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Abstract—MapReduce has emerged as a model of choice for
supporting modern data-intensive applications. The model is
easy-to-use and promising in reducing time-to-solution. It is also
a key enabler for cloud computing, which provides transparent
and flexible access to a large number of compute, storage and
networking resources.

Setting up and operating a large MapReduce cluster entails
careful evaluation of various design choices and run-time pa-
rameters to achieve high efficiency. However, this design space
has not been explored in detail. In this paper, we adopt a
simulation approach to systematically understanding the perfor-
mance of MapReduce setups. The resulting simulator, MRPerf,
captures such aspects of these setups as node, rack and network
configurations, disk parameters and performance, data layout
and application I/O characteristics, among others, and uses this
information to predict expected application performance.

Specifically, we use MRPerf to explore the effect of several
component inter-connect topologies, data locality, and software
and hardware failures on overall application performance. MR-
Perf allows us to quantify the effect of these factors, and thus
can serve as a tool for optimizing existing MapReduce setups as
well as designing new ones.

I. INTRODUCTION

Cloud computing is emerging as a viable model for

enabling fast time-to-solution for modern large-scale data-

intensive applications. The benefits of this model include

efficient resource utilization, improved performance, and ease-

of-use via automatic resource scheduling, allocation, and data

management. Increasingly, the MapReduce [1] framework is

employed for realizing cloud computing infrastructures, which

simplifies the application development process for highly-

scalable computing infrastructures. Designing a MapReduce

setup involves many performance critical design decisions

such as node compute power and storage capacity, choice

of file system, layout and partitioning of data, and selection

of network topology, to name a few. Moreover, a typical

setup may involve tuning of hundreds of parameters to extract

optimal performance. With the exception of some site-specific

insights, e.g., Google’s MapReduce infrastructure [2], this

design space is mostly unexplored. However, estimating how

applications would perform on specific MapReduce setups is

critical, especially for optimizing existing setups and building

new ones.

In this paper, we adopt a simulation approach to explore

the impact of design choices in MapReduce setups. We are

concerned with how decisions about cluster design, run-

time parameters, multi-tenancy and application design affect

application performance. We develop an accurate simulator,

MRPerf, to comprehensively capture the various design pa-

rameters of a MapReduce setup. MRPerf can help quantify the

affect of various factors on application performance, as well

as capture the complex interactions between the factors. We

expect MRPerf to be used by researchers and practitioners to

understand how their MapReduce applications will behave on

a particular setup, and how they can optimize their applications

and platforms. The overarching goal is to facilitate MapReduce

deployment via use of MRPerf as a feedback tool that provides

systematic parameter tuning, instead of the extant inexact trial-

and-error approach.

Current trends show that MapReduce is considered a high-

productivity alternative to traditional parallel programming

paradigms for enterprise computing [2], [3], [4] as well as

scientific computing [5], [6]. Although MapReduce, especially

its Hadoop [3] implementation, is widely used, its performance

for specific configurations and applications is not well under-

stood. In fact, a quick survey of related discussion forums [7]

reveals that most users are relying on rules-of-thumb and in-

exact science; for example it is typical for system designers to

simply copy/scale another installation’s configuration without

taking into account their specific applications’ needs. However,

to achieve optimum system design, the scale and complexity of

MapReduce setups create a deluge of parameters that require

tuning, testing, and evaluating for optimum system design.

MRPerf aims to answer questions being asked by the com-

munity about MapReduce setups: How well does MapReduce

scale as the cluster size grows large, e.g., 10,000-nodes? Can

a particular cluster setup yield a desired I/O throughput?

Can a MapReduce application provide linear speed-ups as

number of machines increases? Moreover, MRPerf can be used

to understand the sensitivity of application performance to

platform parameters, network topology, node resources and

failure rates.

Building a simulator for MapReduce is challenging. First,

choosing the right level of component abstraction is an issue:

If every component is simulated thoroughly, it will take

prohibitively long to produce results; conversely, if important

components are not thoroughly modeled, results may lack

desired accuracy and detail. Second, the performance of a
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MapReduce application depends on the data layout within

and across racks and the associated job scheduling decisions.

Therefore, it is essential to make MRPerf layout-aware and

capable of modeling different scheduling policies. Third, the

shuffle/sort and reduce phases of a MapReduce application

are dependent on the input and require special consideration

for correct simulations. Fourth, correctly modeling failures is

critical, as failures are common in large scale commodity clus-

ters and directly affect performance. Finally, verifying MRPerf

at scale is complex as it requires access to a large number of

resources, and setting the resources up under different network

topologies, per-node resources, and application behaviors. The

goal of MRPerf is to take on these challenges and answer

the above questions, as well as explore the impact of factors

such as data-locality, network topology, and failures on overall

performance.

A. Our Contributions

In this paper, we make the following contributions:

• Design, develop, and implement an accurate Hadoop [3]

simulator, MRPerf, which models execution on specified

MapReduce setups, and validate it using measurements

on actual Hadoop setups;

• Apply MRPerf to study the impacts of different network

topologies on Hadoop application performance;

• Investigate and quantify the role of data locality on

application performance; and

• Study how various failures affect Hadoop setup.

We have successfully verified MRPerf using a medium-scale

(40-node) cluster. Moreover, we used MRPerf to quantify the

impact of data-locality, network topology, and failures using

representative MapReduce applications running on a 72-node

simulated Hadoop setup, and gained key insights. For example,

for the TeraSort [8] application, we found that: advanced

cluster topologies, such as DCell [9], can improve performance

upto 99% compared to a common Double rack topology; data

locality is crucial to extracting peak performance with a node-

local task placement performing 284% better than rack-remote

placement in the Double rack topology; and MapReduce can

tolerate failures in individual tasks with small impact, while

network partitioning can reduce the performance by 60%.

II. MODELING DESIGN SPACE

We are faced with modeling the complex interactions of

a large number of factors, which dictate how an application

will perform on a given MapReduce setup. These factors

can be classified into design choices concerning infrastructure

implementation, application management configuration, and

framework management techniques. A summary of key design

parameters modeled in MRPerf is shown in Table I.

MapReduce infrastructures typically encompass a large

number of machines. A rack refers to a collection of compute

nodes with local storage. It is often installed on a separate

machine-room rack, but can also be a logical subset of nodes.

Nodes in a rack are usually a single network hop away from

each other. Multiple racks are connected to each other using

TABLE I
MAPREDUCE SETUP PARAMETERS MODELED IN MRPerf.

Category Example

Cluster pa-
rameters

• Node CPU, RAM, and disk charactersitics
• Node & Rack heterogeneity
• Network topology (inter & intra-rack)

Configuration
parameters

• Data replication factor
• Data chunk size used by the storage layer
• Map and reduce task slots per node
• Number of reduce tasks in a job

Framework
parameters

• Data placement algorithm
• Task scheduling algorithm
• Shuffle-phase data movement protocol.

a hierarchy of switches to create the cluster. Thus, the infras-

tructure design parameters involve varying node capabilities

and interconnect topologies. In, MRPerf, we categorize these

critical parameters as cluster parameters, and they can have a

profound impact on overall system performance.

The ease-of-use of the MapReduce programming model

comes from its ability to automatically parallelize applications

— most MapReduce applications are embarrassingly parallel

in nature — to run across a large number of resources.

Simply put, MapReduces splits an application’s input dataset

into multiple tasks and then automatically schedules these

tasks to available resources. The exact manner in which a

job’s data gets split, and when and on what resources the

resulting tasks are executed, is influenced by a variety of

configuration parameters, and is an important determinant of

performance. These parameters capture inherent design trade-

offs. For example: Splitting data into large chunks yields

better I/O performance (due to larger sequential accesses), but

reduces the opportunity for running more parallel tasks that

are possible with smaller chunks; Replicating the data across

multiple racks provides easier task scheduling and better

data locality, but increases the cost of data writes (requiring

updating multiple copies) and slows down initial data setup.

Finally, design and implementation choices within a

MapReduce framework also affect application performance.

These framework parameters capture setup management tech-

niques, such as how data is placed across resources, how

tasks are scheduled, and how data is transferred between

resources or task phases. These parameters are inter-related.

For instance, an efficient data placement algorithm would

make it easy to schedule tasks and exploit data locality.

The job of MRPerf is further complicated by the fact that

the impact of a specific factor on application behavior is not

constant in all stages of execution. For example, the network

bandwidth between nodes is not an important factor for a job

that produces little intermediate output if the map tasks are

scheduled on nodes that hold the input data. However, for the

same application, if the scheduler is not able to place jobs near

the data (e.g. if the data placement is skewed), then network

bandwidth between the data and compute nodes might become

the limiting factor in application performance. MRPerf should

model these interactions to correctly capture the performance

of a given MapReduce setup.
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III. DESIGN

In this section, we present the design of MRPerf. Our

prototype is based on Hadoop [3], the most widely-used open-

source implementation of the MapReduce framework.

A. Architecture Overview

The goal of MRPerf is to provide fine-grained simulation

of MapReduce setups at sub-phase level. On one hand, it

models inter- and intra-rack interactions over the network,

on the other hand, it models single node processes such as

task processing and data access I/O time. Given the need

for accurately modeling network behavior, we have based

MRPerf on the well-established ns-2 [10] network simulator.

The design of MRPerf is flexible, and allows for capturing a

wide-variety of Hadoop setups. To use the simulator, one has

to provide node specification, cluster topology, data layout,

and job description [11]. The output is a detailed phase-level

execution trace that provides job execution time, amount of

data transferred, and time-line of each phase of the task. The

output trace can also be visualized for analysis.

Figure 1 shows the high-level architecture of MRPerf.

The input configuration is provided in a set of files, and

processed by different processing modules (readers), which

are also responsible for initializing the simulator. The ns-2

driver module provides the interface for network simulation.

Similarly, the disk module provides modeling for the disk

I/O. Although we use a simple disk model in this study,

the disk module can be extended to include advanced disk

simulators such as DiskSim [12]. All the modules are driven

by the MapReduce Heuristics module (MRH) that simulates

Hadoop’s behavior. To perform a simulation, MRPerf first

reads all the configuration parameters and instantiates the

required number of simulated nodes arranged in the specified

topology. The MRH then schedules tasks to the nodes based

on the specified scheduling algorithm. This results in each

node running its assigned job, which further creates network

traffic (modeled through ns-2) as nodes interact with each

other. Thus, a simulated MapReduce setup is created.

We make two simplifying assumptions in MRPerf. (i) A

node’s resources, i.e., processors and disks, are equally shared

among tasks assigned concurrently to the node. (ii) MRPerf

does not model OS-level asynchronous prefetching. Thus,

it only overlaps I/O and computation across threads and

processors (and not in a single thread). These assumptions
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Fig. 2. Control flow in the Job Tracker.

may cause some loss in accuracy, but greatly improve overall

simulator design and performance.

B. Simulating Map and Reduce Tasks

MRPerf employs packet-level simulation and relies on ns-2

for capturing network behavior. The main job of MRPerf is to

simulate the map and reduce tasks, manage their associated

input and output data, make scheduling decisions, and model

disk and processor load. To model a setup, MRPerf creates a

number of simulated nodes. Each node has several processors

and a single disk, and the processing power is divided equally

between the jobs scheduled for the node. Also, each simulated

node is responsible for tracking its own processor and disk

usage, and other statistics, which is periodically written to an

output file.

Our design makes extensive use of the TcpApp Agent

code in ns-2 to create functions that are triggered (called-

back) in response to various events, e.g., receiving a network

packet. MRPerf utilizes four different kinds of agents, which

we discuss next. Note that a node can run multiple agents at

the same time, e.g., run a map task and also serve data for

other nodes. Each agent is a separate thread of execution, and

does not interfere with others (besides sharing resources).

a) Tracking job progress: The main driver for the simu-

lator is a Job Tracker that is responsible for spawning map and

reduce tasks, keeping a tab on when different phases complete,

and producing the final results. Figure 2 shows the control flow

diagram for the Job Tracker. Most of the behavior is modeled

in response to receiving messages from other nodes. However,

the Job Tracker also has to perform tasks, such as starting new

map and reduce operations as well as bookkeeping, which are

not in response to explicit interaction messages. MRPerf uses

a heartbeat trigger to initiate such Job Tracker functions, and

to capture the correct MapReduce behavior.

b) Modeling map task: Receipt of a message from the

Job Tracker to start a map task results in the sequence of

events shown in Figure 3(a). (i) A Java VM is instantiated

for the task. (ii) Necessary data is either read from the local
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disk or requested remotely. If a remote read is necessary, a

data request message is sent to the node that has the data,

and the process stalls until a reply with the data is received.

(iii) Application-specific map, sort, and spill operations are

performed on the input data until all of it has been consumed.

(iv) A merge operation, if necessary, is performed on the

output data. Finally, (v) a message indicating the completion

of the map task is returned to the Job Tracker. The process

then waits for the next assignment from the Job Tracker.

c) Modeling reduce task: The reduce task is also initiated

upon receiving a message from the Job Tracker. The sequence

of events in this task, as shown in Figure 3(b), are as follows.

(i) A message is sent to all the corresponding map tasks to

request intermediate data. (ii) Intermediate data is processed

as it is received from the various map tasks. If the amount

of data exceeds a pre-specified threshold, an in-memory or

local file system merge is performed on the data. These two

steps are repeated until all the associated map tasks finish,

and the intermediate data has been received by the reduce

task. (iii) The application-specific reduce function is performed

on the combined intermediate data. Finally, (iv) similarly as

for the map task, a message indicating the completion of the

reduce task is sent to the Job Tracker, and the process waits

for its next assignment.

d) Simulating data access: Another critical task in MR-

Perf is properly modeling how data is accessed on a node.

This is achieved through a separate process on each simulated

node, which we refer to as the Data Manager. Briefly, the main

job of the Manager is to read data (input or intermediate)

from the local disk in response to a data request, and send

the requested items back to the requester. Separating data

access from other tasks has two advantages. First, it models

the network overhead of accessing a remote node. Second,

it provides for extending the current disk model with more

advanced simulators, e.g., DiskSim [12].

Finally, to reduce simulation overhead, we do not perform

packet-level simulations for the actual data, which is done only

for the meta-data. Instead, we use the size of the data and the

bandwidth observed through ns-2 to calculate transfer times

for calculating overall task execution times.

C. Input Specification

The user input needed by MRPerf can be classified into three

parts: cluster topology specification, application job charac-

teristics, and the layout of the application input and output

data. MRPerf relies on ns-2 for network simulation, thus,

any topology supported by ns-2 is automatically supported

by MRPerf. The topology is specified in XML format, and is

translated by MRPerf into TCL format for use by ns-2.

To capture job characteristics, we assume that a job has sim-

ple map and reduce tasks, and that the computing requirements

are dependent on the size, and not content, of the data. For

accuracy, several sub-phases within a map task are modeled

separately, e.g., JVM start, single or multiple rounds of map

operations, sort and spill, and a possible merge. Compute time

for each data-size-dependent sub-phase is captured using a

cycles/byte parameter. Thus, a set of cycles/byte measured

for each of the sub-phases provides a mean for specifying

application behavior. Some application phases do not involve

input-dependent computation, rather fixed overheads, e.g.,

connection setup times. These steps are captured by measuring

the overhead and using it in the simulator. This approach to

capture overall application behavior is in-line with what we

have observed in real experiments, and as we show later, is

effective.

The data layout provides the location of the main node

handling the job metadata, the location of actual data on the

simulated nodes, replication factor, etc. Data layout affects

data-computation co-location in the map phase, and thus the

overall performance. Finally, we assume that job output data

is proportional to the input data and thus no separate means

for modeling the job output data is required in MRPerf.

Some of the input parameters are derived from the physical

cluster topology being modeled, while others can be collected

by profiling a small-scale MapReduce cluster or running test

jobs on the target cluster.

D. Limitations of our Simulator

The current implementation of MRPerf is limited to mod-

eling a single storage device per node, supporting only one

replica for each chunk of output data (input data replication

is supported), and not modeling certain optimizations such

as speculative execution. We support simple node and link

failures, but more advanced exceptions, such as a node run-

ning slower than others or partially failing, are not currently



modeled. However, we stress that lack of such support does

not restrict MRPerf’s ability to model performance of most

Hadoop setups. Nonetheless, since such support will enhance

the value of MRPerf and enable us to investigate Hadoop

setups more thoroughly, addressing these limitations is the

focus of our ongoing research.

In summary, MRPerf allows for realistically simulating

MapReduce setups, and its design is extensible and flexible.

Thus, MRPerf can capture a wide-range of configurations and

job characteristics, as well as evolve with newer versions of

Hadoop.

IV. EVALUATION

There are four goals of our evaluation: (i) validate MRPerf’s

performance predictions using real-world applications running

on a medium-scale Hadoop [3] cluster; (ii) use MRPerf to

study the role of network topology on the application perfor-

mance; (iii) use MRPerf to demonstrate the importance and

impact of data locality for different MapReduce applications;

and (iv) apply MRPerf to study the impact of infrastructure

failures. For this purpose, we have implemented MRPerf, as

described in Section III using about 4000 lines of C++, Tcl,

and Python code interfaced with the ns-2 simulator.

A. Applications

We have used several representative MapReduce applica-

tions in our evaluation study. In the following, we present a

brief description of these applications.

• TeraSort. The TeraSort application [13] is motivated by

the TeraSort benchmark [8], which measures the time

needed to sort 10 billion 100 byte records. Sorting is an

important step in many analytics applications and stresses

the infrastructure by producing as much intermediate data

(which needs to be shuffled) and final output (which

needs to be saved in the distributed filesystem) as the

input.

• Search. In this synthetic application, we model a search

application that compares each input record with a set

of match criteria, and finds a small subset of matches.

The complexity of match criteria determines the CPU

load of the map tasks. Search, parameterized by match-

complexity, allows us to study the impact of varying map

times with fixed input and output size.

• Index. In this synthetic application, we model an indexing

application that generates map (and reduce) output for

each unique word found in the input data. The amount of

output data depends on the number of unique words in the

input data. Index, parameterized by the fraction of unique

input words, allows us to study the impact of varying

intermediate data size (map-side output) with fixed map

times.

Table II summarizes the application variants used in the

study and the corresponding value of the key parameters:

Cycles/byte represents the compute cycles spent per input

byte and captures the compute-complexity of the application;

Filter Percentage captures the ratio between the size

TABLE II
PARAMETERS OF THE SYNTHETIC APPLICATIONS USED IN THE STUDY.

App Cycles/byte Min. Filter % Max. Filter %

TeraSort 40 100% 100%

Search(a) 4 0% 0.01%
Search(b) 40 0% 0.01%
Search(c) 400 0% 0.01%

Index(a) 40 2% 2%
Index(b) 40 10% 10%
Index(c) 40 50% 50%

TABLE III
STUDIED CLUSTER CONFIGURATIONS.

Configuration parameters Value(s)

Number of racks single, double
Network 1 Gbps
Nodes(total) 2, 4, 8, 16
CPU/node 2x Xeon Quad 2.5GHz
Disk/node 4x 750GB SATA

of input and output data during the map phase, and is specified

using a minimum and maximum value. For instance, TeraSort

spends 40 cycles per input byte, on average, and the output

size is equal to the input size. Whereas, Search(c) spends 400

cycles per input byte, and the output can range from size zero,

i.e., searched term not found, to a small fraction (0.01%) of

the input size.

B. Validating MRPerf Design

In this section, we present a brief validation of the per-

formance predictions made by MRPerf using measurements

of a real-world application run on a medium-scale Hadoop

cluster. Detailed validation results can be found in our earlier

work [11]. For the presented results, we measured the perfor-

mance of TeraSort (chunk size 64 MB, input 4GB/node) on

a cluster configurations shown in Table III, and compared the

results with those estimated by MRPerf.

1) Single-rack cluster test: In the first test, we use a single

Hadoop rack containing all the nodes and one router. All

node-router links are 1 Gbps. The number of nodes is varied

(16 to 128 cores), and we observe the real and simulated

total execution time for TeraSort. The results are shown in

Figure 4, which shows the breakdown in terms of map and

reduce phases. Here, we observe that MRPerf is able to

predict the map and reduce phases performance within a range

of 3.42% and 19.32% of the measured values, respectively.

Moreover, MRPerf is able to predict Hadoop performance

fairly accurately as the number of cores is increased from 16

to 128. Note that the average map time remains roughly the

same across configurations because in all cases a single map

task is processing the same amount of data (a single 64 MB

chunk). The overall execution time and average reduce time

also remain similar across configurations since the amount of

data (and the number of reduce tasks) is scaled proportionally

with cluster size.
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2) Double rack cluster test: Next, we repeat the validation

test with a cluster comprising two racks, with each rack

containing half the nodes from before and one router, and

the routers in the two racks connected using a single link.

All node-router and router-router links are 1 Gbps. Figure 5

again shows a good match between simulated and actual mea-

surements. The only exception is the map phase performance

for the 128-core case, where the predicted values are 16.99%

lower than the actual measured time. Further investigation

revealed that the network throughput on the inter-rack link was

much lower than expected and the application reported some

network errors. One suspected reason for this is packet drops at

the router in our testbed (possibly due to the TCP incast [14]).

Since this unexpected network slow-down is not modeled in

MRPerf as it assumes a high-performance router connecting

the two racks, the increase in the map phase execution time

was not predicted. We continue to develop means for better

modeling of such routers in MRPerf using ns-2, however, better

router modeling is orthogonal to this work. Excluding the 128-

core case, MRPerf is able to predict performance within a

range of 5.22% and 12.83% of the actual measurements for

the map and reduce phases, respectively.

3) Comparing sub-phase performance: In the next exper-

iment, we study the sub-phases of a map task. map reads

the input data, and processes it. The output is buffered in

memory, and is sorted in memory during sort. The data is

then written to the disk during spill. If multiple spills are

involved, the data is read into memory once again for merging

during merge. Finally, overhead accounts for miscellaneous

processing outside of the above sub-phases, such as network

messages. Figure 6 shows the sub-phase break-up times for 16

to 128 core clusters under MRPerf and actual measurements,

with prefixes “s” and “d” showing results for single-rack and

double-rack topology, respectively. As evident, MRPerf is able

to accurately predict performance even at sub-phase level.

Once again, the router issue discussed earlier resulted in a

larger overhead for the 128-core case. However, other sub-

phases are reasonably captured by MRPerf. Overall, MRPerf’s

results are within a range of 13.55% of the actual measure-

ments.

In summary, this set of experiments show that MRPerf is

capable of accurately simulating Hadoop behavior.
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Fig. 7. Network topologies considered in this study. An example setup with
6 nodes is shown.
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Fig. 8. Performance under studied topologies. (a) All-to-all messaging
microbenchmark. (b) TeraSort.

C. Impact of Network Topology

In the next set of experiments, we utilize MRPerf to in-

vestigate the impact of network topology on Hadoop appli-

cation performance. For this purpose, we simulate 72 nodes

connected via 1 Gbps links. We consider four topologies as

shown in Figure 7: Star where a single router connects all

the 72 nodes; Double rack where the resources are divided

equally into two racks of 36 nodes, each rack has its own

router to connect all of its nodes, and the racks are connected

using a point-to-point link between their routers; Tree where

nodes are divided into 9 racks with 8 nodes each, and the

racks are connected via a hierarchy of routers; and DCell [9],

an advanced network topology, where nodes are distributed

similarly as in Tree but the interconnectivity is recursively

defined, with the nodes participating in the routing. The main

advantage of DCell is that it does not require expensive

switches with a large number of ports, rather cost-effective

8-port switches can be used to build large-scale setups.

1) Micro-benchmark test: We first evaluate the relative

performance of the topologies using an all-to-all commu-
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Fig. 9. TeraSort performance under studied
topologies with all data available locally.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Star Double
rack

Tree DCell

M
a
p
/R

e
d
u
c
e
 p

h
a
s
e
 t
im

e
 (

s
)

map
shuffle

sort
reduce

Fig. 10. TeraSort performance under studied
topologies with all data available locally and
100 Mbps links.
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Fig. 11. TeraSort performance under studied
topologies with all data available locally and using
faster map tasks.

nication micro-benchmark (not a Hadoop job). In this test,

each pair of nodes exchange data, with each node sending

1 MB of data to every other node, and repeating for 100

times. This experiment demonstrates the wide variation in total

bandwidth in the different topologies in the presence of all-

to-all communication. In particular, the hierarchical schemes

(Tree and Double rack) end up with the higher-level links as

bottlenecks in such communication. Figure 8(a) shows the

total time for the 100 rounds of communication: Star has

the best performance as links are not shared between nodes.

Double rack and Tree bottleneck on link capacity, and thus

perform a factor of 12x and 6x slower than Star, respectively.

Finally, DCell is a factor of 3.5x slower compared to Star as

inter-rack links are shared, but is a factor of 3.6x and 1.8x

faster than Double rack and Tree, respectively. We repeated

the experiment varying the number of rounds and the message

sizes and obtained similar results. Based on these observations,

we infer that DCell is a promising topology for use in Hadoop

setups.

2) Effect on TeraSort: In our next experiment, we run

TeraSort on each of the topologies in MRPerf. For each case,

one node acts as the Job Tracker, while the remaining nodes

run map and reduce tasks, as well as serve data. Figure 8(b)

shows the results. DCell is able to perform as well as Star

since the network usage is slowed down (compared with the

previous experiment) by sorting being done by the nodes.

Double rack and Tree are slower, taking 99% and 15% more

time, respectively, compared to Star. The map phase in the

different topologies is not identical because some map tasks

retrieve their input data over the network, which takes a longer

time when the network is overloaded.

a) Eliminating the effect of remote data retrieval: In

the next experiment, we modify several settings to isolate

the impact of network topology on the reduce phase. We

modify the previous experiment in three ways: (A) make

all data for the reduce phase available locally; (B) change

all links to be 100 Mbps instead of 1 Gbps; and (C) use

faster map tasks. Figure 9 shows the performance of the

topologies with A. As expected, the map times are similar for

all the four topologies. Moreover, since the amount of data

transferred over the network is reduced, the network is less
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Fig. 12. Search performance under studied topologies with 100 Mbps links.

of a bottleneck and the shuffle, sort, and reduce performance

is also similar. The only exception is Double rack, where

the shuffle phase takes a long time, since the single link

between the two racks is still a bottleneck in the all-to-all

data transfer needed during shuffle. To highlight the effect of

topologies, we repeat the experiment with slower links and

local map data, i.e., with both A and B. Figure 10 shows the

results for this case. Now, the network becomes a bottleneck

for Tree, Double rack and DCell during the shuffle phase,

but DCell is the closest to Star due to its higher aggregate

bandwidth for all-to-all communication. Finally, we modified

the setup to use 20% faster map tasks with local map data,

i.e., with A and C. The motivation is to increase the rate of

data produced for shuffling, and thus to highlight any network

bottleneck if present. Figure 11 shows a similar behavior as

before, illustrating that even for medium-sized clusters and

1 Gbps networks, inter-node bandwidth can be the bottleneck

for MapReduce applications.

3) Effect on Search: Next we study the affect of network

topologies on Search. Again, the simulations model a 72-

node topologies, 1 GB input data per node, and a 64 MB

block size (with map input data available locally). Search

produces an insignificant amount of intermediate data and

thus is largely unaffected by network topologies. Figure 12

shows that the application’s performance is fairly even across

all topologies (with 100 Mbps links). Experiments with 1 Gpbs
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Fig. 13. Index performance under studied topologies.
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Fig. 14. Index performance under studied topologies with 100 Mbps links.

links produced similar results, and are not shown.

4) Effect on Index: Figure 13 and 14 show the effect of

network topology on the performance of Index with 1 Gbps

and 100 Mbps links, respectively. The simulations model 72-

node topologies, 1 GB input data per node, and a 64 MB

block size. Again, the needed input data for all map tasks is

available locally.

These experiments show that the effect of network bottle-

necks becomes much more pronounced as more intermediate

data is generated by the map tasks, since all this data needs

to be shipped across the network during the shuffle phase.

Also, as before, switching to a 100 Mbps network exacerbates

the problem and causes a larger spread in performance across

topologies even in the case where maps output is only 10%

of their input data.

Designers of MapReduce clusters should take these re-

sults into account and evaluate the most cost-effective ways

of achieving acceptable network performance with all-to-all

communications. As shown in this section, the characteristics

of the applications that will be run on the cluster play an

important role in predicting the demand on the networking

infrastructure.

D. Impact of Data Locality

In this set of experiments, we evaluate how data locality

affects application performance. For this purpose, we com-
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Fig. 15. Impact of data-locality on TeraSort performance.
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Fig. 16. Impact of data-locality on TeraSort map task sub-phases.

pare three different job scheduling decisions, which result in

different data locality for the jobs. These localities are as

follows. Node-local where all the needed data is available on

the node and no remote retrieval is required. This occurs if

sufficient data replication has been employed and the compute

cluster overlaps with the data cluster. Rack-local where all the

needed data is found within the rack but not on the node. We

study this case since racks have good inter-node bandwidth, so

scheduling tasks to access data within the rack is considered

preferable to outside the rack. Rack-remote where all data has

to be retrieved over the network from a remote rack. This can

occur when a cluster is designed with separate compute and

data sub-clusters, or if local map slots are not available on

nodes containing the data when multiple jobs are run on a

single cluster. For these experiments, we use the Double rack,

Tree and DCell topologies.

1) Effect on TeraSort: Figure 15 shows overall execution

time for TeraSort, where as Figure 16 shows the break-up of

map phases (Rack-remote bar of Double rack is truncated).

The most time is consumed by the map function as it involves

remote data retrieval. We observe that data locality affects

Double rack significantly, with execution time increasing by

284% for Rack-remote compared to Node-local. In contrast,

DCell is able to provide better network bandwidth, and thus

the results under this topology Rack-remote are similar to that

of Rack-local and Node-local.
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Search performance using DCell.
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Index performance using DCell.
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2) Effect on Search: Figure 17, and Figure 18, show the

impact of different data-locality conditions on the perfor-

mance of Search for the DCell and Double rack topologies,

respectively. Search with more complex match criteria (and

longer map times), and configurations with data farther from

the compute node generally take longer, as expected. An

interesting situation occurs in the Double rack case when the

data is Rack-remote. Here the network latency during the map

phase dominates execution time, and the execution time does

not change with map phase CPU cost.

3) Effect on Index: Figure 19 and Figure 20, the impact

of different data-locality conditions on performance of Index

for the DCell and Double rack topologies, respectively. Index

generates significant intermediate data (unlike Search), thus

the network is shared for map data transfers and intermediate

data shuffle. Again, the trends are as expected, with the

applications that generate more intermediate data taking longer

to complete, and faring worse in topologies where point-to-

point bandwidth is lower.

E. Impact of Failures

In this set of experiments, we study how failures affect the

performance of Hadoop applications. The failure scenarios that

we consider are: (i) a map task fails; (ii) a reduce task fails;

(iii) a node fails; and (iv) the inter-rack link fails (equivalent

to a rack failure since it causes a network partition). Unless

otherwise specified each experiment models a 72-node Double

rack topology setup, and scheduling is such that node-local

data locality is achieved.
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Fig. 21. TeraSort performance under failure scenarios.
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Fig. 22. TeraSort performance under failure scenarios using a 20-node cluster.

1) Failure detection and recovery: The failure model in

MRPerf mimics Hadoop’s as follows. Task failures, i.e., map

and reduce operation failures, are detected almost instanta-

neously by the local task tracker, and a failed task is re-started

immediately upon detection. Such a failure results in loss of

all the work done by the failed task. In contrast to task failures,

a node or rack-level failure cannot be detected immediately.

Instead, if the job tracker does not receive any messages from

a node or rack for a pre-specified timeout period (default is 10

minutes in Hadoop), it infers that the non-responding unit has

failed. Map task intermediate data stored on a failed node is

considered lost. However, not all the map tasks need to be re-

run for recovery, as some of it may already have been copied

by reduce tasks running on different nodes. Thus, instead of

trying to launch recovery immediately upon failure detection,

we wait for reduce tasks corresponding to maps tasks on the

failed node to report errors in reading necessary intermediate

data, and only then re-start the failed map tasks. Although

simple, such an on-demand recovery approach can result in

delays in the recovery process. Finally, a rack-level failure is

treated as multiple node failures in MRPerf, wherein all nodes

in a failed rack are considered to have failed and their behavior

is modeled as described above.

2) Effect on TeraSort: Figure 21 shows the overall execu-

tion time of TeraSort while failures occur during the execution.

We observe that the Hadoop is able to tolerate a map task

failure with negligible (<3% compared to no failures) effect.

This is because a single map task represents a small fraction
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Fig. 23. Search performance under failure scenarios.

of the overall work, and the scheduler is able to re-run the

failed map task without affecting any other tasks. This task

isolation is a key benefit of MapReduce model. A reduce

failure represents a larger fraction of work being lost, but with

72-node, some reduce tasks run slower than others, and the re-

tried reduce task is able to finish faster because it competes

for network bandwidth with only the slow reduce tasks. Thus,

even a reduce failure is handled without significant perfor-

mance penalty (11% slowdown). A node failure, and rack

failure have much larger impacts on performance (139% and

186% respectively), partially because of the failure detection

time-out (see Section IV-E1) and partially because of the larger

loss of computation and intermediate data.

Figure 22 shows the results for the same failures for roughly

the same amount of data sorted on a smaller cluster (20 nodes

with 4 GB/node). Here we see that a reduce task failure results

in 34% performance degradation. This is because there is

smaller variability in the reduce times on this cluster and a

reduce task loss means that 1/20 of the shuffle and reduce

steps have to be re-run. The perforamance degradation on

a node failure is 44%, mainly due to the failure detection

time-out and the lost data. The worst performance, i.e. 60%

degradation, occurs when the intra-rack link fails. This is

because when the two racks are separated, the entire job has

to be re-run on one rack that contains the job tracker.

3) Effect on Search: Figure 23 shows impact of failures on

Search. The effect of map and reduce task failures are small

as is the case with TeraSort. However, the 10 minute failure

detection time-out dominates the run-time of node and rack

failure cases for this application due to the shorter total run-

time. An interesting trend is that the longer running versions

(i.e with larger cycles/byte) of Search actually finish faster in

the case of rack failure. This is because the recovery time

is longer if the number of completed map tasks on the failed

rack is larger (see re-tries of map tasks in the case of node/rack

failures in Section IV-E1).

4) Effect on Index: Figure 24 shows impact of failures on

Index. Again, the cases of map and reduce task failures are

similar to the previous applications. Also, for rack failure, the

recovery for the 10% Index takes less time than the application

with the 2% case due to the effect of failed map task recovery,
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Fig. 24. Index performance under failure scenarios.

similar to the rack failure recovery for Search experiments.

However, the trend does not continue for the 50% case because

higher shuffle requirements cancel out the faster recovery due

to fewer failed map tasks.

These results are as expected given the base MapReduce

design, and show the ability of MRPerf to capture Hadoop

behavior under various failures. An important caveat to these

results is the fact that MRPerf does not capture an important

feature of Hadoop – speculative execution. Hadoop starts

backup map and reduce tasks when it finds that execution

slots are free and there are tasks which have taken longer than

expected. We plan to add this feature to MRPerf in the future.

The scheduling policies of speculative execution are a subject

of active development in the Hadoop community, and we hope

that including this capability in MRPerf will provide a way of

systematically comparing different policies.

F. Summary of Results

MRPerf enables quantifying the affect of various design

decisions on Hadoop applications. We have shown that ad-

vanced topologies such as DCell can help improve over-

all system performance. This stresses that cluster designers

should consider such topologies while choosing networks for

MapReduce clusters. Moreover, we have quantified the drastic

effects that data-locality has on application performance. This

stresses the need for prioritizing data locality in job scheduling

decisions. We have also shown that MapReduce can tolerate

failures in the map tasks and node failures with negligible or

small impact, respectively, however, inter-rack link failures can

reduce the performance significantly. Consequently, building

redundancy into inter-rack connectivity may be necessary for

mitigating the affects of failures.

We found it instructive to observe the inter-play of resource

bottlenecks and scheduling decisions in determining the per-

formance of Hadoop applications. We stress that studying this

design space using actual clusters is next to impossible given

equipment costs, extensive configurations and setup times,

man-power needed, in-efficiency of the approach in terms of

resources used and results obtained, and most importantly, the

need to re-do the entire testing process for different clusters,

applications, configurations. Thus, simulation is a powerful



and efficient approach in this context. This has led us to

believe that MRPerf is an important tool for predicting the

performance of applications on Hadoop platform.

V. RELATED WORK

Given that MapReduce is a relatively new programming

model, it has not been previously studied through detailed

simulations. However, a closely related large-scale distributed

computing paradigm is Grid computing [15]. Grid computing

is well-established and has been used to solve large-scale prob-

lems using distributed resources. It addresses similar issues as

MapReduce, but with a grander scope. A variety of simulators

have been developed to model and simulate the performance

of Grid systems including Bricks [16], Microgrid [17], Sim-

grid [18], and GridSim [19]. The interest in using simulation to

model large-scale distributed systems can be gauged from the

fact that the SourceForge project for GridSim shows over 5000

downloads between September 2007 and March 2009. Unlike

these simulators for Grid, MRPerf is focused on modeling

the specifics of MapReduce frameworks and does not worry

about reservations and wide-area scheduling decisions that are

critical for Grids.

The desire to understand the performance of MapReduce

systems has led to a variety of efforts, including the Chukwa

project [20] and instrumenting Hadoop using X-Trace [21].

These efforts are complimentary to our work, and in the future

we hope to modify MRPerf to produce output reports in the

same formats as these projects, so that analysis tools developed

for them can also be used to study results from MRPerf, and

vice versa.

VI. CONCLUSION

We have discussed the design, evaluation, and application

of MRPerf, a realistic phase-level simulator for the widespread

MapReduce framework, toward designing, provisioning, and

fine-tuning Hadoop setups. MRPerf provides means for an-

alyzing application performance on a given Hadoop setup,

and serves as a tool for evaluating design decisions for fine-

tuning and creating Hadoop clusters. We have verified the

simulator using a medium-scale cluster, and have shown that it

effectively models MapReduce setups. Moreover, we applied

MRPerf to study the impact of data locality, network topology

and node failures on application performance, and have shown

that network topology choices and scheduling decisions can

have a large impact on performance. Thus, MRPerf can help

in designing new high performance MapReduce setups, and

in optimizing existing ones. Exploring Hadoop’s design space

using actual clusters is impractical given the in-efficiency of

the approach in terms of resources used and results obtained,

and the need to re-do the entire testing process for different

clusters, applications, configurations. Thus, simulation is a

powerful and efficient approach in this context. In summary,

MRPerf provides a powerful system planning and design tool

for researchers and IT professionals in realizing emerging

MapReduce setups.
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