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Abstract—Memory is a crucial resource for big data processing
frameworks such as Spark and M3R, where the memory is
used both for computation and for caching intermediate storage
data. Consequently, optimizing memory is the key to extracting
high performance. The extant approach is to statically split the
memory for computation and caching based on workload pro-
filing. This approach is unable to capture the varying workload
characteristics and dynamic memory demands. Another factor
that affects caching efficiency is the choice of data placement
and eviction policy. The extant LRU policy is oblivious of task
scheduling information from the analytic frameworks, and thus
can lead to lost optimization opportunities.

In this paper, we address the above issues by designing
MEMTUNE, a dynamic memory manager for in-memory data
analytics. MEMTUNE dynamically tunes computation/caching
memory partitions at runtime based on workload memory
demand and in-memory data cache needs. Moreover, if needed,
the scheduling information from the analytic framework is
leveraged to evict data that will not be needed in the near future.
Finally, MEMTUNE also supports task-level data prefetching
with a configurable window size to more effectively overlap
computation with I/O. Our experiments show that MEMTUNE
improves memory utilization, yields an overall performance gain
of up to 46%, and achieves cache hit ratio of up to 41% compared
to standard Spark.

I. INTRODUCTION

Emerging in-memory distributed processing frameworks
such as Spark [35] and M3R [28] are experiencing rapid
growth and adoption due to their use in big data analytics.
A crucial reason for the success of these frameworks is
their ability to persist intermediate data in memory between
computation tasks, which eliminates significant amount of
disk I/Os and reduces data processing times. Consequently,
for iterative jobs, in-memory processing has been shown to
outperform the well-established Hadoop [1] model by more
than ten times [35]. Such performance boost has led to
the establishment of in-memory processing as the enabling
technology for different data analytic platforms. For instance,
a comprehensive ecosystem with a rich set of features has been
developed atop Spark, including SQL query [12], [33], ma-
chine learning [24], graph computing [32] and streaming [36].

The key resource enabling the performance acceleration of
the above platforms is memory. Failing to persist the whole
working set in memory causes disk I/O or re-computation that
leads to performance degradation. However, not all memory
can be used for caching; applications also require memory
for processing and data shuffling. Thus, there are opposing

demands of caching and processing on the memory, which are
growing with larger data sets and complex analysis tasks. Rec-
onciling these demands is non-trivial. The current approach
adopted in Spark is to statically configure memory partitions
based on user specifications. However, this entails that users
have deep knowledge about their workloads including process
working set size, input data size, and data dependency. Given
that the frameworks are general purpose, such a “best con-
figuration” differs significantly across workloads. Moreover,
determining a best configuration is hard and cumbersome and
often not even possible as a users may be simply employing
a prepackaged analytics application and not intimately aware
of its system-level characteristics. This is problematic, as we
show in our evaluation that there is a large penalty for using
mismatched configurations. Furthermore, we have observed
that even in a single workload, the memory usage changes
during execution. This is due to the change of data dependency
and task working set size. Thus, a static configuration approach
cannot capture such varying workload behavior, consequently
leading to degraded performance.

Dynamic memory tuning at runtime can help improve
memory resource utilization and reduce memory contention
between data cache and process and shuffle memory. While
promising, this is a challenging task due to two reasons.
First, dynamic tuning requires accurate accounting information
about both shuffle and tasks memory consumption, which is
not available, and memory tuning can be counterproductive
when such information is lacking. Second, it is difficult to
decide which data to keep in memory and which data to evict,
especially when multiple datasets, e.g., Resilient Distributed
Dataset (RDD) [35], needed by the same processing stage
cannot be fit into memory. Similarly, if consecutive stages use
different RDDs, caching of data from a previous stage may be
useless and unnecessarily increase the pressure on memory.

In this paper, we address the above problems and pro-
pose MEMTUNE, an approach that uses dynamic Directed
Acyclic Graph (DAG) [30]-aware memory tuning for DAG-
based in-memory distributed processing platforms. The goal
of MEMTUNE is to improve overall memory utilization and
reduce performance-degrading memory contention between
data cache, process and shuffle memory. MEMTUNE monitors
the task memory consumption using statistics such as garbage
collection duration and memory paging frequency, and uses
the information to dynamically change the data cache size.
We also exploit the DAG execution graph of tasks to prefetch
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Fig. 1. Typical memory partitioning used in Spark.

data that would be needed by the next stages, thus overlapping
the computation and I/O to improve performance.

Specifically, this paper makes the following contributions.
1) We empirically study and demonstrate the impact of

memory contention, caching policy and data cache size on
performance for workloads running on in-memory data
analytic platforms.

2) We design and implement MEMTUNE, a dynamic mem-
ory manager atop Spark, which adjusts the cache size
and cached data at runtime to capture varying workloads
demands and enhance performance.

3) We design and implement an automated algorithm that
uses monitored memory statistics and DAG execution
flow to determine efficient data cache size and caching
policy.

4) We evaluate MEMTUNE in Spark using representative
and diverse workloads from SparkBench [21]. Our re-
sults demonstrate that compared to static configuration,
MEMTUNE reduces workload execution time by up to
46%. Moreover, MEMTUNE effectively detects the de-
sired memory demand of tasks in each stage and change
the data cache size accordingly, thus improving memory
hit ratio by up to 41%.

II. BACKGROUND AND MOTIVATION

In this section, we first discuss memory management used
in Spark. Next, we motivate the need for our proposed solution
through an empirical evaluation of Spark on a local cluster,
SystemG [7].

A. Spark Memory Management

In Spark, data is managed as an easy-to-use memory
abstraction called resilient distributed datasets (RDDs) [35].
An RDD is a collection of objects partitioned across a set
of machines. Each machine retains several partitions (blocks)
of an RDD in memory. An RDD block can be replicated
across nodes for resiliency, and blocks can also be recomputed

based on the associated dependencies if the data is lost due
to machine failure. Computation is done in the form of RDD
actions and transformations, which can be used to capture the
lineage of a dataset as a DAG of RDDs, and help in RDD
(re)creation as needed. Such DAGs of RDDs are maintained in
a specialized component, DAGScheduler, which also schedules
the tasks as needed.

Spark is deployed using a driver program running on a
master node of a resource cluster and several executors running
on worker nodes. Executors are launched as JAVA processes
within which all tasks are executed. Each executor allocates its
own heap memory space for caching RDDs. Figure 1 shows
the memory partitions used by an executor. By default, Spark
allocates a maximum of 90% of the heap memory size as
safe space for RDD cache and shuffle sort operations, and
reserves the remaining 10% of the heap for tasks processing.
The figure shows how the safe space is further partitioned
for RDD storage, shuffle sort operations, and RDD serializa-
tion/deserialization. If the assigned RDD cache is full, any
remaining RDD blocks will either be re-computed or spilled
to disk based on user specification, i.e., under Spark options
MEMORY_ONLY and MEMORY_AND_DISK, respectively.

B. Empirical Study

The memory management adopted in Spark is static. How-
ever, as discussed earlier, workload variance implies that such
fixed memory partitioning may not offer the best performance.
To quantify the impact of memory management on workload
performance, we conduct an empirical study using Spark-
Bench [21], a comprehensive benchmark suite for Spark. We
use Spark version 1.5, the latest release of Spark, with Hadoop
version 2.6 providing the storage layer. All experiments are
done on 6 nodes of our SystemG cluster. Each node has two
4-core 2.8 GHz Intel Xeon processors and 8 GB memory, and
boosts a 1 Gbps Ethernet interconnect. One of the nodes is
configured to be the master node and the others as workers
for both HDFS and Spark. We configure each worker node to
have one executor with 6 GB memory, leaving the remaining
memory for OS buffer and HDFS data node operations. Each
executor has 8 task slots, one for each CPU core. We repeated
each experiment 5 times, and in the following report the
average results.

1) Memory Contention: In our first test, we study the
performance under varying configurations such as persistence
level and spark.storage.memoryFraction values. We
study two persistence levels, the default MEMORY_ONLY and
MEMORY_AND_DISK. For this test, we use the Logistic Re-
gression workload. We ran the workload with an input data
size of 20 GB, with 40 GB total system memory capacity.
We change the configuration parameter from 0 to 1, i.e., from
no memory to cache RDDs to all of the memory used for
caching. We set the workload iteration limit to three to ensure
that the experiment can finish in a reasonable amount of time
without sacrificing the accuracy of the inferences drawn.

Figure 2 shows the overall execution time that includes
compute time and garbage collection (GC) time of the work-
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Fig. 2. Total execution time and garbage
collection time of Logistic Regression under
MEMORY_ONLY.
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Fig. 3. Computation time and garbage
collection time of Logistic Regression under
MEMORY_AND_DISK.
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Fig. 4. Memory usage of TeraSort.

load under the default level of MEMORY_ONLY with increasing
spark.storage.memoryFraction. We record the GC
time in each executor during the workload execution and report
the average here. We can see that the overall performance is the
best when the parameter is configured to a value of 0.7. Lower
values result in larger compute time. This is because there is
not enough memory for caching RDDs, forcing needed RDDs
to be recomputed. We also found that when the parameter
value is configured to a higher value (from 0.8 to 1), the
overall execution time is once again increased. Upon closer
inspection, we find that the reason for this increase is that the
GC time is now increased due to less memory being available
to the JVM, which causes more frequent garbage collection.
Thus, simply allocating more memory to RDD caching is not
beneficial.

Note that the compute time includes RDD computation, task
computation and framework overhead. Increasing the memory
fraction for RDD increases contention with the executor’s
other tasks. This is because Spark utilizes part of the executor
memory for RDD storage, meanwhile tasks are also launched
inside the same executor. If too much memory is allocated
for RDD caching, the executor will again incur a huge GC
overhead, resulting in degraded performance.

Figure 3 shows that a similar behavior is observed under
MEMORY_AND_DISK as well. With this persistence level, the
GC overhead is not as pronounced as the default memory-
only level. This is because spilling RDDs to disk avoids
recomputation, which in turn decreases memory contention.

From this test, we see that to get the best performance, we
need to balance the memory fraction between RDD cache and
compute memory consumption. For the above case, the best
fraction turned out to be 0.7, but this may not hold for other
real workloads that exhibit different characteristics. For exam-
ple, memory-intensive workloads such as Logistic Regression
require more memory for tasks to execute, while I/O-intensive
workloads such as TeraSort require less memory but have
frequent accesses to data. Static configuration relies heavily on
users’ knowledge about the workload characteristics as well as
the deployment setup to find the best configuration. To remedy
this, the Spark community recommends using a value of 0.6
for spark.storage.memoryFraction, which works for
general workloads with modest input data sizes and system
set up. However, this approach fails to handle big input data
sizes (OutOfMemory error was thrown during our test runs

Workload Input size (GB)

Logistic Regression 20
Linear Regression 35
Page Rank 2
Connected Components < 1 (16M nodes, 99M edges)
Shortest Path 6

TABLE I: Maximum input size under Spark with default configu-
rations.

with big data sizes). The value is also not suitable for long
running jobs with varying characteristics. To investigate this
further, we ran several experiments with different workloads
and input sizes and show the results in Table I. The table
points out the maximum input data size that Spark was able
to handle using the community-suggested parameter values
without OutOfMemory errors. Note that for some workloads
the problem started with as small an input as 1 GB, which is
a worrisome observation for a big data processing framework.

2) Static Configuration: Once set, static configuration is
effective throughout an application execution, which makes it
hard to adapt to workloads with dynamic memory demands.
For example, Figure 4 shows the memory use of TeraSort.
We set the RDD cache size to 0 in order to observe the
task memory consumption. We observe a burst in the memory
usage after about 8 minutes. Under static configuration, a user
would have to configure the RDD cache size to a small number
throughout the execution to accommodate such a burst in task
memory requirement, thus losing the opportunity to utilize the
memory for RDD cache in earlier stages. An ideal dynamic
approach, on the other hand, can start with more memory for
RDD, reap the benefits of caching, and then reduce the RDD
memory to accommodate the burst and so on. MEMTUNE aims
to realize such dynamic management.

3) Memory Management Policy: Spark uses LRU [26]
policy for evicting RDD blocks from memory. If a block is
evicted, it is not brought back to memory again, and accessed
directly from disk or re-computed in cases it is accessed
again. The policy is effective, but does not consider an RDD’s
dependency and need for future stages, information that is
available in the workflow DAG. For example, in the Shortest
Path workload, there are 7 stages and 5 RDDs (RDD3,
RDD16, RDD12, RDD14, and RDD22) need to be cached.
Among the 7 stages, 5 stages have RDD dependencies. Table II
shows the RDD dependencies and the total sizes of the RDDs
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Fig. 5. RDD sizes in memory in different stages of Shortest Path
under default configurations.

Stages RDD3
(18.7G)

RDD16
(4.8G)

RDD12
(4.8G)

RDD14
(11.7G)

RDD22
(12.7G)

Stage 3 × · · · ·
Stage 4 · × × · ·
Stage 5 × · · · ·
Stage 6 · × · · ·
Stage 8 · × · · ·

TABLE II: RDD dependencies for different stages of Shortest Path.
‘×’ and ‘·’ denote whether a stage is dependent on an RDD or not,
respectively.

for this workload. Figure 5 shows the RDD sizes in the
beginning of the 5 stages that have RDD dependencies. In
contrast, Figure 6 shows the ideal RDD sizes that the stage
needs. Note that with default configuration in our test cluster,
we have 14 GB in total for RDD storage.

We can see that for stage 3 and stage 4, LRU works well.
However, stage 5 is solely dependent on RDD3, but some
RDD3 blocks are evicted in stage 4. Also, stage 6 and stage 8
are dependent on RDD16, while no RDD16 is cached in
memory because it is completely evicted from memory after
stage 5. Since the evicted RDDs will not be brought back
to memory again, there is extra empty room left in both
stages. This RDD placement policy leads to an inefficient
use of memory resource. MEMTUNE aims to address this by
designing better workload-aware memory management.

III. SYSTEM DESIGN

In this section, we first describe the architecture of MEM-
TUNE, followed by how we achieve dynamic memory tuning
and RDD cache management.

A. Architecture Overview

Figure 7 shows the overall architecture of MEMTUNE. Al-
though we have implemented MEMTUNE atop Spark, MEM-
TUNE can also work in multi-tenancy environments with
other cluster resource managers such as YARN [29] and
Mesos [18]. This is because MEMTUNE manages resources
that are provided to it, and thus can naturally extend to
containers supported by YARN or Mesos like systems.

MEMTUNE has two key centralized components, controller
and cache manager, and a distributed component, monitor
that is implemented within each executor on participating
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Fig. 6. Ideal RDD sizes in memory based on stage RDD dependencies
of Shortest Path.

nodes. The controller implements the main logic flow of
MEMTUNE, such as determining and setting the RDD cache
size for each stage, the RDD eviction policy, and the prefetch
window size. The cache manager implements the APIs de-
scribed in Table III. The distributed monitors are responsible
for gathering runtime statistics such as garbage collection
time, memory swap, task execution time per stage, and input
and output dataset sizes. The monitor is designed to be an
extensible component so that additional information can be
easily captured as needed.

After an application is submitted through spark-submit
scripts, Spark launches a Spark driver program together with
a SparkContext object. Within SparkContext, MEMTUNE’s
controller and cache manager are instantiated along with
the DAGscheduler and BlockManagerMaster. Next, Spark
launches its executor components on the participating nodes,
which results in the MEMTUNE monitors being deployed on
the cluster as well. The controller periodically gathers data
from each monitor and uses the information to adjust RDD
cache sizes on nodes, and if needed, selects blocks to evict or
prefetch. The controller then communicates this information to
the cache manager, which in turn invokes the BlockManager-
Master requests to perform the needed operations and execute
the commands on the working nodes.

To support dynamic memory configuration, we modify
BlockManagerMaster to allow dynamically changing of RDD
cache sizes and triggering RDD eviction if the cache is
now smaller than the cached data. MEMTUNE supports a
set of APIs for this purpose, as shown in Table III. Typ-
ically, MEMTUNE will use these APIs to manage RDD
cache automatically. However, the APIs also allow users to
explicitly control RDD cache ratios, RDD eviction policy
and prefetch window during application execution. MEMTUNE
automatically manages the RDD cache by efficient eviction
and prefetching with a dynamically-adjusted prefetch window.
By considering application I/O demands in controlling the
prefetch window size—which determines how much data to
be prefetched from disks to memory—MEMTUNE effectively
overlaps computation with disk I/Os and avoids I/O contention.

B. Dynamically Tuning RDD Cache and JVM Heap Size

As shown in Figure 1, the JVM memory is used by task
execution, shuffle sort operations, and RDD cache. It is crucial



API Description

double getRDDCache(AppID aid) Returns the current RDD cache ratio for the application
with ID aid.

void setRDDCache(AppID aid, double rddCacheRatio) Sets the RDD cache ratio to value rddCacheRatio for
the application with ID aid.

void setPrefetchWindow(AppID aid, double prefetchWindow) Sets the prefetch window with a value prefetchWindow
for the application with ID aid.

void setEvictionPolicy(AppID aid, EvictionPolicy ep) Sets the RDD eviction policy for the application with ID
aid.

TABLE III: Key APIs provided by MEMTUNE.
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Fig. 7. System architecture of MEMTUNE.

to coordinate the different needs, especially, when there is
a contention. Furthermore, node memory outside of JVM
provides buffer space for shuffle reads and writes. If there
is not enough space to buffer the shuffle data, significant
disk I/O would occur, degrading performance. Thus, if the
workload is not memory-intensive rather shuffle-intensive, we
can enlarge such buffer space by shrinking the JVM heap
size. The memory contention between such different needs
is shown in Table IV. We observe that there is no contention
between shuffle and task execution. This is because shuffle
operations usually happen in the end (writes) or start (reads)
of a stage. Spark determines a new stage based on whether
there is a shuffle operation or not, and the new stage does not
have RDD cache dependencies, rather the RDDs are obtained
through shuffle reads. Although during shuffle writes, there
are RDD cache dependencies, data can only be written when
tasks are finished with their computation.

Moreover, a challenge here is that we need to ensure that
applications can finish without errors, because task failures
due to memory errors are not recoverable. Consider how
such errors are handled in Spark. Upon getting a memory
error, a user has to either reduce the RDD cache ratio or
increase the task’s parallelism, and then re-launch the entire
application. However, this is a trial-and-error approach, and
the process may have to be repeated until the out-of-memory
errors disappear. This is cumbersome and frustrating especially
if the application is a long running one.

We leverage the above observations in MEMTUNE to pri-

Case# Shuffle Task RDD Contention Action

0 N N N N N/A
1 N N Y RDD ↑JVM, ↑cache
2 N Y N Task ↑JVM
3 N Y Y Task, RDD ↑JVM, ↓cache
4 Y N N Shuffle, RDD ↓cache, ↓JVM

TABLE IV: Cases of memory contention and corresponding actions
taken by MEMTUNE. Yes (Y) and No (N) under the Shuffle, Task and
RDD columns denote whether there is memory contention detected
for that usage.

oritize and first allocate sufficient task memory, then shuffle
sort memory, shuffle buffer, and finally RDD cache. It is
challenging to determine both the task and shuffle mem-
ory demands. Currently MEMTUNE adopts indicators of GC
ratio and swap ratio, as well as three different thresholds,
Th GCup, Th GCdown, and Th sh to determine whether
there is enough memory for task execution and shuffle opera-
tions. The indicators can be extended to other indicators with
more accuracy such as task memory footprint in the future.
Currently, the thresholds are set based on observations from
our experimentation, but they can also be exposed to users in
the form of parameters. For the RDD cache, we start with the
maximum fraction of 1 instead of the default of 0.6, and adjust
it dynamically as needed to accommodate other demands as
follows. If the monitors detect a shuffle operation, it implies
that there is currently no need to access the RDD cached data.
In this case, we prioritize shuffle operations over RDD cache
and reduce the cache size. Conversely, if the tasks are not in the
shuffle phase, we allocate more memory for the RDD cache
while also ensuring (using the GC etc. indicators described
above) that the tasks have enough memory for execution.

Table IV classifies five cases of contention and the cor-
responding actions performed by MEMTUNE. There are two
tuning knobs to mitigate the contention, namely the JVM size
and the RDD cache size. By default, we set the JVM heap size
to the maximum available memory of each physical node to
maximize utilization. We tune the JVM size asymmetrically,
in the sense that we prefer to only reduce the JVM size
temporally when we detect shuffle contention. We always first
increase JVM size whenever we detect task or RDD memory
contention, if JVM heap size has been set to less than the
maximum memory allocation in a prior epoch. If the JVM
heap is already at its maximum value, we proceed as follows.
If there is RDD contention only, we conservatively increase the



Algorithm 1: Controller workflow algorithm.
Input: block size, RDD size, shuffle size
begin

1 RDD list← calculate dependent RDD list of the stage;
2 if RDD size <sizeof (RDD list) then
3 prefetch(window size);

4 while true do
5 {gc, swap} ← get GC and page swap information

from monitor;
6 gc ratio←caculate_gc_ratio(gc);
7 swap ratio←calculate_swap_ratio(swap);
8 if gc ratio > Th GCup then
9 RDD size− = block size;

10 evict_rdd(block size);
11

12 if swap ratio > Th sh then
13 αsh ← block size× number of tasks;
14 RDD size− = αsh;
15 evict_rdd(αsh);
16 shuffle size+ = αsh;
17 jvm size− = αsh

18 if gc ratio < Th GCdown then
19 RDD size+ = block size;

20 sleep(5);

RDD cache size by one unit. If there are both Task and RDD
contention, priority is given to Tasks and the RDD cache size is
reduced by one unit. Finally, if there is shuffle contention, both
the RDD cache and JVM heap size are reduced by the same
amount αsh, i.e., we give a portion of the memory allocated to
RDD cache to shuffle (before giving up the memory allocated
for tasks). Note that if there is no contention, MEMTUNE does
not perform any actions in the current epoch.

The main loop (line 4 to line 20) of the Algorithm 1 shows
the steps taken by the controller when we cannot simply
increase the JVM heap size to mitigate memory contention.
Using the periodically gathered runtime statistics (GC time and
page swap amount) from the monitor, MEMTUNE calculates
the GC ratio and swap ratio, and checks if the GC ratios
exceeds Th GCup, i.e., an upper threshold for GC ratio. If
this is the case, MEMTUNE determines that there is a memory
shortage for tasks and reduces the RDD cache size by one unit
size. We choose one RDD block size as the unit size because
this is the minimum amount of RDD cache size that we can
evict to release memory. Next, if the swap ratio for an executor
exceeds the Th sh, it means that memory is needed by the Ns

tasks that are performing shuffle in the executor. To provide
the memory, we reduce the RDD cache by Ns units to ensure
that none of the shuffle tasks suffer from swapping. We also
increase the shuffle sort size and decrease the JVM heap size
to give more memory for I/O buffers. Finally, if the GC ratio
is too low (less than Th GCdown) implying that the tasks
are not using much memory, we increase the RDD cache size
by one unit to give more memory to the RDD cache. We
conservatively set Th GCdown smaller than Th GCup to
give priority to task execution memory. Note that the controller
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Fig. 8. Generation of tasks based on RDD dependency after an RDD
action is submitted to DAGSchduler.

triggers these steps periodically so that the size can be changed
gradually. Even if the controller makes a sub-optimal decision
in the current epoch, it can be improved/corrected in the next
epochs.

C. RDD Eviction Policy

Our automatic RDD cache manager may entail that some
RDDs need to be evicted. For this purpose, we do not employ
the default LRU policy for RDD cache. Instead, MEMTUNE
leverages the DAG information generated by Spark task sched-
uler for selecting eviction candidates.

As seen in Figure 8, an RDD action triggers SparkContext
to submit a job, which is then handled by the DAGScheduler.
The scheduler divides a job into stages based on RDD de-
pendencies, and submits the stages one by one. Each stage
has a group of tasks that actually performs the computation.
These tasks are generated based on RDD blocks that the tasks
need to produce. Here, the controller calculates the RDD
block dependency for each block (gray blocks in Figure 8)
and associates this information with the tasks for supporting
task-level prefetching later. Thus, in each stage of a job, we
have a collection of tasks with their dependent RDD blocks.
We refer to this group of RDD blocks as hot list. Note
that all RDD eviction and prefetching are within fine-grained
block level. This enables the controller component to have the
DAG information for each stage. Moreover, the controller can
commence prefetching with a hot list before the associated
tasks are submitted. During task execution, finished tasks are
also tracked to help eviction as needed by adding the RDD
blocks of such tasks to a finished list.

Two scenarios can occur that can trigger evicting RDD
blocks. The first is when the controller reduces the RDD cache
size. In this case, the controller first scans the current in-
memory cached RDD blocks (memory list) obtained from
the cache manager. If a block is found that does not belong
to the hot list, that block is chosen for eviction. Otherwise, a
block from the finished list is evicted if it is not empty. If no
eviction candidate is available so far, a block in memory list
with the highest partition (block) number is chosen since it is
least likely to be used right away. The choice of evicting high-
partition number blocks is based on the observation that Spark
schedules tasks according to partition numbers in an ascending
order, so we are evicting a block to be used farthest in the
future, i.e., effectively an LRU policy. This eviction policy
prevents eviction of current blocks that are in use. Finally, the



controller uses the cache manager to evict the chosen block
and reduce the RDD cache size.

The second eviction case arises when a new RDD block
needs to be placed in memory, but the cache is full or does
not have sufficient room. The default behavior in Spark is
to first check if there are blocks of other RDDs in memory,
if so, those are evicted. Otherwise, a warning message is
generated to indicate that blocks from the same RDD are
being evicted, and then LRU RDD blocks are spilled to disk.
This is not desirable as blocks that may be needed soon
may be evicted even though the cache contains blocks on the
finished list that are no longer needed. To remedy this, we
changed the default policy to first evict finished list blocks
before spilling others. The goal of MEMTUNE eviction policy
is to utilize RDD dependency information to achieve better
caching performance. However, the users can still use the
explicit control APIs of MEMTUNE to implement their own
custom policies as needed.

D. Prefetch and Prefetch Window

The controller checks to see if all the dependent RDD blocks
are cached at the beginning of each stage (Algorithm 1 line 1
to line 3) and triggers prefetching as needed. MEMTUNE goes
further to also aggressively prefetch RDD blocks from disk to
effectively overlap the task computation and I/O. The intuition
is that since we know the task scheduling sequence and the
task running status per machine, we have exact knowledge
about which RDDs will be accessed in the next epoch and
can prefetch them into memory. One exception is that when
the tasks are determined to be I/O bound, indicating that there
is little additional disk bandwidth for prefetching, in which
case prefetching is not done.

To achieve prefetching, the cache manager creates a prefetch
thread running on each executor. The thread continuously
prefetches data as long as the prefetch window is not filled.
MEMTUNE uses an initial prefetch window size that is twice
the degree of task parallelism (number of tasks in each
executor). This is because tasks are executing in parallel,
and data are consumed in a wave (number of tasks). If the
controller detects memory contention and decides to drop an
RDD block from memory, the window size will be decreased
by one wave. If no contention is detected for tasks and shuffle,
the size is increased again to the maximum used as the initial
value. This policy also ensures that memory priority is given
to task execution.

MEMTUNE keeps a list of blocks to prefetch
(prefetch list) and a list of blocks that are prefetched
(cached list). Upon trigger, the prefetching thread scans
the RDD blocks that are present in a node disk (disk list),
finds any RDD blocks that are in the hot list, and puts them
on the prefetch list. The prefetch list blocks are then
read one by one in ascending order of partition numbers
and placed on the cached list. The prefetching continues
until the size of the cached list is equal to the prefetch
window size, which is a configurable parameter as indicated
above. When a task is started, access to any block on

the cached list results in it being moved to the standard
cached block (memory list). This makes room for further
prefetching. The prefetching thread keeps track of the size of
the cached list and perform prefetching whenever the size
is less than the prefetch window.

E. Discussion

In a multi-tenant environment where there are multiple
applications running at the same time, we also need to consider
other factors such as service level agreements (SLAs), job
priority, and overall system utilization when deciding the
memory allocation. MEMTUNE does not have a global system
view, however, the underlying resource managers can instruct
MEMTUNE by setting a hard limit of JVM size so that
MEMTUNE will not expand its memory for an application
beyond what is allowed. While inside this hard limit, MEM-
TUNE strives to best utilize the memory resource. This would
ensure that MEMTUNE improves individual allocated memory
utilization of each application.

IV. EVALUATION

In this section, we demonstrate the efficacy of MEM-
TUNE on our SystemG setup (described in Section II). We
have implemented MEMTUNE in Spark by modifying about
20 classes. Mainly, we modified the Spark DAGScheduler,
BlockManagerMaster, BlockManager classes to realize the
controller, cache manager, and prefetcher components, respec-
tively. We use the built-in function dropFromMemory to
evict RDD blocks, and implemented a new helper function
loadFromDisk to load RDD blocks from disk to memory.

A. Overall Performance of MEMTUNE

In our first test, we study the overall performance impact
of MEMTUNE. For this purpose, we use five workloads from
the SparkBench [21] suite as shown in Table I, with the
maximum input sizes that can be run on Spark without
errors. Among these five workloads, Logistic Regression and
Linear Regression both have RDDs whose size is larger
than the aggregated cluster RDD capacity. On the other
hand, the graph computation workloads (Page Rank, Shortest
Path and Connected Components) have smaller RDDs that
can completely fit into the RDD cache under the default
Spark configuration. However the graph workloads cannot
complete successfully if we increase the input data size.
Figure 9 shows the overall workload execution time under
four scenarios: Spark with default configuration, MEMTUNE
with dynamic memory tuning only, MEMTUNE with prefetch
only, and MEMTUNE with both dynamic memory tuning
and prefetching enabled. We can see that MEMTUNE per-
forms comparable or faster than the default Spark (up to
46.5% improvement) for all workloads. Note that this per-
formance improvement is compared against Spark with the
default configuration (storage.memoryFraction=0.6).
MEMTUNE performs better than the optimal configuration
(storage.memoryFraction=0.7) shown in Figure 2.
Page Rank, Connected Components, and Shortest Path do
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Fig. 10. Gabbage collection ratio of studied workloads under different
scenarios.

not benefit much from MEMTUNE because the input data
size is not big enough to exhaust the memory and no
RDD block is spilled to disk under the default Spark setup.
When we increased the data size, the default Spark emitted
OutOfMemory errors and failed the execution, while MEM-
TUNE was able to finish execution without errors even with
larger data set sizes. Moreover, except for Shortest Path, we
see that most workloads benefit from dynamic configurations
more than data prefetching. This is because most of these
workloads are not CPU-intensive, resulting in short task ex-
ecution times, and thus do no leave enough time to overlap
I/O with computation through task-level prefetching. However,
prefetching was able to help Shortest Path by overlapping task
computation with I/O, and reduced the workload execution
time by 46.5%. The overall average performance gain across
the studied workloads achieved by MEMTUNE is 25.7%
compared to the default Spark.

B. Impact of Garbage Collection

Next, we repeat the previous set of experiments and collect
the total garbage collection (GC) time on each executor during
the entire application execution. We report the average ratio of
GC time to overall application execution time. Figure 10 shows
that MEMTUNE imposes bigger GC ration than Spark with
default configuration. This is because of two reasons: Spark
does not exhibit a huge GC overhead under the default configu-
ration of 0.6 as shown in Figure 3. Secondly, dynamic memory
tuning of MEMTUNE tends to increase RDD storage size when

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

LogR LinR

R
D

D
 c

a
c
h
e
 h

it
 r

a
ti
o
 (

%
)

Spark
MEMTUNE

Prefetch
Tune

Fig. 11. RDD memory cache hit ratio of studied workloads under
different scenarios.

GC is not significant. Finally, data prefetching provided by
MEMTUNE tends to bring RDD blocks to memory, which
also increases the memory utilization. For Linear Regression,
MEMTUNE has lower GC ratio compared to the Prefetch only
case since MEMTUNE decreases RDD cache sizes for task
computation while RDD blocks are prefetched.

C. Impact on Cache Hit Ratio

In our next test, we use Logistic Regression and Linear
Regression to study the RDD cache hit ratio under MEMTUNE.
We do not use the graph computing workloads as they fit
in memory and have a 100% hit rate for the four studied
scenarios. We can see in Figure 11 that prefetching under
MEMTUNE results in the highest RDD memory cache hit
ratio—up to 41% improvement compared to the default Spark.
In contrast, dynamic tuning yields better hit ratios than the de-
fault Spark but not as higher as under the other two MEMTUNE
scenarios. This is because dynamic memory tuning increases
RDD storage sizes for both workloads, thus increasing the
number of RDD blocks that are cached. Prefetching has the
best cache hit ratio because it prefetches the RDD blocks
into memory before the blocks are accessed. For Logistic
Regression, MEMTUNE with both features enabled achieves
the same cache hit ratio as prefetching. However, for Linear
Regression, MEMTUNE with both features enabled achieves
less than prefetching alone. This is because Linear Regression
has a higher task memory consumption, thus when prefetching
the data, dynamic memory tuning reduces the RDD cache size,
thus reducing the amount of RDD blocks that are cached.

Discussion: Considering the above three experiments, we
see that Logistic Regression shows less task memory consump-
tion and benefits more from prefetching. On the other hand,
Linear Regression shows more task memory contention, thus
prefetching alone shows bigger GC overhead and benefits both
from prefetching and dynamic tuning. The other three graph
computation workloads have small input data sizes, thus show
a modest resource consumption, and both the default Spark
and MEMTUNE performs similarly. Yet, MEMTUNE is better
as it can also process larger input data set sizes where the
default Spark fails. MEMTUNE’s effectiveness is heightened
whenever there is memory contention. RDD prefetch aims
at increasing cache hit ratio of RDD blocks in memory,
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Fig. 12. Dynamic change in RDD cache size during execution.

while dynamic memory tuning aims at increasing the memory
usage while mitigating memory contention among different de-
mands. Combining these two techniques, MEMTUNE increases
the memory utilization and the efficiency of RDD cache by
overlapping computation with I/O.

D. Dynamic RDD Cache Size Tuning

As discussed in Section II-B2, TeraSort exhibits a dynamic
memory usage demand that cannot be fully satisfied by
a static configuration. Another characteristic of TeraSort is
that it is shuffle-intensive. Most of its stages involve heavy
shuffle I/Os. In our next experiment, we run the TeraSort
workload with MEMTUNE, and monitor the dynamic RDD
size changes over the execution time. Figure 12 illustrates
that MEMTUNE starts with a high RDD configuration in the
beginning, and decreases gradually throughout the execution.
Recall that in Figure 4, we observed a large memory usage
burst in the final stage of TeraSort. Although the algorithm of
MEMTUNE is conservative for catching such bursty memory
consumption, by periodic tuning, MEMTUNE is able to keep
dropping the RDD cache size until it detects the contention
falls below the defined threshold. Increasing the checking and
tuning frequency would enable MEMTUNE to react to memory
contention more aggressively (though it can add monitoring
overhead and may also cause thrashing, which underscores
our current conservative approach to tuning).

E. DAG-Aware RDD Prefetching

As shown in Section II-B3, LRU RDD eviction policy
works for some stages in a workload, but not for other stages
that have RDD dependencies. In our next experiment, we
run Shortest Path with 4 GB input graph data size under
MEMTUNE. We show the RDD memory size in the beginning
of the 7 stages in Figure 13. Table II shows the RDD
dependencies of the 5 stages that are also applicable here. We
see that unlike the default Spark (Figure 5), MEMTUNE brings
RDD3 back to memory in stage 5 because MEMTUNE detects
that stage 5 is dependent on RDD3. Likewise, MEMTUNE
also brings RDD16 to memory in both stage 6 and stage 8.
Moreover, on average RDD sizes in memory are also more
than the default Spark, and there is no empty space left in the
RDD cache. This is because MEMTUNE dynamically changes
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the RDD cache size and increases it compared to the default
0.6. This is also the reason for the changes in total RDD
memory sizes.

V. RELATED WORKS

Memory management is a well studied topic. LRU is widely
used in caches [10], [26] and also the default in Spark,
however, it does not factor in available dependency infor-
mation as in MEMTUNE. A number of distributed memory
cache systems have also been designed for data intensive
parallel processing frameworks [3], [5], [11], [13], [16], [25].
MEMTUNE learns from these projects, but goes further to
obtain tasking scheduling orders from the data analytics frame-
works, and uses the information to prefetch and evict blocks
as needed, and manage memory across the different system
components.Systematic approaches such as iTask [15] resolve
memory pressure by suspending and resuming running tasks.
In contrast, MEMTUNE focuses on memory resizing instead of
managing the degree of parallelism and thus avoids the issues
of task interference.

Memcached [3] and Redis [5] are highly available dis-
tributed key value stores, which are used to cache data in mem-
ory for large scale web applications [6], [8]. Megastore [13]
offers a distributed storage system with strong consistency
guarantees and high availablility for interactive online appli-
cations. These systems are complementary to MEMTUNE but
are designed for specific application domains and not general
purpose framework such as Spark. Grappa [25] provides a
distributed shared memory allowing programmers to use the
aggregated cluster resources as a large single machine. This
is orthogonal to MEMTUNE as it does not use memory cache,
and iterative applications still use disk for intermediate results.

Dynamic JVM heap management [14], [34] enables multiple
JVMs to concurrently run on the same machine with reduced
contention. MEMTUNE also dynamically changes the JVM
heap size, but uses different JVM metrics as the contention
indicator. Moreover, MEMTUNE’s goal is to reduce contention
between different application tasks and operation within a
JVM to improve overall performance.

Parameter and memory tuning for large-scale data parallel
computation have also been explored [9], [17], [19], [22], [23],



[27], [31]. These systems and performance tuning guides pro-
pose either automatically change workload configurations or
suggest configuration heuristics for MapReduce frameworks,
and are orthogonal to MEMTUNE design and aims.

Tachyon [20] offers a reliable in-memory distributed
caching layer that caches intermediate data across multiple
frameworks. The key idea is using lineage to recompute lost
data in case of failures. In contrast, MEMTUNE focuses on
dynamically adjusting the memory allocation of task, shuffle
and data caching based on application characteristics. Project
Tungsten [4] has been proposed to move the memory man-
agement from JVM heap to off heap management. However,
even when the memory is allocated off heap, the issue of
deciding how much memory to allocate to tasks, shuffle and
intermediate data remains. MEMTUNE is orthogonal and can
be applied on top of project Tungsten.

The Spark open source community [2] has proposed to unify
memory allocation within Spark. However, the focus is on how
to reallocate RDD cache capicity for shuffle usage but not vice
versa, and RDD cache management is left as is. In contrast,
MEMTUNE exploits DAG task scheduling information, and
offers a comprehensive solution for memory management of
in-memory data analytic frameworks.

VI. CONCLUSION

In this paper, we design MEMTUNE, a dynamic memory
management approach for in-memory data analytic platforms.
MEMTUNE detects memory contention at runtime and dynam-
ically adjusts the memory partitions between in-memory data
cache, task execution, and in-memory shuffle sort operations.
By leveraging workload DAG information, MEMTUNE proac-
tively evicts and prefetches data with a configurable prefetch
window and also employ task-level prefetching. Experiments
with an implementation of MEMTUNE in the popular Spark
framework shows an overall performance improvement of up
to 46% for representative workloads. In our future work, we
plan to improve memory usage estimations of MEMTUNE, and
expand our system to multi-tenant environments.
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