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ABSTRACT

Recently, there has been a huge growth in the amount of
data processed by enterprises and the scientific computing
community. Two promising trends ensure that applications
will be able to deal with ever increasing data volumes: First,
the emergence of cloud computing, which provides trans-
parent access to a large number of compute, storage and
networking resources; and second, the development of the
MapReduce programming model, which provides a high-
level abstraction for data-intensive computing. However, the
design space of these systems has not been explored in de-
tail. Specifically, the impact of various design choices and
run-time parameters of a MapReduce system on application
performance remains an open question.

To this end, we embarked on systematically understand-
ing the performance of MapReduce systems, but soon real-
ized that understanding effects of parameter tweaking in a
large-scale setup with many variables was impractical. Con-
sequently, in this paper, we present the design of an accurate
MapReduce simulator, MRPerf, for facilitating exploration
of MapReduce design space. MRPerf captures various as-
pects of a MapReduce setup, and uses this information to
predict expected application performance. In essence, MR-
Perf can serve as a design tool for MapReduce infrastructure,
and as a planning tool for making MapReduce deployment
far easier via reduction in the number of parameters that
currently have to be hand-tuned using rules of thumb.

Our validation of MRPerf using data from medium-scale
production clusters shows that it is able to predict applica-
tion performance accurately, and thus can be a useful tool
in enabling cloud computing. Moreover, an initial appli-
cation of MRPerf to our test clusters running Hadoop, re-
vealed a performance bottleneck, fixing which resulted in up
to 28.05% performance improvement.

Categories and Subject Descriptors

C.4 [Performance of Systems]: modeling techniques; I.6.3
[Simulation and Modeling]: Applications
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1. INTRODUCTION
Recent trends show that cloud computing is becoming a

robust paradigm for supporting modern data-intensive en-
terprise applications. Cloud computing aims to provide effi-
cient resource utilization and improved performance, as well
as ease-of-use by freeing the application developers from is-
sues of resources scheduling, allocation, and associated data
management. In this context, the MapReduce [14] program-
ming model has emerged as an important means of instanti-
ating cloud computing and simplifying application develop-
ment. However, the configuration design-space of MapRe-
duce has not been studied in detail. This is a complex prob-
lem as a typical MapReduce configuration can encompass
hundreds of parameters, e.g., node configuration (number of
disks and compute capacity), network topology (inter and
intra-rack), choice of file system, data partitioning and lay-
out, types of schedulers, etc. – all of which affect applica-
tion performance. Moreover, empirical insights for certain
specific configurations, e.g., Google’s MapReduce setup [13],
cannot be simply extended to other setups, and no tool or
model is available to the community for studying MapRe-
duce application performance. This leaves the users guess-
ing as to how their applications will behave under particular
configurations, which is especially crucial for building new
systems, where correct performance estimates are required.

In this paper, we explore how choices about cluster design
and run-time parameters affect application performance. The
scale of the system, as well as the large turn-around time for
realizing a given configuration, precludes using actual ma-
chines for design space exploration. Thus, we develop an
accurate MapReduce simulator, MRPerf, to facilitate per-
formance analysis. The goal is to comprehensively capture
the various design parameters of MapReduce. MapReduce
applications run on large clusters, so their performance de-
pends on the interaction of many factors. The insights
gained through MRPerf will be useful in comprehending
these factors. We expect MRPerf to be used by researchers
and practitioners to understand how their MapReduce ap-
plications will behave on a particular configuration, and how
they can improve the applications and platforms to optimize
performance.



1.1 Motivation & Challenges
MapReduce [14] is a simple model for machine-independent

parallel programming at large scales. It provides minimal
abstractions, hides architectural details, and supports trans-
parent fault tolerance. MapReduce is ideal for massive data
searching and processing operations. It has shown excellent
I/O characteristics for traditional clusters. Current trends
show that MapReduce is considered a high-productivity al-
ternative to traditional parallel programming paradigms for
enterprise computing [13, 9] as well as peta-scale scientific
computing [18, 7].

Although the use of MapReduce is becoming wide-spread,
it is not well understood how its publicly-available imple-
mentations, e.g., Hadoop [9] and others [7, 3], perform for
specific configurations and applications. In fact, a quick sur-
vey of related discussion forums [4] reveals that most users
are relaying on rules-of-thumb and in-exact science; for ex-
ample it is typical for system designers to simply copy/scale
another installation’s configuration without taking into ac-
count their specific applications’ needs. MRPerf aims to an-
swer questions being asked by the community about MapRe-
duce setups: How well MapReduce scale as the cluster size
grows to extreme scales, e.g., 10,000-nodes? Can a partic-
ular cluster setup yield a desired I/O throughput? In ad-
dition, MRPerf can be used to understand the sensitivity
of application performance to platform parameters, network
topology, node resources and failure rates. The scale and
complexity of a MapReduce setup results in a deluge of pa-
rameters that should be tuned, tested, and evaluated to yield
an efficient system.

A key challenge in designing MRPerf is determining the
right level of component abstraction: If every component
is simulated thoroughly, it may take prohibitively long to
produce results; conversely, if important components are ab-
stracted out, the results may not be accurate. Moreover, the
performance of a MapReduce application depends on the
data layout within and across racks and the associated job
scheduling decisions. Therefore, it is essential to make MR-
Perf layout-aware and capable of modeling different schedul-
ing policies. Furthermore, the shuffle/sort and reduce phases
of a MapReduce application are dependent on the input and
require special consideration for correct simulations. Finally,
a simulator is valuable only if its results can be verified on
(some) real setups. This is challenging as verifying MRPerf
at scale requires access to a large number of resources, and
setting the resources up under different network topologies,
per-node resources, and application behaviors.

The goal of our simulator is to take on these challenges
and answer the above questions. Moreover, we aim to ad-
dress issues such as determining optimal configuration for
a MapReduce infrastructure given a fixed budget, select-
ing how much disk space should be allocated per node, and
determining the optimal ratio of computing power to disk
space per rack. Studying such questions on real hardware
is next to impossible given limited budgets, and the com-
plexity of the system precludes correct analytical models.
Therefore, we opt for building a simulator for this study.

1.2 Contribution
In this paper, we present the design and evaluation of

a realistic simulator for the widely-used MapReduce imple-
mentation, Hadoop [9]. Specifically, this paper makes the
following contributions:

• Design, develop, and implement an accurate Hadoop
simulator, MRPerf, that provides performance esti-
mates for many classes of applications;

• Verify, fine-tune, and improve the simulator by per-
forming measurements on actual (small to medium-
scale) Hadoop setups; and

• Apply MRPerf to identify and address performance
and configuration bottlenecks in Hadoop.

Our validation using a 40-node (320-core) cluster shows
that MRPerf can accurately model MapReduce setups run-
ning Hadoop. Moreover, our evaluation revealed a perfor-
mance bug in Hadoop, fixing which resulted in up to 28.05%
improvement in performance for a typical sort application.

2. MAPREDUCEAPPLICATIONPERFOR-

MANCE
The performance of a MapReduce application on a cluster

depends on a large number of factors. In the following, we
categorize and discuss these factors.

The MapReduce framework automatically parallelizes ap-
plications1 and utilizes available compute, storage and com-
munication resources to execute them. The exact manner in
which a job gets split, and when and on what resources tasks
are executed is influenced by a variety of configuration pa-
rameters, and is an important determinant of performance.
Examples of these parameters include:

• Data replication factor: More replication makes schedul-
ing decisions easier, but associated data writes and ini-
tial data ingestion into the cluster become slower.

• Data block (or chunk) size used by the storage layer:
Chunk size affects the amount of data processed by
a single map job. A trade-off must be made between
amortizing task startup and disk seek times (with large
blocks) and creating the maximum opportunity for
parallelism (using small blocks).

• Number of map and reduce tasks in a job: These num-
bers affects CPU, network and disk utilization. The
trade-off lies in the observation that efficiently utilizing
different resource setups may require different settings.

In addition to configuration parameter, the infrastruc-
ture characteristics also impact performance. The infras-
tructure on which MapReduce executes typically involves
a large number of machines arranged as follows. A group
of compute nodes with several disk(s) connected together
make up what is referred to as a rack. Each node in a rack
is usually a single network hop away from every other node.
Multiple racks are connected to each other using a hierarchy
of switches to create the cluster. We refer to the node ca-
pabilities and network topology as cluster parameters, and
different design choices in this context have a huge impact
on performance. Examples of the such choices include:

• Characteristics of CPU, RAM, and disk on each node.

• Heterogeneity of nodes making by a rack, as well as
heterogeneity of racks making up a cluster.

1Applications that exhibit embarrassingly parallel behavior.



• Connectivity between nodes within a rack.

• Inter-rack connectivity and topology across racks.

Moreover, design and implementation choices within a
MapReduce framework also affect application performance.
Decisions about data placement and task scheduling are par-
ticularly important. We group these choices together as
framework parameters. Examples of these parameters in-
clude:

• Data placement algorithm, which decides where to place
data blocks – a good placement algorithm makes it
easier to schedule tasks near to where their associated
data is stored.

• Task scheduling algorithm, which decides where to place
tasks (in relation to their data) and whether to sched-
ule redundant jobs preemptively.

• Data movement policy, which dictates how data is
moved between job phases.

These factors interact in complex ways to affect the per-
formance of applications. The behavior of the application
in terms of its disk, CPU and network usage in different
stages of execution causes the impact of a particular factor
to vary. For example, the connectivity between nodes is not
an important factor for a job that produces little output if
the map tasks are scheduled on nodes that hold the input
data. But, for the same application, if the scheduler is not
able to place jobs near the data (e.g. if the data placement
is skewed), then network bandwidth between the data and
compute nodes might become the limiting factor in appli-
cation performance. The complexity and vast range of in-
teractions between application behavior and configuration,
cluster and framework parameters has convinced us that an
analytical model would be extremely complicated (or very
inaccurate), and a simulator would be a better choice that
is able to capture the performance of applications on such
systems more accurately.

3. SIMULATOR DESIGN
To address the challenges faced in designing large MapRe-

duce setups, we have implemented a prototype simulator for
Hadoop [9], MRPerf. In the following section, we describe
the simulator design in detail.

3.1 Architecture Overview
MRPerf provides fine-grained simulation at sub-phase level,

models inter- and intra-rack network communications, as
well as activities inside a single node, such as processor time
consumed by a job, and disk I/O time for reading inputs and
writing results. The simulator takes several files as input,
including node specification, cluster topology, data layout,
and job description. The output is a detailed trace, which
provides the job execution time, the amount of data trans-
ferred, and the time-line of each phase of the task. The out-
put trace can also be visualized for analysis. The current
implementation is limited to modeling a single storage de-
vice per node, supporting only one replica for each chunk of
data in HDFS, and not modeling certain optimizations such
as speculative execution. However, lack of such support does
not restrict MRPerf’s ability to model performance of most
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Figure 1: MRPerf architecture.

Hadoop setups. Moreover, removing these limitations is the
focus of our ongoing research.

Figure 1 shows the overall architecture of MRPerf. The
input configuration is provided in a set of files, and processed
by different processing modules (readers), which are also re-
sponsible for initializing the simulator. The ns-2 driver mod-
ule utilizes the ns-2 [2] network simulator to realistically sim-
ulate network traffic. Similarly, the Disk module provides
modeling for the disk I/O. We note that, although we use a
simplistic disk model, this module can be easily extended to
include advanced disk simulators such as DiskSim [1]. All
of this information is then used to drive the MapReduce
Heuristics module that simulates Hadoop’s behavior.

The simulator starts by reading all the configuration pa-
rameters, and instantiating the required number of nodes
arranged according to the specified topology. Each node
starts to run the job scheduled for it, and sends and receives
associated messages through ns-2.

A node’s resources, i.e., processors and disks, are shared
among tasks assigned concurrently to the node. In real
settings, I/O and computation are overlapped given asyn-
chronous prefetching present on most modern Hadoop nodes.
In contrast, MRPerf does not overlap I/O and computation
assigned to a thread, rather divide these tasks into distinct
sequential phases. However, I/O and computation across
threads and processors are overlapped. This results in a
simplified simulator design, at the cost of some accuracy.
However, as our results show, this approach provides fairly
accurate results.

3.2 Input Specification
MRPerf requires input from the user, which can be clas-

sified into three parts: cluster topology specification, appli-
cation job characteristics, and the layout of the application
input and output data. MRPerf relies on ns-2 for network
simulation, thus, any topology supported by ns-2 is auto-
matically supported by MRPerf. The topology is specified
in XML format, and is translated by MRPerf into tcl for-
mat for use by ns-2. Example 1 shows a sample topology
specification.

To capture job characteristics, we assume that a job has
simple map and reduce tasks, and that the computing re-
quirements are dependent on the size, and not content, of
the data. For accuracy, several sub-phases within a map task
are modeled separately, e.g., JVM start, single or multiple
rounds of map, sort and spill, and a possible merge. Com-
pute time for each data-size-dependent sub-phase is cap-



tured using a cycles/byte parameter. Thus, a set of cy-
cles/byte measured for each of the sub-phase provides a
mean for specifying application behavior. Some application
phases do not involve input-dependent computation, rather
fixed overheads, e.g., connection setup times. These steps
are captured by measuring the overhead and using it in the
simulator. This approach to capture overall application be-
havior is in-line with what we have observed in real experi-
ments, and as we show later, is effective. Example 2 shows
a sample job specification.

Finally, the data layout provides the location of the main
node handling the job metadata, the location of actual data
on the simulated nodes, replication factor, etc. Data layout
affects data-computation co-location in the map phase, and
thus the overall performance. Finally, we assume that job
output data is proportional to the input data and thus no
separate means for modeling the job output data is required.
Example 3 shows a sample simulation specification.

<topo>
<machine_type> ... </machine_type>
<machine_type> ... </machine_type>
<switch_type> ... </switch_type>
<rack_group>
<compute_node_group>

<machine>Demo Cluster Spec</machine>
<node_index>00</node_index>
<node_index>01</node_index>
<node_index>02</node_index>
<node_index>03</node_index>

</compute_node_group>
<switch>

<switch>Demo switch</switch>
<switch_index>1</switch_index>

</switch>
<rack_index>1</rack_index>
<rack_index>2</rack_index>
<name>rg1</name>

</rack_group>
<router>
<connect_to_group>

<rack_group_name>rg_rg0</rack_group_name>
<switch_index>1</switch_index>

</connect_to_group>
<name>r1</name>

</router>
</topo>

Example 1: Topology specification.

Some of these parameters are function of the physical clus-
ter topology, while others can be collected by profiling a
small-scale MapReduce cluster or running test jobs on the
target cluster.

3.3 Integration with ns-2
Given the established use of ns-2 [2] in realistically sim-

ulating networked systems, MRPerf is built on top of ns-2.
We employ packet-level simulation to get accurate network
behavior. In addition to using ns-2 services, MRPerf sim-
ulates the map and reduce tasks, manages their associated
input and output, make scheduling decisions, and models
disk and processor load. The reliance on ns-2 ensures that
our simulator is able to capture the effects of the interaction
between various components at fine granularity.

Each simulated node has several processors and a single
disk, and the processing power is divided equally between
the jobs scheduled for the node. One restriction is that a task

<job>
<jvm_start_cost>5.0*1000*1000*1000</jvm_start_cost>
<map>
<cycles_per_byte>20</cycles_per_byte>
<sort_cycles_per_byte>50</sort_cycles_per_byte>
<merge_cycles>1.0*1000*1000*1000</merge_cycles>
<filter_ratio>

<uniform>
<min>0.5</min>
<max>1</max>

</uniform>
</filter_ratio>

</map>
<reduce>
<merge_cycles>5.0*1000*1000*1000</merge_cycles>
<cycles_per_byte>20</cycles_per_byte>
<filter_ratio>

<uniform>
<min>1</min>
<max>1</max>

</uniform>
</filter_ratio>

</reduce>
<average_record_size>10</average_record_size>
<job_tracker>n_rg0_0_ng0_1</job_tracker>
<name_node>n_rg0_0_ng0_0</name_node>
<input_dir>data</input_dir>
<output_dir>output</output_dir>

</job>

Example 2: Job specification.

<layout>
<dir name="data">
<file name="file_00000000">

<chunk id="0">
<rep>d_rg0_0_ng0_0_disk0</rep>
<rep>d_rg0_0_ng0_1_disk0</rep>

</chunk>
<chunk id="1">
<rep>d_rg0_0_ng0_2_disk0</rep>

</chunk>
</file>
<file name="file_00000001">

<chunk id="0">
<rep>d_rg0_0_ng0_0_disk0</rep>
<rep>d_rg0_0_ng0_2_disk0</rep>

</chunk>
</file>

</dir>
</layout>

Example 3: Data layout.

cannot be split among processors, thus if there are fewer jobs
scheduled for a node than the number of available processors,
some of the processors on that node will remain idle. This is
in-line with how tasks are executed in real setups. Also, each
simulated node is responsible for tracking its own processor
and disk usage, and other statistics.

The MRPerf kernel works as follows. First, MRPerf cre-
ates a number of simulated nodes using the standard ns-2
interface, and configures ns-2 to connect the nodes in the
specified topology. Each simulated node is instantiated, in
essence, using a set of call-back functions that are triggered
when different messages are received. This approach lever-
ages the TcpApp code in ns-2. Next, an init message is sent
to all the nodes, which results in the nodes simulating disk
and processor use, as well as sending out interaction mes-
sages, consequently triggering further action and advancing



Configuration “variable” Value(s)

Number of racks single, double
Network 1 Gbps
Nodes(total) 2, 4, 8, 16
CPU/node 2x Xeon Quad 2.5GHz
Disk/node 4x 750GB SATA

Table 1: Studied cluster configurations.

the simulation. For example, on receipt of a map task as-
signment message, the receiving node first needs to retrieve
the associated input data. If the needed data is local, i.e.,
stored on the node itself, a disk read is simulated, otherwise
a remote retrieval is simulated by sending a request mes-
sage to a node that has the data and waiting for a response
before proceeding to simulate the map function processing
time. The process is repeated at each node, resulting in a
desired simulated environment.

Finally, when handling network traffic, no real data is
transferred in MRPerf. Rather size of data is used by ns-2
to calculate network traffic and transfer latencies.

3.4 Capturing Key-Value Distribution
In MapReduce, the distribution of key-value pairs between

the map and reduce phases is application and data depen-
dent. Thus, the distribution may become unbalanced. An
unbalanced distribution results in some reduce tasks being
assigned disproportionally large amount of work, thus caus-
ing them to take significantly longer to complete, compared
to other tasks. Since the simulator does not process actual
data, such distribution imbalance is not captured. We faced
the decision to account for imbalance at the cost of com-
plicating MRPerf design. On studying real applications, we
observed that for most of the MapReduce jobs, there is only
very small variance in distribution across nodes. Thus, in
our current design, we assume uniform distribution of key-
value pairs; each reduce task receives an equal part from
each map task’s output. However, our design is flexible and
complex distributions can be added to MRPerf, if the need
to do so arises.

In summary, MRPerf allows for realistically simulating
MapReduce setups, and the design is flexible enough to cap-
ture a vast variety of configurations and job characteristics.

4. EVALUATION
We have implemented MRPerf using a mix of C++, tcl,

and python code (3372 lines total) interfaced with the ns-2
simulator. In this section, we validate performance predic-
tion made by MRPerf using performance results from a real-
world application run on a medium-scale Hadoop [9] cluster.
We present results of validation on a single-rack topology
and a double-rack topology, validation at sub-phase level,
detailed comparison of a single job, and look at jobs with
different input size/chunk size. Next, we present two patches
we made to Hadoop, in order to match performance predic-
tion made by MRPerf to Hadoop. We note that our initial
evaluation focus on MRPerf’s ability to capture Hadoop be-
havior and result verification. Our benchmark application
makes full use of the available resources, but does not over-
load them. Studying MRPerf under overload conditions,
however, is a focus of our ongoing research.
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Figure 2: Execution times using actual measure-
ments and MRPerf for single rack configuration.

4.1 Validation Tests
In the first set of experiments, we collected data from a

number of real cluster configurations and compared it with
that observed through MRPerf. Table 1 shows the cluster
configurations studied for the validation tests. For our ini-
tial tests, we used a simple point-to-point connection when
using multiple racks, however, this can be modified to more
advanced topologies as needed.

For the validation tests, we used the TeraSort applica-
tion as the benchmark. TeraSort [6] is designed for sort-
ing terabytes of data. It samples the input data and uses
map/reduce to sort the data into a total order. TeraSort is
a standard map/reduce sort, except for a custom partitioner
that uses a sorted list of N − 1 sampled keys that define the
key range for each reduce. In particular, all keys such that
sample[i − 1] ≤ key < sample[i] are sent to reduce i. This
guarantees that the output of reduce i are all less than the
output of reduce i + 1.

We collect data by running TeraSort on a real Hadoop
cluster with a chunk size of 64 MB and an input of 4GB/node
(i.e. 64 GB input data for 16-node cluster), and then com-
pare these results with those obtained through MRPerf.

4.1.1 Single Rack Cluster

In the first validation test, we utilize a number of com-
pute nodes arranged in a single Hadoop rack. We vary the
number of cores from 16 to 128 (2 to 16 nodes), and observe
the total execution time for TeraSort. Figure 2 shows the
results for the actual runs as well as numbers predicted by
MRPerf. The break down for each case is shown in terms
of map and reduce phases. The results show that MRPerf
is able to predict the map phase performance within 3.42%
of the measured values. The reduce phase simulated results
are within 19.32% of the measured values. Overall, we see
that MRPerf is able to predict Hadoop performance fairly
accurately as we go from 16 to 128 cores.

4.1.2 Double Rack Cluster

Next, we repeated the above validation test with a two
rack cluster, with racks connected to each other over 1Gbps
link. Once again, we varied the total number of resources
from 16 to 128 cores, with each rack containing half the re-
sources. Figure 3 shows the results. Here, we once again
observe a good match between simulated and actual mea-
surements. The exception is the map phase performance for
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Figure 4: Sub-phase break-down times using actual
measurements and MRPerf.

the 128-core case. Here, the predicted values are 16.99%
lower than the actual processing time. On further investiga-
tion, we observed low network throughput on the inter-rack
link and some network errors reported by the application,
which we suspect are due to packet drops at the router in our
experimental testbed (possibly due to the TCP incast [17]).
The network slow-down caused the map phase taking longer
than predicted since our model assumes a high-performance
router connecting the two racks. We continue to develop
means for better modeling such routers within ns-2, however,
such router modeling is orthogonal to this work. Excluding
the diverge of map phase in 128-core case, MRPerf is able
to predict performance within 5.22% for the map phase and
within 12.83% for the reduce phase, compared to the actual
measurements.

4.2 Sub-phase Performance Comparison
So far, we have presented a comparison of overall execu-

tion times obtained via simulation and actual measurement.
In the next experiment, we break a map task in further sub-
phases, namely map, sort, spill, merge, and overhead. A
map reads the input data, and processes it. The output is
buffered in memory, and is sorted in memory during sort.
The data is then written to the disk during spill. If multiple
spills are involved, the data is read into memory once again
for merging during merge. Finally, overhead accounts for
miscellaneous processing outside of the above sub-phases,

Overview Actual MRPerf
Number of map tasks 480 476
Number of reduce tasks 16 16
Total input data 32G 32G
Total output data 32G 32G

Phases Actual MRPerf
Map 220.0 220.8
Shuffle 7.4 5.4
Sort 0.5 3.4
Reduce 137.9 135.9

Map break-down Actual MRPerf
map 2.14 2.10
sort 1.12 1.19
spill 4.22 4.58
merge 4.52 4.26
overhead 1.79 1.61
sum 13.80 13.75

Data locality
Actual MRPerf

num time num time
Data-local 468 13.77 468 13.66
Rack-local 6 13.60 3 14.67
Rack-remote 6 16.10 5 21.64

Table 2: Detailed characteristics of a TeraSort job.

such as message passing via network. Figure 4 shows the
sub-phase break-up times for 16 to 128 core cluster under
MRPerf and actual measurements. Each cluster of bars la-
beled with a prefix of “s” stands for results from a single-rack
topology, and a prefix of “d”stands for results from a double-
rack topology. The following number is number of cores. As
can be observed, MRPerf is able to provide very accurate
predictions for performance, even at sub-phase level. Once
again, we see that the network problem discussed above re-
sulted in a larger overhead for 128-core case. However, other
sub-phases are reasonably captured by MRPerf. The other
simulated results are within error range of 13.55% compared
to actual measurements.

4.3 Detailed Single-Job Comparison
In the next experiment, we focus on a single job and

present a detailed comparison of the job’s performance and
workload under actual measurements and MRPerf. Table 2
shows the results. The selected job runs on 64 cores divided
into 2 racks. Total input data size is 32 GB. The first part
of the table is the overview of the TeraSort instance used
for this test. The difference in the number of map tasks is
due to the different way the input data is generated. For the
actual run, the input is generated in a distributed manner
by another application TeraGen, whereas in the simulator,
input is generated randomly by data layout generator. Our
generator always produces as many full chunks as possible,
but since TeraGen works in a distributed manner, a few
chunks created by it are not full-size. The second part of
the table shows the total time of the MapReduce phases, as
already seen in Figure 3 and Figure 4. The last part of the
table shows the average performance of map tasks in differ-
ent categories. Data-local map tasks are tasks that process
data located on the same node on which a task is running.
Rack-local map tasks are tasks that process data located in
the same rack. Finally, rack-remote map tasks are tasks that
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Figure 6: Execution times with varying input size
using actual measurements and MRPerf.

process data located in another rack. For the presented job,
most map tasks are data-local, and simulation shows similar
performance for these tasks as observed through the exper-
iments. The simulation also produces similar mix of three
categories of map tasks. Overall, even at this granularity,
the simulated results are quite similar to the actual results.

4.4 Validation with Varying Input
We have so far considered various topologies and number

of nodes, but have used the same input size of 4 GB per
node and a chunk size of 64 MB. Next, we fix the number of
cores to 128, and study the 64 MB as well as 128 MB chunk
size both under a single rack and double rack configuration.
Figure 5 shows the results. We also study input data size
of 4GB per node vs. 8GB per node under a single rack
and double rack configuration. Figure 6 shows results for
different input data size. These results show that MRPerf is
able to correctly predict performance even for varying input
and chunk sizes, and illustrates the simulators capabilities
in capturing Hadoop cluster behavior.

4.5 Hadoop Improvements
While comparing application performance as predicted by

MRPerf and real application performance with Hadoop we
found several places where Hadoop didn’t perform as well as
predicted. In some cases we had to tweak our simulator to
more closely model the Hadoop implementation but in other
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Figure 7: Performance improvement in Hadoop as
a result of fixing two bottlenecks.

cases we found that Hadoop was making sub-optimal choices
that decreased performance. In this section, we discuss two
improvements we made to Hadoop based on predictions ob-
tained from MRPerf.

By default, during the reduce phase, Hadoop merge-sorts
10 files at a time. We found this to be inefficient for our ap-
plication and configurations and created a patch, no-merge,
which does not perform file merges at shuffle time. The effect
is similar to setting Hadoop’s io.sort.factor parameter to
a large value (but the value would need to be determined
before the application is run.) However, this optimization
does not come for free. To merge more files in one pass,
more memory is needed. If total amount of memory is fixed,
then each file would get a smaller buffer, and as disk seek
time cannot be amortized by the shorter I/Os, the disk I/O
performance would drop. That is why the reduce sub-phase
in patched Hadoop exhibits a slow down, as seen in Figure 7.
We have learned that Hadoop developers are aware of the
problem and the trade-off between memory and disk I/O
performance [5].

Another anomaly that we observed was that the network
bandwidth during the shuffle phase in the experimental setup
was not as high as predicted by MRPerf. We found that this
was because the Hadoop framework did not have enough
copy threads pulling data in parallel over the network. The
framework launches copiers at most every second. If copiers
finish quickly, new ones are not launched until the next sec-
ond, which wastes available network bandwidth. We im-
plemented a patch, no-wait-copier, that breaks up a single
thread in Hadoop used normally for handling fetching noti-
fications, launching copiers, and updating finished copiers,
into separate threads dedicated to each of these tasks. With
this patch, copiers are launched right after previous copiers
finish, and bandwidth is utilized efficiently.

We applied both patches to Hadoop, and found that the
patched version of Hadoop runs faster and matches the per-
formance predicted by MRPerf. Figure 7 compares the per-
formance of patched and unpatched versions of Hadoop with
results from MRPerf. The application is the same as be-
fore, with 10GB input data per node and 64MB chunk size.
Single-rack experiments are run on 128 cores (16 nodes) in 1
rack, and double-rack experiments are run on 128 cores (16
nodes) in 2 racks (8 in each). Single-rack results show no-
merge has a huge improvement over Hadoop. Double-rack
results also show effectiveness of the no-merge, as well as



show that no-wait-copier improves performance only a lit-
tle. Hadoop with both patches can save 28.05% and 17.02%
over Hadoop in single-rack and double-rack cases, respec-
tively. Predictions from MRPerf best match performance
of Hadoop with both the patches. In double-rack case, the
difference in map phase times can be explained by the net-
work problems described above. Other than that, errors in
predicted values for map/reduce phases are within 1.79% of
the actual measurements.

5. RELATED WORK
MapReduce is an emerging model, and simulation-based

approach to capture its performance has not been studied
previously. However, a closely related large-scale distributed
computing paradigm is Grid computing [16]. Grid comput-
ing is a well-established paradigm and has been used to
solve large-scale problems using distributed resources. It
addresses similar issues as MapReduce, but with a grander
scope. A variety of simulators have been developed to model
and simulate the performance of Grid systems including
Bricks [8], Microgrid [19], Simgrid [12], and GridSim [11].
The interest in using simulation to model distributed sys-
tems can be gauged from the fact that the SourceForge
project for GridSim shows over 5000 downloads between
September 2007 and March 2009. In contrast to these simu-
lators, MRPerf is focused on modeling the specifics of MapRe-
duce frameworks and not grid systems, so it does not worry
about reservations and wide-area scheduling decisions that
are critical for Grids.

The desire to understand the performance of MapReduce
systems has led to a variety of efforts, including the Chukwa
project [10] and instrumenting Hadoop using X-Trace [15].
These efforts are complimentary to our work, and in the
future we hope to modify MRPerf to produce output reports
in the same formats as these systems, so that analysis tools
developed for these systems can also be used to study results
from MRPerf.

6. CONCLUSION
In this paper, we have presented the design and evalua-

tion of MRPerf, a phase-level simulator for the widespread
MapReduce model, to better design, provision, and fine-tune
Hadoop systems. MRPerf enables realistic simulations for
analyzing performance of applications on specific Hadoop
configurations, and can be employed as a planning tool to
evaluate proposed cluster designs and topologies. Several
effective simplifying assumptions are made in the design of
MRPerf, which allow it to quickly yet accurately model ap-
plication behavior. Our validation of MRPerf using small-
to medium-scale clusters shows that it can realistically sim-
ulate Hadoop’s behavior. Moreover, our experience during
the development of the simulator lead us to uncover perfor-
mance issues with the Hadoop implementation, fixing which
resulted in a performance improvement of up to 28.05% for a
typical sort application. Thus, MRPerf provides a promising
tool to system designers and application developers, which
can be used to customize MapReduce environments.

Acknowledgment

This research is supported in part by NSF (CAREER Award
CCF-0746832), and IBM through IBM Faculty Award (Vir-
ginia Tech Foundation grant VTF-874574).

7. REFERENCES
[1] DiskSim, Aug 2008.

http://www.pdl.cmu.edu/DiskSim/.

[2] ns-2, Aug 2008.
http://nsnam.isi.edu/nsnam/index.php/Main_Page.

[3] Disco Project, Jan. 2009. http://discoproject.org/.

[4] Hadoop User Mailing List Archive, Mar. 2009.
http://mail-archives.apache.org/mod_mbox/

hadoop-core-user/.

[5] JIRA: HADOOP-3473, Feb 2009. http:
//issues.apache.org/jira/browse/HADOOP-3473.

[6] Terasort, Mar 2009. http://hadoop.apache.org/
core/docs/current/api/org/apache/hadoop/

examples/terasort/package-summary.html.

[7] Adam Pisoni. Skynet, Apr. 2008.
http://skynet.rubyforge.org.

[8] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka,
S. Sekiguchi, and U. Nagashima. Performance
Evaluation Model for Scheduling in Global Computing
Systems. Int. J. High Perform. Comput. Appl.,
14(3):268–279, 2000.

[9] Apache Software Foundation. Hadoop, May 2007.
http://hadoop.apache.org/core/.

[10] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang,
and M. Yang. Chukwa, a large-scale monitoring
system. In Proc. CCA, 2008.

[11] R. Buyya and M. M. Murshed. GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing.
CoRR, cs.DC/0203019, 2002.

[12] H. Casanova. Simgrid: A Toolkit for the Simulation of
Application Scheduling. In Proc. IEEE CCGRID,
2001.

[13] J. Dean. Experiences with mapreduce, an abstraction
for large-scale computation. In Proc. IEEE PACT,
2006.

[14] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Comm. of the ACM,
51(1):107–113, 2008.

[15] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-Trace: A Pervasive Network Tracing
Framework. In Proc. USENIX NSDI, 2007.

[16] I. Foster (Ed.) and C. Kesselman (Ed.). The GRID:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[17] A. Phanishayee, E. Krevat, V. Vasudevan, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and S. Seshan.
Measurement and analysis of TCP throughput
collapse in cluster-based storage systems. In Proc.
USENIX FAST, 2008.

[18] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. In Proc. IEEE
HPCA, pages 13–24, 2007.

[19] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan,
X. Zhang, K. Taura, and A. Chien. The MicroGrid: A
scientific tool for modeling Computational Grids. Sci.
Program., 8(3):127–141, 2000.


