
Mitigating Disk Energy Management Delays

by Exploiting Peer Memory

Guanying Wang, Ali R. Butt

Virginia Tech

Blacksburg, VA

Email: {wanggy,butta}@cs.vt.edu

Chris Gniady

University of Arizona

Tucson, AZ

Email: gniady@cs.arizona.edu

Abstract—Modern enterprises employ hundreds of worksta-
tions for daily business operations, which consume a lot of
energy and thus have significant operating costs. To reduce such
costs, dynamic energy management is often employed. However,
dynamic energy management, especially that for disks, introduces
delays when an accessed disk is in a low power state and
needs to be brought into active state. In this paper, we propose
System-wide Alternative Retrieval of Data (SARD) that exploits
the large number of machines in an enterprise environment to
transparently retrieve binaries from other nodes, thus avoiding
access delays when the local disk is in a low power mode. SARD
uses a software-based approach to reduce spin-up delays while
eliminating the need for major operating system changes, custom
buffering, or shared memory infrastructure.

I. INTRODUCTION

Energy conservation in computer systems is driven by the

positive financial and environmental implications, especially

in servers [1], [2]. Large organizations often require shutting

down workstations, unneeded servers and cooling systems

overnight [3], as well as employ dynamic energy management

to reduce energy costs. Dynamic management saves energy

by identifying periods of inactivity for a device, and then

keeping the device in a low-power state during such periods.

Accurately predicting such idle periods [4] thus become a

key research focus. However, these mechanisms still expose

powering-on delays (e.g., disk spin-up delays), even if the

predictions are correct and provide energy savings.

The challenge lies in keeping the system powered down

for as long as possible, yet reducing the performance impact

associated with delays on powering the device up when it is

needed. Delays can significantly impact system performance,

irritate users, and also reduce the energy savings since the

system has to operate longer to satisfy user requests.

In this paper, we focus on reducing disk energy management

delays because: disks are mechanical devices and thus expose

large latencies when spinning up from low-power mode;

they are significant energy consumers [5]; and disk energy

management, e.g., shutting down idle disks [4], is a common

practice present on almost every system in some form. To this

end, we explore alternative ways of satisfying I/O requests

destined for a typical desktop or workstation disk in low-

power mode in enterprise environments. The goal is to reduce

the spin-up delays by using existing resources present in such

environments. Moreover, servicing I/Os from alternate sources

provides opportunities for keeping the local disks in low-power

mode, and may reduce energy consumption as a bonus.

To avoid spinning up the disk on arrival of user requests, and

subsequently exposing spin-up delays to the users, we exploit

the arrangement of local disks/file servers adopted in enterprise

environments. Instead of always going to the local disk, or

the centralized file server, we present System-wide Alternative

Retrieval of Data (SARD) to retrieve application binaries from

other workstations that are loosely arranged in a peer-to-peer

(p2p) network. The key observation in SARD is that computers

in enterprise environments are mostly uniformly configured

to simplify system maintenance. As a result, the application

binaries are identical across many peers, which allows sharing

of the binaries among them.

SARD is designed in such a way that it: (1) does not

require any custom buffering or shared memory infrastructure;

(2) does not interfere with energy management of other

systems; (3) does not require additional hardware resources;

(4) requires few kernel modifications; and (5) allows par-

ticipants to be loosely coupled and free to leave and join

the system. SARD utilizes existing resources by transpar-

ently locating the workstation with requested binaries in the

memory and transmits them to the machine that requested

them. Furthermore, our p2p approach does not require fixed

configurations and does not place any constraints on peers

membership in the system. The individual machines can leave

and join the system freely, significantly reducing system

management that more tightly coupled systems, such as shared

virtual memory, would require. The resulting design provides

a low-overhead approach to minimizing energy consumption

in enterprise environments.

II. OPPORTUNITIES IN ENTERPRISE ENVIRONMENTS

The following observations about large-scale enterprise en-

vironments serve as the enablers for SARD.

a) Energy management is prevalent: Large enterprises

are actively pursuing energy management of employees’ work-

stations for monetary savings. A popular dynamic energy

management technique is to shut the disk down after a period

of idleness. However, spinning-up disks to service later I/O

requests can typically expose multi-second delays to the users.

b) Similarly maintained systems: Large computing in-

frastructures, especially academic setups, keep the systems

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20

P
ro

b
a
b
ili

ty
 (

%
)

Number of concurrent redundant apps

CDF

Fig. 1. Concurrent redundant apps.

61
2

3a

4a

Node 0

3

4

8

9

7

. . .

Disk

kernel

User p2p module

SARD

module

Hash table

vi: N1. . .

vi: N0
firefox:N0

Node N

Node 3

Node 2

Node 1

5

Fig. 2. SARD Architecture.

mostly uniform to simplify management: they run the same

OS and set of applications, usually on similar hardware.

c) User data on central file servers: Persistence is crucial

for user data, therefore it is periodically backed up. To simplify

the backup process and to provide users transparent access to

data from any workstation, many setups provide central storage

for user data, which is more reliable and cost effective than

backing up individual systems. The local disks are typically

utilized to boot OS and supporting temporary scratch space.

d) Similar system usage: To investigate how often dif-

ferent machines in an enterprise use the same binary, we

conducted a study using 20 of our departmental machines used

by students for typical desktop use. For a period of 13 days,

we recorded the applications that are running on each machine

every 5 seconds. Next, we determined how often different

machines run the same applications.

Figure 1 shows the cumulative distribution of the number

of times when different machines are running the same ap-

plications. For the studied environment, 57% of the time two

or more machines were running an application concurrently,

and 12% of the time more than 10 copies of an application

were running concurrently on different machines. Assuming a

similar application usage distribution, and extrapolating these

results1 show that in a medium-scale setup with 107 machines

more than 99% of the time an application will be running

on at least two machines and thus can be serviced remotely.

Consequently, such environments can benefit from SARD.

III. DESIGN

In SARD, all machines join a p2p overlay network, which

enables them to interact with each other in a decentralized

fashion using the DHT [6] paradigm. Participants run our

software that advertises their in-memory applications to others

via the overlay. Advertisements enable participants to learn

what applications (or parts thereof) are available in memory

of peers. When an application is executed on a node, it can

use the remote availability information and decide whether to

retrieve the application from the local disk or remote memory.

Servicing requests from remote memory helps avoid spin-up

delays of powered down disks, and can improve energy savings

by keeping disks in low-power mode longer.

1Analysis shows that for a setup of n (n >> 19) nodes, the proba-
bility that two copies of an application are running at the same time is
1 −

∏
[(1 + (n − 1)pi)(1 − pi)

n−1], where pi is the probability that an
application i (0 < i ≤ n) is running on a node at a given time. A detailed
derivation is out of scope of this paper.

location is

known?

RemoteLocal disk

in active

state?

I/O

Request

Serve from local disk Serve from remote node

yes yes

no no Spin up local

disk to serve

the request

Fig. 3. Local vs. remote retrieval heuristics in SARD.

Figure 2 shows the architecture of SARD. The only kernel

modification is to intercept and reroute disk I/O requests to

the SARD module. After intercepting an I/O call (in the

read_pages() function of standard Linux kernel) (Step 1

and 2), SARD checks the hash table to determine alternative

sources for serving it. If a remote source is found, a UDP

message requesting the image is sent to that node (Step 3).

The corresponding SARD UDP server on the remote node

receives and serves the request. Once a reply containing the

requested image is received back at the requester (Step 4),

the image is returned to the kernel (Step 5) just as if the

request was serviced from the local disk (e.g., Step 3a and

4a). The request is finally returned to the user (Step 6). A

loaded application is then advertised to other nodes (7, 8, 9).

Several factors affect the decision of whether to retrieve an

application from the local disk or from remote memory. We

use the intuitive set of heuristics shown in Figure 3, to drive

SARD. The goal is to use the local disk as much as possible,

but to avoid spinning it up if it has already been spun-down.

IV. EVALUATION

We use Dell PCs, with an Intel 2.4 GHz dual core processor,

4 GB RAM, and a high-end Seagate 250 GB hard disk,

connected using 1 Gbps Ethernet for our evaluation.

A. Implementation Results

SARD is implemented using about 2300 lines of C code.

Additional 1200 lines of Java code are used to implement the

p2p advertising daemon using FreePastry [6].

1) Remote Binary Serving: Modern operating systems load

portions of applications from disk on-demand. We model

this behavior in the controlled experimental setting by using

PostMark to perform random I/O, in essence emulating on-

demand random page loads of varying lengths. For each case,

we measured the time it would take to service the request

locally from disk or from remote memory. Figure 4 shows the

ratio of the time used for servicing a request locally compared

to that served remotely. Note that for these measurements

the disks were spinning and in ready state. We observe that

for smaller files, the disk performance is poor compared to

remote retrieval – servicing from disk takes order of magnitude

longer compared to over the network. The comparative benefit

from remote retrieval is somewhat reduced for larger file sizes

because the time to retrieve data from the disk improves

significantly with increasing file sizes, i.e. for large sequential

accesses.

2) Impact of SARD on Remote Machines: Next, we study

the impact of SARD on remote node performance. First, we

determined how a node’s overall performance is impacted

when servicing varying rates of page requests. For this pur-

pose, we designed a benchmark that generates a controlled

 0

 2

 4

 6

 8

 10

 12

 14

 16

 4 8 16 32 64 128 256 512

D
is

k
/N

e
tw

o
rk

 T
im

e

File Size (KB)

Fig. 4. The ratio of local access
time compared to serving the bi-
naries remotely.

 260

 270

 280

 290

 300

 310

 320

 330

 340

 1 4 16 64 256 1024 4096 16384 65536

C
o

m
p

ile
 T

im
e

(s
)

Requests Per Second

Exec. time w/ load
Avg. exec. time w/o load

Fig. 5. Impact of servicing re-
mote memory requests.

TABLE I
REQUESTS-PER-SECOND FOR VARIOUS APPLICATIONS, AND

THEIR IMPACT ON REMOTE NODE PERFORMANCE.

Application Requests per Impact on
Name Second Remote Node

cscope 112 0%
make 6.25 0%
PostMark (8 KB) 530 0.90%
PostMark (32 KB) 1073 1.63%
PostMark (128 KB) 2064 2.14%
PostMark (512 KB) 2541 2.94%

number of remote page requests at one of the test machines.

On the other test machine, we compiled the Linux kernel and

observed the compilation time for each case as we increased

the number of requests generated per second from 1 to the

extreme case of 65536. Figure 5 shows the results. The

horizontal line shows the average time it takes to compile

the kernel on a standard setup without any remote load. We

observe that up to 256 requests per second are serviced without

any observable performance degradation, and only 5.59%

degradation is observed when as much as 16384 requests are

serviced per second.

Second, using the above information, we determined how

several test applications will affect remote nodes. For this

experiment, we use: a cscope [7] query on Linux 2.6.22.9

source code, make to compile the same kernel, and PostMark

with different file sizes. We observed the average rate of

remote page requests issued by these applications. Table I

shows the request rates. We then used the load impact numbers

of Figure 5 to estimate the impact of the studied applications

on a remote node serving the requests. In particular, observe

that both cscope and make incur negligible overhead, and

PostMark (8KB) that models on-demand application loading

incurs less than 1% overhead.

B. Simulation Results for SARD’s Energy Impact

Next, we present a simulation and implementation study

that shows SARD’s potential for energy savings.

1) Methodology: Detailed traces of user-interactive ses-

sions for each application were obtained by a strace-based

tracing tool [8] over a number of days. We used a Western

Digital Caviar WD2500JD in our simulation with a spin-up

time of about 9 seconds from a sleep state [9]. Table II shows

six desktop applications that are popular in the enterprise

environments and used in this study. The table also shows

trace length and the details of I/O activity. Read and write

TABLE II
THE NUMBER AND DURATION OF TRACES COLLECTED FOR THE

STUDIED APPLICATIONS.

Trace Number of Referenced [MB]
Appl. Length [hr] Reads Writes Reads Writes

mozilla 45.97 13005 2483 66.4 19.4
mplayer 3.03 7980 0 32.3 0
impress 66.76 13907 1453 92.5 40.1
writer 54.19 7019 137 43.8 1.2
calc 53.93 5907 93 36.2 0.4
xemacs 92.04 23404 1062 162.8 9.4

requests satisfied in the buffer cache are not counted, since

they do not cause disk activity.

2) Energy Consumption: Serving the I/O from remote

machines increases the length of idle periods by eliminating

spin-ups required to serve the I/O requests from the local disk.

Table III illustrates the impact of serving I/O requests on the

length of idle periods. It shows the number and average length

of idle periods for varying fractions of requests served by

the remote machines. The case of 100% of requests served

locally illustrates the standalone workstation that serves all

requests from the local disk. By serving more and more

requests from other workstations the number of idle times

is reduced since the idle periods are concatenated resulting

in fewer and longer periods. In the case of 1% of requests

served locally, the average number of idle periods is reduced

by 73.2% and the average length is extended by 205.5%. Based

on our study of Section II, 1% of requests served locally

is a reasonable number for a medium-scale setup (e.g. with

more than 107 workstations), since many will have standard

applications loaded in memory. In addition, we show results

for serving 2%, 5%, 10%, and 15% which may be encountered

for a small number of workstations in the network.

Reduction in number of periods and lengthening the du-

ration of the idle periods has twofold impact on energy

efficiency. First, fewer number of periods indicates that there

are fewer spin-ups required to serve the I/O requests resulting

in lower energy spent on powering up the devices and shutting

them down. Second, longer idle periods will allow the disk

to remain in a power saving state also reducing energy

consumption. These can be seen in Figure 6, which shows

distribution of the local disk energy consumption among three

categories: Busy – due to serving the I/O requests, Idle – due

to waiting for more requests to arrive during timeout interval,

and Power-Cycle – due to shutting down and spinning up

the disk. We show numbers normalized to the case when a

standard energy saving mechanism is used in a stand-alone

system, i.e., with 100% requests served locally. All of the

states are impacted by SARD. We first observe that energy

spent serving I/O requests is not significant since most of

the applications are interactive with long user think times or

they are accessing user files that are mounted on a remote file

server. The two largest components are power-cycle and idle

energy. The average fraction of energy spent on spinning up

and shutting down the disks in the case of local disk only is

69.3%. The energy is reduced as we serve more and more

from remote machines and reaches the average fraction of

TABLE III
NUMBER AND AVERAGE LENGTH OF APPLICATION IDLE PERIODS, AND DELAY DUE TO DISK SPIN-UP, AS INCREASING NUMBER OF

REQUESTS ARE SERVICED REMOTELY. NOTE THAT FOR Mplayer UNDER ALL CASES THE NUMBER AND DURATION OF IDLE PERIODS IS 4
AND 2713 SECONDS, RESPECTIVELY, AND THE DELAY IS 36 SECONDS.

% Mozilla Calc Impress Writer Xemacs

of Reqs. Idle Length Total Idle Length Total Idle Length Total Idle Length Total Idle Length Total

Served Prds. [s] Delay Prds. [s] Delay Prds. [s] Delay Prds. [s] Delay Prds. [s] Delay

Locally [s] [s] [s] [s] [s]

100 165 985 1485 150 1283 1350 227 1048 2043 136 1423 1224 95 3477 855

15 102 1601 918 89 2170 801 122 1959 1098 88 2206 792 59 5604 531

10 88 1858 792 77 2511 693 110 2174 990 80 2427 720 56 5906 504

5 82 1995 738 70 2763 630 87 2752 783 70 2776 630 49 6751 441

2 58 2825 522 52 3724 468 66 3631 594 51 3814 459 41 8070 369

1 49 3346 441 34 5701 306 45 5330 405 40 4867 360 38 8708 342

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
0
0

1
5

1
0 5 2 1

1
0
0

1
5

1
0 5 2 1

1
0
0

1
5

1
0 5 2 1

1
0
0

1
5

1
0 5 2 1

1
0
0

1
5

1
0 5 2 1

1
0
0

1
5

1
0 5 2 1

Busy

Idle

Power-
cycle

mozilla calc impress writer mplayer xemacs

F
ra

c
ti
o

n
 o

f
e
n

e
rg

y

Fig. 6. Breakdown of energy savings as more and more requests are
serviced from remote nodes normalized to the case of a standalone
system (100% local requests).

22.2% for the case of only 1% of requests served locally.

Similarly, the time spent in idle is reduced due to fewer timeout

periods encountered as we increase fraction of requests served

remotely. The average fraction of energy consumed at idle is

28.8% for all requests served locally and is reduced down to

7.9% for when serving only 1% of requests locally. Moreover,

compared to an always-on scheme with no energy saving

mechanism, the 100% approach provides an average savings

of 80.6%, which is further improved to an average of 81.7%

for the case with 1% local requests.

Fewer needed spin-ups result in shorter overall delays

exposed to the user. Next, we measure this effect. Based on our

observations of the network traffic of our test machines, we

assumed network latencies of a 1 Gbps Ethernet connection

with at most 20% degradation due to contention modeled

randomly. Table III illustrates the total delay exposed to the

user as we vary the fraction of I/O requests served locally.

The average delay across applications is reduced from 1165.5

seconds for all requests served locally to 312 seconds, i.e., a

73% reduction, when we only serve 1% of requests locally.

Reduction in delay has two benefits. First, the user experience

is improved since the user will see fewer lags due to disk

spinning up. As a result, the user is more likely to use energy

management techniques as opposed to turning the energy

management off to prevent the irritating delays. Second, the

shorter delays will allow the user to accomplish the task

quicker, which increases the efficiency of the system.

We also studied the commonly used energy-delay product

(EDP) for our setup. We found that SARD reduces energy-

delay product by 81.63% on average, compared to the always

on case.

C. SARD Case Study

We studied the energy saving and performance impact of

SARD using 10 of our departmental machines used for typical

desktop use. Each machine has a an Intel Pentium 4 3.0 GHz

processor, 1 GB RAM, 40 GB hard disk, and is connected

via 1 Gbps Ethernet. For a period of two week, we traced the

system usage of the workstations. Subsequently, we replayed

the traces on the systems, measuring the energy consumed

by the machines (using Watts up? PRO power meters). Next,

we configured the machines to run SARD, and replayed the

traces and once again measured the energy. The total energy

consumed by the machines over the duration of the week

reduced from 165312 Watt-hour (Wh) to 156895 Wh, a saving

of 5.1%.

V. CONCLUSION

In this paper, we have presented the design and evaluation

of SARD, a p2p-based system that mitigates delays associated

with disk energy management by allowing sharing of in-

memory application images across peers. Our evaluation of

SARD using both a real implementation study and simulations

demonstrates that SARD can serve as a practical and effective

tool for mitigating energy management delays, which also

improves energy efficiency in enterprise environments.

REFERENCES

[1] J. Chase, D. Anderson, P. Thackar, A. Vahdat, and R. Boyle. Managing
energy and server resources in hosting centers. In Proc. SOSP, 2001.

[2] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing
and unbalancing for power and performance in cluster-based systems. In
Proc. COLP, 2001.

[3] Tufts. Computers and energy efficiency. Online Specification, 2008.
http://www.tufts.edu/tie/tci/Computers.html.

[4] Chris Gniady, Ali R. Butt, Y. Charlie Hu, and Yung-Hsiang Lu. Program
counter-based prediction techniques for dynamic power management.
IEEE Transactions on Computers, 55(6):641–658, 2006.

[5] Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kimberly Keeton,
and John Wilkes. Hibernator: helping disk arrays sleep through the winter.
In Proc. SOSP, 2005.

[6] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In Proc.

IFIP/ACM Middleware, 2001.
[7] Joe Steffen and Hans-Bernhard Bröker. CSCOPE, Jan 2008. http://cscope.

sourceforge.net/.
[8] Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The performance impact

of kernel prefetching on buffer cache replacement algorithms. IEEE ToC,
56(7):889–908, 2007.

[9] Igor Crk and Chris Gniady. Context-aware mechanisms for reducing
interactive delays of energy management in disks. In Proc. USENIX

ATC, 2008.

