone and Metarates microbenchmarks at 
higher processor frequencies which also wasted significant 
amounts of energy. 

To improve performance and energy efficiency, we 
proposed two solutions. First, we removed the file system 
journaling for metadata. While this can hurt the reliability of 
the system and shouldn’t be used generally, it provided a 

performance target for solutions that maintain reliability. 
Second, we proposed statically increasing the time the  
system allowed fsync requests to queue on the journal 
commit transaction. We then studied the impact of various 
static settings for the queuing of fsync requests and found 
settings that improved the performance of IOzone and 
Metarates when scaling processor frequencies and power. 

B. The Limits of File Synchronization Optimizations 
In our previous work, we focused on the IOzone and 

Metarates microbenchmarks. IOzone [13] is a file system 
microbenchmark that generates and measures a variety of 
file operations including read/write latencies. Metarates is a 
file system microbenchmark that measures the performance 
of concurrent aggregate metadata transaction rates in 
extremely large file systems [15]. 

These benchmarks were carefully selected for their 
relative code simplicity and the fact that they exhibited 
significant power scaling slowdowns similar to those we 
observed in full applications. This made the task of isolating 
the root cause of slowdowns practicable despite the 
measurement variability previously discussed and the 
number of parallel threads involved (up to 256). We traced 
the slowdowns to the fsync operations called directly in 
Metarates and indirectly (via a write operation) in IOzone. 

As follow on work, and in response to reviewer 
comments, in this work, we attempted to determine the 
effectiveness of our proposed static optimization methods to 
address the synchronization delays identified in Metarates 
and IOzone on full benchmarks such as varMail and oltp. 
These highly parallel benchmarks represent common tasks 
in the datacenter workloads of service providers from 
Google to Amazon where slowdowns of the type we’ve 
observed encourage users to disable power management 
entirely despite the potential energy savings. 

 
 

Figure 3 Synchronization delays occur when two threads in different transactions write to their respective files and at some later time flush the data and 
metadata to nonvolatile storage. In the Linux ext3 and ext4 file systems, the fsync operation causes a journal commit (JC) transaction that ultimately 
updates the meta-data on the nonvolatile storage. In this example, an fsync operation in Thread 1 triggers JC transaction 1 in the file system waking up 
the jbd2 system process. After JC transaction 1 starts, Thread 2 opens file2 and performs an fsync operation triggering JC transaction 2 in the file system 
that blocks and waits on transaction 1 to commit. This effectively serializes the atomic journal commit transactions in the file system.  



Our earlier static techniques [3] were measurably 
effective on varMail slowdowns but had little to no effect on 
slowdowns in oltp. These mixed results and the complexity 
of tracing parallel thread performance in oltp caused us to 
revisit our analyses of the Metarates and IOzone 
microbenchmarks. Generally, we found that while our 
previous analyses (summarized in Figure 3) were correct, 
we missed a subtlety that results in a different optimization 
approach and requires a deeper discussion of the Linux ext3 
and ext4 file systems. 

C. Write Delays and Slowdowns 
For both historical and reliability reasons, Linux ext3 

and ext4 file systems default to journal ordering mode4 
which refers to the protocol for pushing metadata from 
memory to nonvolatile storage. During a journal commit 
transaction, dirty metadata is written to nonvolatile storage 
via the disk journal. Figure 3 illustrates how two fsync 
operations from two independent threads cause performance 
synchronization delays. In contrast, Figure 4 demonstrates 
how an fsync and write operation from each of two 
independent threads cause file write delays (FWD). 

To illustrate file write delays, consider the example in 
Figure 4. Thread 1 opens file1, writes to file1, and then calls 
an fsync operation. This results in a change to the file1’s 
metadata and the jbd2 processes is awakened to lock the 
metadata. Further modifications to the metadata must block 
until the journal commit transaction finishes atomically 
writing the dirty metadata to nonvolatile storage. 

                                                             
4 We have experimented with write-back mode for both data and 

metadata. Slowdowns were not eliminated. We will explore this 
further in future work. 

When the open operation is called by Thread 1, a single, 
running transaction is launched and records a change to the 
metadata for file1. Next, the running transaction records a 
write to file1 and an open to file2 in the metadata. When the 
Thread 1 fsync operation occurs, the running transaction 
becomes a committing transaction and the journal commit 
thread starts writing the changed metadata to nonvolatile 
storage. 

In this scenario, Thread 2 attempts to write to file2 after 
the committing transaction has started. All file writes now 
block (including the write by Thread 2 to file2) until the full 
metadata write to nonvolatile storage is complete. More 
precisely, Thread 2’s write to file2 is handled by the kernel 
which places the request in a wait queue until the metadata 
write back to nonvolatile storage is complete. The kernel 
then wakes up Thread 2 so the write to file2 is allowed to 
proceed. This can result in a significant performance delay 
for Thread 2’s write to file2. The file write delay is likely to 
be significant and will depend on the amount of metadata 
that must be written back to the nonvolatile storage. 

In our previous work, we identified journal commit 
transactions triggered by fsync operations as the root cause 
of slowdowns. Our static approach to disabling or delaying 
the journal commit transaction, based on this analysis, 
improved performance in both IOzone and Metarates. 

After revisiting the analyses of IOzone and Metarates 
herein we determined that Metarates performance was 
driven by file synchronization delays while IOzone was 
driven by file write delays. For Metarates, the static change 
to the timing of the journal commit transaction ensured that 
the fsync operations in Thread 1 and Thread 2 of Figure 3 
queued up for a single journal commit transaction. 

 
Figure 4. Much like synchronization delays, write delays occur when two threads write to their respective files and at some later time flush the data and 
metadata to nonvolatile storage. In the Linux ext3 and ext4 file systems, the fsync operation of Thread 1 causes a journal commit (JC) transaction that 
ultimately updates the metadata on the nonvolatile storage. In this example, an fsync operation in Thread 1 triggers JC transaction 1 in the file system 
waking up the jbd2 system process. After JC transaction 1 starts, thread 2 attempts to write to file 2. This write operation requires write-access to update 
file 2's metadata, which is however locked by the ongoing JC transaction 1. As a result, thread 2 is delayed until the transaction has written file2's 
metadata to disk and released the lock. As before, power scaling slowdowns affect the arrival time of file system requests and impact the likelihood of 
such delays. The oltp workload suffers from write delays during power scaling experiments, not synchronization delays. Thus, optimization techniques 
(such as those in previous work) that only address synchronization delays did not improve the performance of oltp. 
 

 



There was a subtly different effect in the IOzone 
microbenchmark. IOzone consists of a number of parallel 
threads following the scenario depicted in Threads 1 and 2 
of Figure 3 – namely, file open followed by one or more 
writes followed by an fsync operation (which triggers the 
journal commit transaction). With a statically-determined, 
reasonably long delay of the journal commit transaction, all 
of the writes complete before the start of the first fsync 
operation and all of the fsync operations are serviced by a 
single journal commit transaction. 

However, in IOzone there are few interleaving 
operations, all the threads perform similar amounts of work 
and operate independently of one another. Thus, upon 
revisiting the code and digging deeper on the kernel file 
system, we determined the slowdowns in IOzone are caused 
by the unintended interaction of file writes with ongoing 
journal commits, rather than by interactions between 
concurrent journal commit requests.. 

D. Ineffective Copyout Optimization 
Write delays occur due to the journal commit that writes 

dirty meta-data to nonvolatile storage. In the worst case, any 
write or fsync can block (i.e. be kept from updating the 
meta-data) until all the dirty meta-data is finished writing 
back to nonvolatile storage. It is not inherently necessary for 
a committing transaction to prevent further updates to a 
file's metadata since only a snapshot of the metadata is 
written to disk.  In fact, the kernel already provides a “copy-
out'' mechanism by which a snapshot of a file's metadata is 
created in a separate page.  The journal commit writes this 
snapshot to disk without preventing further updates to the 
metadata. Unfortunately, in the current implementation, 
copyout is done only when write attempts are detected 
before the start of the journal commit's I/O operations, 
because the file system designers mistakenly assumed that 
concurrent write attempts during the journal commit would 
be an infrequent case. 

For example, in Figure 4, after Thread 1 issues the fsync 
command, the kernel begins the journal commit transaction. 
To improve performance, the kernel will issue the copyout 
command at the start of the journal commit transaction to 
copy the current state of dirty meta-data to kernel memory. 
However, this only effectively copies the metadata that is 
about to be modified by write operations. Prior to the time 
when the I/O operation metadata(file2) locks in the jbd2 
process (see Figure 4). As a result, the copyout mechanism 
does not make a copy of the meta-data for file2 arriving 
after the metadata(file2) lock, because the write(file2) is 
issued after the copyout command is issued and the 
metadata(file2) has submitted for I/O. Any operations (such 
as the write to file2 by Thread 2) will block until the 
nonvolatile write to storage completes. This causes 
unnecessary delays in write operations. We address this 
shortcoming in our runtime system discussed in the next 
section. 

IV. THE LUC RUNTIME SYSTEM 
We propose the LUC (pronounced “luck”) runtime 

system to improve performance by addressing the file 
synchronization delays and file write delays that cause 
slowdowns. LUC is designed to Limit the Unintended 
Consequences that result from the complex interactions of 
power scaling and parallelism. The proposed system 
contains two components: a PID batching component to 
limit synchronization delays and a heuristic copyout 
component to reduce write delays.  

A. A PID Controller for Journal Commit Batching 
The Linux kernel developers anticipated that frequent 

journal commits might be expensive and implemented a 
naive mechanism that would delay journal commits under 
certain circumstances. Yet, as discussed in Section III, this 
mechanism turned out to be largely ineffective, resulting in 
the slowdowns due to synchronization delay we observed. 
Our first attempt [3] to reduce synchronization delays 
required trial and error to determine how long to delay 
journal commit transactions for each application. This 
manual process was cumbersome and required constant 
retuning. 

To address these deficiencies, we propose a dynamic 
controller that can automatically adapt to changes in system 
usage at runtime. We chose to implement this component as 
a proportional-integral-derivative (PID) controller [2] 
because we can use direct system measurements as inputs 
and we have had success with these types of controllers in 
runtime systems previously. 

Ideally, a journal commit batch control system would 
maximize the frequency of journal commits to approach the 
number of flush operations while minimizing the number of 
synchronization events that cause delays. 

Figure 5 shows the three major components of our 
controller. The set point is the target number of 
synchronization events per journal commit (r value). The set 
point can be updated dynamically at runtime. We instrument 
the kernel to observe the number of synchronization events 
per journal commit (d). The difference between the set point 
and the current observation is the error (e=r-d). 

To affect the length of time the journal commit allows 
synchronization events to queue, we designed a control 
mechanism that delays the journal commit. Increasing the 

 
Figure 5 A PID controller for journal commit batching transactions in 

the ext3 or ext 4 file system.  



delay time can increase the number of synchronization 
events per journal commit while decreasing delay may have 
the opposite effect. 

The correlation between the journal commit delay and 
the number of batched synchronization events exhibits a 
proportional relationship that maps well to a proportional 
function for an input signal u(t): 

𝑑 𝑡 + 1 = 𝑑 𝑡 + 𝑐 ∙ 𝑢 𝑡 + 1 .             (1) 

Here, t is the time step and d is the measured value of 
synchronization events per journal commit. d(t) is the 
number of synchronization events we can collect in a single 
journal commit at time t. d(t+1) is calculated by the 
previous value d(t) plus the change specified by our PID 
controller. We assume that such change follows a 
proportional relationship (c) to the output of the PID 
controller u(t) at time t. The value of d(t) is in practice 
constrained by the total number of synchronization events 
for a certain amount of time we set as threshold (1 ≤
𝑑 𝑡 ≤ 𝑑!"#). 

A PID controller is generically described by the 
following equation in the continuous time domain: 

𝑢 𝑡 = 𝐾!𝑒 𝑡 + 𝐾! 𝑒 𝑡 𝑑𝑡 + 𝐾!
!" !
!"

.          (2) 

u(t) is the output of the controller at time t based on the 
measured error within the system (e=r-d). From Equation 
(2), the output of the PID controller is the sum of three 
terms: 

K!e(t): The first term is proportional to the error. This 
causes the system to respond to the error value and 
direction.  

𝐾!𝑒 𝑡 𝑑𝑡: The second term is proportional to the integral 
of the error. This aggregates error over an interval to 
eliminate the steady-state error. 

𝐾!𝑒(𝑡)𝑑𝑡: The third term is proportional to the rate of 
change in the error, reducing overshoot by directionally 
damping the response. 

The terms 𝐾! , 𝐾!    ,and 𝐾!  are control gains that are 
analytically determined through stability analysis. Poor 
selection of these parameters can cause system instability 
manifested as output signal oscillation—which in our case 
would cause thrashing between overshooting and 
undershooting the journal commit delay and potentially 
resulting in performance loss. Careful selection of control 
gains results in a controller with desirable convergent, 
performance properties. The first step in determining these 
parameters is to identify the controller transfer function. 

Since we monitor the number of synchronization events 
per journal commit at runtime, our system is inherently 
discrete, thus we use the discrete form of transfer functions. 

The z-transform of the discretized, closed-loop, PID 
controller transfer function is 
𝑑(𝑧)
𝑟(𝑧)

=
𝑐 𝐾! + 𝐾! + 𝐾! 𝑧! − 𝑐 𝐾! + 2𝐾! 𝑧 + 𝑐𝐾!

𝑐𝐾! + 𝑐𝐾! + 𝑐𝐾! + 1 𝑧! − 𝑐𝐾! + 2𝑐𝐾! + 2 𝑧 + 𝑐𝐾! + 1
  . 

(3) 

This closed-loop transfer function is derived from the z-
transform of the PID controller transfer function and our 
controlled system transfer function (Equations 1 and 2). In 
other words, the controller parameters are determined by 
considering the interaction of the controller function and the 
controlled system function. Relating the transfer functions 
of the feedback control system and the controller, we can 
select and analyze control gains for stability. 

We experimentally validated stability of our PID 
controller by looking at poles of the closed-loop transfer 
function (Equation 3). The poles are defined as the roots of 
its denominator. Theoretically, the system is stable if all the 
poles locate strictly within the unit circle. We use the 
following stable parameter set in the LUC system: 
𝐾! = 0.8,𝐾! = 0.25,𝐾! = 0.25. 

B. An Improved Copyout Controller 
Our analysis indicates that the default copyout 

mechanism in the kernel is useful just not applied during the 
write delay slowdowns observed in oltp. We propose a 
heuristic feedback controller to dynamically enable the 
kernel copyout mechanism when it senses unusual write 
delay activity at runtime. This feedback controller forces 
copyout when the write delays affect performance and 
disables copyout when write delays are infrequent.  

In the kernel default ordered mode journaling, all 
metadata modifications are treated as atomic operations and 
attached to the running transaction. After some time (e.g., 5 
seconds by default) or upon user-driven synchronization 
events, metadata changes are written to nonvolatile storage. 

Figure 6 shows the proposed heuristic copyout controller 
for the LUC runtime system. The controller is implemented 
in the kernel JBD2 process that handles journal commit 
transactions. The controller adapts to three inputs: write 

 
Figure 6 The heuristic copyout controller in the LUC system. 

 



delays per journal commit (threshold); observed write 
delays per journal commit; and the number of runs without a 
write delay (Clean Runs). Threshold is user-defined and can 
be changed dynamically at runtime.  

The heuristic controller attempts to eliminate the 
performance penalty due to excessive write delays, when the 
percentage of write delays to total writes exceeds a given 
threshold. This is accomplished by enabling the copyout 
mechanism before the metadata I/O begins. Enabling 
copyout in this manner removes the lock to the metadata in 
the file system and eliminates write delays during the 
journal commit. 

The heuristic copyout controller uses the difference 
between the threshold and the number of observed write 
delays to determine when to enable and disable the copyout 
mechanism. When the number of write delays exceeds the 
write delay threshold, the controller signals the kernel jbd2 
thread to enable copyout. For example, the controller works 
well for the oltp workload with the configuration of 
enabling copyout as soon as a threshold of 5% of total 
writes were delayed during the previous journal commit 
transaction.  

A lower percentage of total write delays disables the 

copyout mechanism. For example, a Clean Run value of 4 
journal commits where no write delays occurred for 4 
consecutive journal commits worked well as a default value 
after extensive experiments, and takes up to 20 seconds to 
disable the copyout when no jbd2 thread is triggered by a 
user.  

V. EVALUATIONS 

A. Experimental Setup 
We select systems based on diversity, local availability, 

and the presence of power-scalable processors. The first 
system we refer to as SandyBridge(HDD). This is a Dell 
T1100 using a Xeon E3-1270 3.3 GHz (SandyBridge) quad-
core with 8 GB of DDR3 RAM and a 250 GB 7200 rpm 
hard drive. The second system we refer to as 
Nehalem(HDD). This is a Dell T3500 using a W3550 3.00 
GHz (Nehalem) quad-core with 6 GB of DDR3 RAM and a 
250 GB 7200 rpm hard drive. We disable the turbo boost 
and hyper-threading features so we can manually isolate 
performance at each static frequency and isolate slowdowns. 

Both systems run CentOS Linux distribution (6.4) with 
the kernel version (3.4.2). We configure the systems with 
the ext4 file system and ordered journaling mode. We 
disable the periodic background data writeback and journal 

 
Figure 7. Select results for varMail on Nehalem (HDD). Findings are comparable to other systems though not included due to space limitations. 

 



commit to reduce system noise. For the data shown herein, 
the number of total repeat experiments (>50 in all cases) for 
a given data point was selected to achieve 95% statistical 
confidence [21]. Due to space limitations, we focus on  
results that reflect the key contributions of this work. 5 

B. VarMail Results 
Filebench [24] varMail emulates a multi-threaded mail 

server workload common to file systems. Figure 7 compares 
varMail results for the default ext4 configuration to our PID 
journal  commit batch controller. VarMail is configured 
with 64 threads and 256 files with settings of 1K file size, 
1K IO size, and 1K append size. The data points shown here 
are averaged from >50 runs for a combination of 
configurations (i.e. ext4, PID batching) and frequencies 
(1.6GHz, up to 3.1GHz).  

Figure 7 illustrates typical findings for the varMail 
benchmark where slowdowns occur at higher processor 
frequencies. Figure 7a compares the raw performance 
(Ops/s) at each available processor frequency for the default 
ext4 configuration and the proposed PID batching described 
in the previous section. PID batching consistently 
outperforms the default method. 

Figures 7b and 7c show the performance of the ext4 and 
PID batching configurations for the available processor 
frequencies normalized to the slowest frequency. These two 
graphs show that for the varMail workload PID batching 

                                                             
5  The exhaustive testing necessary for 95% confidence takes 

weeks. We have tested on ext3 and ext4 and various versions and 
distributions of Linux. In every case, slowdowns were observed 
and the details of the file systems herein have been confirmed. 

removes nearly all slowdowns. Figure 7d shows the amount 
of speedup achieved by PID batching (from 3% up to 23%) 
at each frequency. 

Figure 7e shows these speedup numbers as the change in 
measured synchronization delays for ext4 and PID batching. 
These values are the average time that a user-driven 
synchronization event delays before it is serviced by the 
journal commit (in varMail this is the time spent in the 
fsync system call). Notably, PID batching on average (in 
every case for this scenario) spends less time in 
synchronization delays than the ext4 default case. Figure 7f 
shows that PID batching results in less journal commit 
transactions than the ext4 case as well. In this case, the trend 
is more meaningful than the raw numbers since the journal 
commit transaction time is variable (i.e. synchronization 
delay time tracks more closely with speedup). 

The larger the difference in synchronization delays 
between EXT4 and PID batching configurations, the better 
the speedup. For example, the PID batching configuration 
shows significant speedup of 1.23x over EXT4 
configuration at 2.8 GHz for an average 11.6ms reduction in 
synchronization delay, and shows only 1.03x speedup over 
EXT4 configuration at 1.8 GHz for an average 5.3ms 
reduction in synchronization delay. 

Figures 8 and 9 show the performance differences 
between ext4 and PID batching. Each pair of bars denotes 
the performance (Ops/s) for 4 to 64 threads on the 

 
Figure 10 Filebench oltp speedup (line) and performance (bars) for 
EXT4(default copyout enabled) and heuristic copyout running at all 
available frequencies on SandyBridge(HDD). The heuristic copyout 
improves performance for all processor frequencies. 

 
Figure 11 Filebench oltp performance (bars) and speedup normalized 
to EXT4 (line) on the SandyBridge(HDD) running at 3.3 GHz for 
various configurations. The combined heuristic copyout + PID 
batching controller provides comparable performance. 

 

 
Figure 8 Filebench varMail synchronization delays (lines) and 
performance (bars) for increasing number of threads at 3.1 GHz.  

 
Figure 9 Filebench varMail synchronization delays (lines) and 
performance (bars) for increasing number of threads at 1.6 GHz.  



Nehalem(HDD) system running at 3.1 GHz. The 
performance in both cases increases with the number of 
threads while the PID batching scenario consistently out 
performs ext4. The synchronization delays increase steadily 
with the number of threads since the likelihood for lock 
collisions across threads increases. The sync delay time for 
PID batching is consistently lower than that of the ext4 
default. Currently, we are unable to fully explain the dips in 
sync delay time at 8 threads (at both 3.1 and 1.6 GHz) and at 
64 threads (at 1.6GHz). However, to simplify our 
experiments we used a PID set point equal to half of the 
number of threads. Thus, this is likely an artifact of this 
setting and with further exhaustive testing (which takes 
weeks) we could likely find set points that further optimize 
the sync delay time for different combinations of threads. 

C. Oltp Results 
Filebench oltp emulates a TPC-C workload testing the 

performance of small random read and write transactions on 
a file system using the I/O model from Oracle 9i. The oltp 
benchmark is run with 48 threads and 48 files. The data 
points are averages over 140 runs. 

Figure 10 shows the performance (Ops/s) of the ext4 and 
heuristic copyout controller when varying the processor 
frequency from 1.6 to 3.3 GHz on the SandyBridge(HDD) 
system. In the default ext4 case, slowdowns with processor 
frequency increases are minimal. The same is true for the 
heuristic copyout results. However, the heuristic copyout 
controller consistently outperforms the default ext4 case. 
The classification of write delays as separate from 
synchronization delays led to the copyout optimizations that 
contributed these significant increases in raw performance. 
The line curve in Figure 10 shows the performance 
improvements vary from 11% up to 25% at 3.3 GHz. 

Figure 11 shows oltp performance (Ops/s) in bar graph 
form for different optimization strategies on the 
SandyBridge(HDD) system. The strategies include: ext4 
(default), batching (proposed PID controller), copyout 
(proposed heuristic copyout), copyout+batching (the LUC 
system with a combined PID and heuristic copyout 
controlled), delayJC (our previous static batching technique 
optimized for oltp). The line graph shows the speedup 
relative to the ext4 case for each configuration. 

Initially, we observe that for the oltp workload, ext4, 
batching, and delayJC have statistically the same 
performance. The similarity between ext4 and delayJC 
confirms our earlier finding that batching has little to no 
effect on oltp. For batching and delayJC, it is no surprise 
that their performance is comparable on oltp given the 
workloads insensitivity to synchronization delays. 

Furthermore, we notice that copyout performance 
confirms our findings in Figure 10 that 25% performance 
improvement is achieved. Upon deeper inspection, our 
heuristic copyout controller (with tracing enabled) revealed 

32% of the total write system calls in oltp suffered write 
delays with an average delay of 22.2 ms (not shown in 
Figure 11). In contrast, when we ran the copyout controller 
with varMail, we measured 0.2% of the total write system 
calls in varMail suffered write delays with an average delay 
of 0.9 ms. 

In the final LUC runtime system, we combined the 
copyout and PID batching controllers to provide a single 
solution and check whether there were any unexpected 
deleterious effects when they are combined. We noticed 
none as shown in Figure 11 since the copyout+batching 
scenario results in 25% speedup (the same as copyout in 
isolation) compared to the ext4 default case. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we improved our understanding of 

performance slowdowns that occur at higher frequencies in 
power scalable systems. Our novel classification of 
performance loss into two causal categories (file 
synchronization delays and file write delays) enabled us to 
propose the LUC runtime system that leverages a novel PID 
controller for batching journal commits and an effective 
heuristic copyout controller for enabling copyout when it 
will improve performance. Our techniques result in up to 
25% performance improvements on the benchmark and 
systems studied. Since we are operating in lower power 
modes longer, there are power and energy implications we 
plan to study further in future work.  

There are some limitations to our work. The heuristic 
copyout controller currently requires us to statically set 
values for threshold and the number of clean runs. While we 
found some experimentally acceptable values, we would 
like to automate this and have the controller adapt these 
inputs dynamically. 

For the PID batch controller, the effectiveness is closely 
related to the selected set point and while the controller 
adapts dynamically, the set point is currently static. This 
could limit the controller's effectiveness in environments 
where the workloads vary significantly. We hope to address 
this in future work. 

Lastly, while both proposed controllers substantially 
improved performance and reduced energy waste over the 
ext4 default case, neither eliminated slowdowns entirely. 
Even after applying both controllers in the LUC runtime 
system, we observed remaining slowdowns as high as 6% 
for varMail and 9% for oltp in some scenarios. We leave 
identifying these additional types of inefficiencies to future 
work. 
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