
Cooperative Storage-Level De-Duplication for I/O
Reduction in Virtualized Data Centers

Min Li†, Shravan Gaonkar‡, Ali R. Butt†, Deepak Kenchammana†‡, Kaladhar Voruganti†‡
†Virginia Tech, ‡Atlantis Computing, †‡NetApp,

Email: {limin,butta}@cs.vt.edu, gaonkar@ieee.org, {Deepak.Kenchammana,kaladhar.Voruganti}@netapp.com

Abstract—Data centers are increasingly being re-designed for
workload consolidation in order to reap the benefits of better
resource utilization, power savings, and physical space savings.
Among the forces driving savings are server and storage vir-
tualization technologies. As more consolidated workloads are
concentrated on physical machines — e.g., the virtual density
is already very high in virtual desktop environments, and will
be driven to unprecedented levels with the fast growing high-
core counts of physical servers — the shared storage layer
must respond with virtualization innovations of its own such
as de-duplication and thin provisioning. A key insight of this
paper is that there is a greater synergy between the two layers
of storage and server virtualization to exploit block sharing
information than was previously thought possible. We reveal this
via developing a systematic framework to explore the storage and
virtualization servers interactions. We also quantitatively evaluate
the I/O bandwidth and latency reduction that is possible between
virtual machine hosts and storage servers using real-world trace
driven simulation. Moreover, we present a proof of concept NFS
implementation that incorporates our techniques to quantify their
I/O latency benefits.

I. INTRODUCTION

A major transformation is underway in data centers, where
workload consolidation is gaining traction for increasing re-
source and administrative utilization, and reducing energy
consumption, physical space and acquisition costs.

Consolidation is being adopted at every resource level
of data centers: (a) under-utilized physical hosts are being
replaced with virtualized client technology running on dense
core hosts; (b) disparate and siloed storage servers are being
replaced with unified storage and storage virtualization to
provide shared storage infrastructure over scale-up or scale-
out designed systems; (c) IP and storage networks are being
converged with the use of unified fabric and protocols such
as Fiber Channel over Ethernet (FCoE); (d) disaster recovery
(DR) and backup consolidation is being done within and across
entire data centers with the rise in the use of fault-tolerant
Virtual Machines (VM) and vaulting infrastructures [9]; and
(e) administrative tasks are being consolidated through plat-
form standardization (both in hardware, e.g., x86, and in
hypervisor layers, e.g., ESX/Hyper-V/Xen/KVM etc.) and the
wide-spread adoption of the cloud and outsourcing models.
In this paper, we are concerned with the first two aspects
of consolidation, namely, the interactions between host and
storage server technologies.

Many applications are exploiting this consolidation trend by

running multiple applications in VMs that are running on the
same physical machine (host). For example, Virtual Desktop
Environments (VDE), where a user’s desktop is run in a VM
(client), creates the opportunity to share common software
and underlying hardware resources. However, consolidation
of the environment, as a result of the same applications doing
similar tasks at the same time, is resulting in extreme workload
demand on the associated storage server. Some of these
workloads bursts are very predictable, such as boot storms at
9 am, patch storms on first Tuesday of the month, or virus scan
storms at 3 am. Data center administrators are handling these
problems by over-provisioning resources for handling peak
loads [22]. In order to reduce costs, storage solution designers
have observed that there is a lot of duplicate data in these
environments [26], [15]: 70% in VDE, 35% in file services
environment, 30% in SharePoint, 30% in Email Archival, 25%
in Document Archival, 25% in Source code Archival and 10%
in Audio-Video files. Thus, data de-duplication techniques for
VMs on the storage servers for persistently storing data, and
on-wire de-duplication boxes [30] to avoid sending duplicate
data on the wire is strongly advocated.

The key premise of this paper is that by examining (1) host
side caching, (2) data transfer within hosts and between stor-
age server and hosts, and (3) storage server side de-duplication
in a holistic manner, we can realize a software-only solution
that obviates the need to provision for peak loads without
employing extra memory or adding on-wire de-duplication
boxes. To achieve this, we design SeaCache 1 in the context of
the NFS protocol for client/storage interactions in consolidated
data centers. As we discuss in the related work (Section II),
most of the prior research has explored optimizations in the
above three areas in isolation only, thus SeaCache offers a
novel holistic approach to support consolidated workloads.

Specifically, this paper makes the following contributions.
We present read/write content sharing algorithms and a col-
lective cache in the context of an integrated framework,
SeaCache. Our investigation consists of both a real implemen-
tation and simulations. We compare the alternate algorithms
using real-world traces: the CIFS trace is a four month trace
of the office workloads for a storage controller hosting the
work space of 1500 employees; Virtual Desktop Infrastructure

1The protocol is so named to express its goal to coordinate the sea of caches
deployed in current data centers.

TABLE I
CLASSIFICATION OF RELATED RESEARCH.

Optimization Focus Strategy Research Projects
De-duplication Venti [24], REBL [16], IBM N Series SS [23], De-dup FS [31]

Storage Server Optimized Index Structures De-dup FS [31], Sparse-Indexing [18], Foundation [25]
Back Reference Tracking Backlog [19]

Host / Storage Server Caching Hints Exclusive caching [29], Write-hints [17], X-RAY [4]
Interactions Hash-value Passing CASPER [27], DeDe [5], Pastiche [6]

Optimize On-wire Transfers LBFS [21], TAPER [12], Capo [26]
Host Memory De-duplication, Com-

pression
Difference Engine [8], ESX Server [28], Satori [20], I/O De-
dup [15]

Cooperative Caching Cooperative Cache [7], LAC [13], Shark [3]

(VDI) trace is a 14 day trace for nine VMs hosting virtual
desktop environments; and Test-Dev trace is a trace of a testing
and development environment. We also observed the following
results during our experimentation:
• Unlike current deployments, where virtualized environ-

ments are provisioned for peak loads in order to deal with
boot storms (e.g. VDI environments) by the customers,
SeaCache allows provisioning for average loads.

• Many solution providers expect their customers to in-
crease the size of the caches either at the hosts or at
the storage server in order to deal with peak workloads.
SeaCache allows customers to do away with these cache
extensions, thus providing for higher system efficiency.

• SeaCache algorithms are more efficient than simple on-
wire data transfer solutions, where de-duplication boxes
are placed at both source and destination ends to de-
duplicate data being transferred across the wire. SeaCache
improves the I/O savings by up to 14% and reduces
latency by up to 25%.

The rest of the paper is organized as follows. Section II
presents the related works. Section III discusses the system
architecture and design details. Section IV and V describe our
experimental methodology and the results using both simula-
tion and a prototype implementation. Finally, we conclude in
Section VI.

II. RELATED WORK

In this paper, we consider the I/O path between the hosts
and storage server with the goal to optimize the data read/write
operations between them. We classify several related prior
research works (Table I) in optimizing this I/O path based
on where the optimizations are made, namely: 1) at the host;
2) at the storage server; or 3) during the interactions between
the host and the storage server.

Storage Systems De-duplication Management: A number
of works have explored identifying and removing redundancy
from stored data to optimize storage usage. Venti [24] utilizes
SHA hashes on fixed-sized blocks of data to avoid having to
store multiple copies of duplicate data for archival storage.
REBL [16] introduces the idea of super-fingerprints to further
optimize the amount of data needed for identifying duplicates,
thus improving performance. The IBM N Series Storage
Systems [23] offers a near-line version of de-duplication
techniques in a real system implementation. Similarly, De-

duplication File System [31] utilizes techniques such as com-
pact in-memory data structures for identifying duplicates, and
improved on-disk locality to yield high efficiency.

Research on the storage server side optimizations also
include design of advanced data structures to improve de-
duplication efficiency, e.g., in large-scale file systems [31],
stream processing [18], and user storage [25], etc. Finally,
Backlog [19] offers means for efficiently supporting features
such as defragmentation and migration in the presence of de-
duplication.

These techniques are complementary to SeaCache. We
focus on communicating the data de-duplication information
between the storage server and the hosts. SeaCache optimizes
the data transfer and latency by leveraging this de-duplication
information without any dependency on the underlying topol-
ogy (primary or backup).

Host / Storage Server Interaction Optimizations: The
prior art on obtaining better cache utilization at hosts and
storage servers by treating them as an integrated unit offers
optimizations, such as exclusive caching [29], sharing write-
hints [17], and inferring accesses, e.g., with X-RAY [4],
which are complementary to our work. The integrated caching
frameworks focus on reducing duplicate data between different
tiers of storage caches. However, in SeaCache, the main focus
is on avoiding transfer of duplicate data between storage
servers and client VMs on hosts.

Distributed hash management techniques such as those
employed in CASPER [27] and Pastiche [6] deal with storing
content hashes at the hosts so that they can choose the
most cost effective replica from amongst a set of storage
servers. Similarly, de-centralized de-duplication (DeDe) [5]
uses techniques where a set of hosts communicate with each
other to de-duplicate data. Such techniques can be leveraged
in SeaCache both for transferring de-duplication information
between the host and storage server, as well as for host buffer
management.

Finally, the on-wire bandwidth reduction techniques, e.g.,
in LBFS [21] and TAPER [12], are different from SeaCache
in that these techniques keep track of the data being sent
between the hosts and the storage servers and try to not send
duplicates. These techniques are not integrated with the host
buffer management techniques, and so the hosts can continue
to send data requests to the storage servers even if they
have the data cached, and similarly the storage server will

do the necessary processing associated with a data request
even if it has previously sent the data to the host. Capo [26]
leverages the fact that most of the VM disk images are the
linked clones from a small set of “golden images” and uses
a bit-map to eliminate the duplicate read requests. However,
unlike SeaCache, Capo cannot detect duplicate reads outside
of golden images or duplicate writes.

Host Cache Management: The host side client caching
research primarily consists of how to compress and de-
duplicate the client cache (e.g., Difference Engine [8], ESX
Server [28], and Satori [20]), and how to avoid sending dupli-
cate read data request to disks (e.g., I/O De-duplication [15]).
The cache replacement algorithms and the transferring of
cache state to the storage server techniques employed in
SeaCache are complementary to the previous host side cache
de-duplication/compression strategies and can be employed
in that context. Moreover, in SeaCache, the de-duplication
algorithms on host and storage server can share de-duplication
information to eliminate the CPU intensive recomputation of
content sharing attributes.

Cooperative caching techniques focus on designing effi-
cient eviction algorithms and meta-data indices to aggregate
distributed client caches as a unified cache and to facilitate
fast lookup. N-chance forwarding [7] assigns more weight
to singlets that have only one copy of data in the cache by
forwarding singlets to random peers. LAC [13] forwards the
evicted data block to peers based on data reuse distance and
dynamic client synchronization. Shark [3] designs a locality
aware distributed index to enable clients to locate nearby
copies of data. These techniques are orthogonal to SeaCache,
as SeaCache introduces the de-duplication concept into the
cooperative cache and focuses on how cooperative caching
can help to reduce I/O bandwidth consumption.

III. SYSTEM DESIGN

This section describes the key design aspects of SeaCache
and how de-duplication information is cooperatively shared
between storage server and hosts.

A. Design Rationale

A traditional approach to I/O bandwidth saving is to not
modify the host and storage server software stack, instead
to introduce dedicated nodes for de-duplication, i.e., de-dup
boxes [21], both at the host and the storage server. These
boxes keep track of the data blocks through a content sharing
information/index (CSI) database of all the blocks they have
been sent and received, and work together to avoid writing
multiple copies of data to the disk. A CSI entry usually
consists of a block identifier and the corresponding hash value
calculated using collision resistant hash functions such as
SHA-1 [1]. Similarly, SeaCache assumes that hash collision
from SHA-1 is lower than memory bit flip errors due to cosmic
rays for all practical purposes.

In the de-dup box approach, the box is a separate entity
and it is not aware of the host-side or storage server-side
cache contents. Thus, read requests from different clients will

VM VM

Hypervisor

 Cache

Host

Host cache

tracker

CSI-

Map

Storage Server

Host

CSI-Map

VM VM

Hypervisor

 Cache

Host

Host

CSI-Map

Content sharing protocol

Fig. 1. SeaCache system architecture overview.

always be sent to the storage server even if the data already
exists in the host cache. Furthermore, the storage server side
block de-duplication information is not leveraged, and thus,
this data is maintained separately at the de-dup boxes and at
the storage server. By integrating host-side cache with server-
side de-duplication, we can explore the opportunity to build
a cooperative I/O de-duplication solution between host and
storage server.

B. Architecture

Figure 1 shows the overall architecture of SeaCache. The
target environment comprises host physical machines with
multiple clients (VMs), which interact with a storage server for
persistent data storage. The main software components include
a specialized page cache manager on the host, a de-duplication
system on the storage server, a storage server cache-tracker
that keeps track of the host cache contents, and a protocol for
sharing CSI between the hosts (cooperative caching) and the
shared storage server.

When data is written to the storage server, it is de-duplicated
(either in-line or as a background process) as follows. The
contents are hashed at the granularity of a block, and the
hash information is saved in the CSI data structure. The CSI
is then compared to and, if not already present, stored in
a CSI database. Each entry of the CSI database is a tuple
consisting of the logical block number (LBN), and the block’s
hash value. If a logical block’s CSI matches one already
in the CSI database, it indicates that the logical block is a
duplicate and its contents are not written to the disk. Thus,
a physical block could potentially map to multiple logical
blocks. The information about mapping of logical blocks to
a physical block is maintained by the storage server in a
mapping structure, CSI-Map, which has an entry for every
physical block (in use).

C. Read Protocols in SeaCache

In the following discussion, we present our read protocols
using an example physical block usage scenario illustrated in
Figure 3.

Basic Protocol When a logical block, e.g., 101, for V M1 is
not found in the host’s cache, the host first requests the CSI for
the LBN (Read#) from the storage server, instead of sending a
regular read request. The storage server looks up the associated
CSI-Map entry and returns the content identifier, which in

tim
e

lin
e

Host

Storage

Server

Read#(vm1,101)

Read(vm1,101)

vm1 101

51

Vm1(101,103)

Vm2(106)

51
51

tim
e

lin
e

Host

Storage

Server

Read(vm1,101)

Read(vm2,106)

vm1 101

vm1 101

51
51

vm2 106

51

51

51

SS-Push

(b)

W/ Tracker

(a)

tim
e

lin
e

Host

Storage

Server

Write(vm1,102)

Write#

(vm2,104,51)

vm1 102

vm1 101

55

vm2 104

51

OK

Write Path

(c)

OK

55

vm1 10151

vm1 10255

tim
e

lin
e

Host1
Storage

Server

Read(vm1,101)

Read(vm2,105)

vm1 101

vm1 101

51
51

vm2 105

51

51

Host2

vm3 107

Vm3 108

Read#(53)

53

54

53
53

53

Cooperative Cache

(d)

vm1 10151

vm1 103

vm2 106 Read

Vm2(106)

Fig. 2. SeaCache protocols using CSI-Map information.

101 102 103 104 105 106 107 108

5451 5352

vm1 vm2 vm3

LBN

Hash

Value

Fig. 3. An example logical to physical block mapping.

this example is Hash 51. The host maintains a local CSI-Map
cache, which it uses to determine that Hash 51 is not present at
the host. The host then sends an actual data request for LBN
101. Upon receipt of the block from the storage server, the
host also updates its local CSI-Map cache to store the mapping
information. Later, when the host sends a CSI request for LBN
106 for V M2, the response Hash 51 is already in the cache,
and a subsequent read request to storage server for LBN 106
is avoided.

This basic protocol saves network bandwidth between the
host and the storage server by avoiding the necessity to put the
data block on the wire. However, it introduces an extraneous
round of CSI request messages to be exchanged for every read
I/O request missed from client caches.

Protocol with Tracker We can eliminate CSI requests by
keeping track of the content of the host cache using the cache-
tracker at the storage server. Figure 2(a) displays the storage
server-Host protocol using this approach. Here, the host uses a
traditional request for reading LBN 101 of V M1. The storage
server replies with data and its hash, Hash 51, back to the
host. The storage server learns that Hash 51 is stored in host
cache. Later, when the host requests a read for LBN 106 for
V M2, the storage server simply returns the CSI-Map entry
that points to the already present Hash 51 in the host cache.

In this approach, we require the storage server to accurately
track the host cache contents by the read requests and eviction
information. Therefore, whenever the host evicts data from its
cache, it needs to inform the storage server by piggybacking
eviction information on its next message to the storage server
(not shown in the figure). Note that no additional separate

message is needed. This approach facilitates the cooperative
cache between hosts (detailed in Section III-E). This optimiza-
tion avoids additional round trip time (RTTs) for CSI requests
for which the host has to communicate with the storage server
to get the hash value of the requested block.

Maintaining a CSI-Map within the storage server might
seem to consume additional memory. However, such tracking
is worthwhile because it allows the storage server to leverage
the hosts cache space to exploit more de-duplication and
thus reduce read I/O. In our design, each data block is 4
kilobytes, while hash-entry is 24 bytes. Therefore, we can
map 170× more blocks in cache using the CSI-Map instead
of caching the actual data. Handling the additional eviction
information for remote cache-tracker of hosts may require
additional storage server CPU cycles. However, we argue that
there is a large disparity in computational power versus I/O
latency. For instance, a 3 GHz processor has 3 million compute
cycles to spare for every 1 millisecond of latency from the I/O
subsystem. Therefore, we argue that compute overhead is not
an issue in this case.

Storage Server Push Another approach to eliminate RTT
is to prefetch relevant CSI-Map information from the storage
server to the host. This can be achieved either by returning
additional CSI-Map information to a host in response to a CSI
request, storage server-Push, or via an asynchronous callback
that sends the associated CSI-Map entry from the storage
server to the host. Figure 2(b) illustrates the storage server-
Push. In this case, when the host requests the data for LBN 101
for V M1, the storage server replies with not only the data but
also the CSI-Map entry for the associated hash value, which
in this case indicates that LBNs 101 and 103 of V M1 and
LBN 106 of V M2 all map to Hash 51. The extra information
is stored in the host’s CSI-Map cache. Later, when the host
wants to read LBN 106 for V M2, it already knows that the
associated hash value Hash 51 and that its contents are already
in the host cache. Thus, no extra CSI request is sent. The CSI-
Maps piggybacked by the storage server determines the quality

of I/O reduction using this approach. If the storage server is
aware of the topology information of the data-center/cloud, the
storage server can choose to send back the CSI entry of VMs
on a particular host, improving the I/O reduction. Furthermore,
it is better to send back the CSI information that resides in the
cache only. Thus, this approach is sensitive to the knowledge
and understanding of the workload characteristics to obtain
optimal performance.

D. Write Protocol in SeaCache

Consistency In virtual environments, there are no shared
writes. Each virtual machine will only be able to access the
virtual image file attached to it. Therefore, we focus our
discussion to such share-nothing environment.

Figure 2(c) demonstrates a basic protocol for I/O reduction
on the write path, which is similar to the read path protocol.
Initially the V M1 on the host writes a block with LBN 102
whose original hash value is Hash 52. The host calculates
the new hash value Hash 55, determines that it is not in its
local cache and sends a request to write the data to the storage
server. Now, the second write request by V M2, LBN 104, with
hash value changed from Hash 52 to Hash 51 is a cache hit.
In this case, the host sends only the metadata to the storage. If
the storage server is able to map the hash value to the actual
data, it replies with success and no further action needs to be
done. If the storage server replies with failure, the host will
now need to send the actual data.

In order to check whether a block represented by the hash
value sent back by any host is actually present, the storage
server needs to perform a CSI-Map lookup. Most storage
servers cannot keep the entire CSI-Map of their blocks in the
primary caches. Any design or solution to seek CSI-Map from
the secondary-level cache will add additional latency to the I/O
request. If the storage server performs I/O reduction on only
CSI maps in the primary cache, some write path I/O reduction
opportunities will be missed.

By integrating content sharing information into storage
server and host, the de-duplication workload can be distributed
across hypervisor and storage server. Once the hash value of
the blocks are calculated the storage server can simply leverage
that information to reduce the usage of computational and
disk I/O resources, which in turn can benefit the foreground
read/write requests service.

E. Protocol for Cooperative Cache in SeaCache

It is straight forward to expand the read/write CSI protocol
to build a cooperative cache between multiple hosts and stor-
age server based on our deployment architecture as described
in Section III-B. Cooperative cache aggregates the cache space
from all hosts to further distribute the I/O load away from the
storage server. To implement such cooperative cache, efficient
meta-data lookup and request forwarding mechanisms are
needed. The host cache tracker offers an ideal data structure
for meta-data lookup. If more than one host is keeping the
required data, the storage server can randomly choose one to
forward the requests to.

Figure 2 (d) describes the working of SeaCache. When the
first read request from host 1 arrives at the storage server, the
storage server checks for the block(Hash 51) in its cache. If
the block is not found, the server checks its remote cache-
tracker for availability of the block in any of the remote hosts.
In the above figure, the hash value Hash 51 is not found in
the cooperative cache. Therefore, the storage server fetches the
data block from disk and sends back both Hash 51 and the
data block. When a second request arrives, the storage server
determines that the hash value of the requested block is Hash
53, which is not stored in its cache but stored in the cache of
host 2. The server delegates the block request to the client at
host 2, which then sends the data directly to host 1.

SeaCache requires host 1 to directly receive data from host
2, which is not supported by traditional RPC calls. However,
RPC delegation as proposed by Anderson et. al. [2] should
suffice as an elegant alternative here. The delegation protocol
creates a reply token, allowing the reply token to be relayed
from node to node until some node answers the request.
Without this technique, we would need two RPC calls one
to communicate with the storage sever and another one to
communicate with host 2 to get the data.

We can further mitigate the cache-misses in SeaCache pro-
tocol by enhancing the cache replacement algorithm inside
the host. The enhanced LRU or ELRU host cache manager
uses CSI information from storage server to determine the
block to evict from its cache. Instead of evicting the least
recently accessed block, this algorithm also weighs in the
sharing count of the block before evicting it. Specifically, we
choose the least shared block within the last n blocks to be
evicted. A larger n may yield a higher hit ratio but may have a
higher eviction overhead. In Section V, we explore the impact
of n on the efficiency of the host cache algorithm. This sharing
count metric becomes important in context of SeaCache as it
is more likely to improve the cache hit for highly referenced
blocks.

IV. EXPERIMENTATION METHODOLOGY

In this section, we discuss both a simulator and a proof-of-
concept implementation of SeaCache, and the workloads we
have used for experimentation.

A. Simulator Framework

In order to test our protocols in a controlled setting and
explore the large configuration space, we have built a realistic
system-level simulator. Figure 4 shows the modules of the
simulator and their interactions.

Trace File Parser: This main module takes preprocessed
trace files as input, parses them, and reconstructs the read and
write commands to drive the simulation.

Virtual Machine: This main module implements a model of
the client VMs. For our tests, in essence, it creates an instance
of a traditional LRU cache.

Physical Machine: This is another main module that mod-
els a host using specified configuration settings. It supports a

Trace

File

Parser

Virtual

Machine

Physical

Machine

(Host)

Storage

Server

Metrics Parameters

LRU

Cache

HostLRU
Enhanced

HostLRU

Cache

Tracker

Fid, Offset

Mapping

CSI-Map Using

Content Hash

Trace File
Configuration

File

Block

Content

Hash

File

Fig. 4. Simulation framework to evaluate SeaCache.

host cache that can be configured to use either a HostLRU or
enhanced HostLRU caching policy.

Storage Server: This main module models a storage server
with an LRU cache, host-cache content tracker, and CSI-Map
sharing features. It further uses the Cache Tracker module to
keep track of content of host caches.

Support Modules: These modules facilitate the main mod-
ules. The LRU Cache module provides a content-based cache
implementation that can be instantiated by the main modules
as needed. The Metrics and Parameters modules are linked
with all the main modules to enable flexible configuration,
and produce different observable metrics. Specifically, the
Metrics module keeps track of hit ratio, I/O bandwidth usage,
latency of each request, total number of commands, number
of read/write commands, number of logical blocks etc. The
Parameters module takes charge of parsing the configuration
file and setting up the corresponding module. Example pa-
rameters include cache size and policy, number of hosts, and
number of storage server.

Finally, the configuration file provides an easy means for
exploring the design space without modifying the source code.
The modularity and flexibility of this framework greatly speeds
up the simulation process.

B. Implementation

We have implemented a proof-of-concept read protocol
prototype of SeaCache, specifically the CSI-Map sharing so-
lution by modifying the NFS v3 protocol, client and server
components in Linux 2.6.32.15, using about 1200 lines of C
code.

The implementation setup comprises of Linux-based hosts
running Oracle R© Virtual Box 3.2.8 to provide client VMs. The
clients run Windows XP SP3 with disks mounted via NFS.
We use a write-through cache policy to ensure that we can
use NFS v3 close-to-open consistency model. For computing
CSI, we simply use the offset of the block and assume it to
be a sufficiently unique content identifier. This is in-line with
similar assumptions made in hypervisor design, which uses
this concept to maintain a common base disk for multiple
VMs by separating overwrites using snapshots for their VDI
environments [14].

NFS Client: We trap nfs readpage(s), nfs readpage result,
and nfs wb page NFS calls to enable CSI sharing and to

service client block requests. The CSI-Map maintains two
data-structures: (a) A Fid-Offset hashtable, which maps (file-
handle, offset) to the actual PBNs; and (b) a CSI hashtable,
which maps to a list of Fid-Offset entries that have the same
content. The macro implementation of uthash [10] was used
for the hashtable implementation. CSI-Map also supports an
LRU list for removing (writing to disk) least-used entries if
needed. The client nfs3 xdr readargs and nfs3 xdr readres
RPCs are modified to marshal the SS-Push. Note that some of
the data structures in CSI-Map have been built in anticipation
of incorporating and integrating protocol information exchange
with an NFS server that supports a de-duplicated file system,
such as OpenDeDup [11].

NFSD Server: The NFS server maintains an exception
list for all files opened by a particular NFS client. This list
identifies block offsets that have been modified by any of
the open files. This information is marshalled into a RPC
to the client by modifying the nfss3svc decode readargs and
nfs3svc encode readres.

We instrumented the Linux kernel to identify the cache hits
and misses to our cache as well as the latency observed by
each request. For testing, the clients ran typical OS operations
such as booting, virus scan, and compilation of source code.

C. Workloads

In this section, we briefly describe the real-world traces that
we have used to drive our evaluation of SeaCache.

CIFS Network Traces includes I/O traces collected over a
period of four months from two large-scale enterprise storage
servers deployed at a company which uses Common Internet
File System (CIFS) as the network protocol and hosts about
1500 employees.

VDI Traces comprise of traces collected for two weeks
from a system that was supporting 9 VMs in an in-house
Virtual Desktop Environment. Here, in order to separate user-
generated I/O from other accesses we disabled any anti-virus
program on all the VMs. The VMs read 17.3 GB and write
6.1 GB data per day on average.

Due to resource consolidation efforts, in addition to ex-
hibiting general usage characteristics, the VDI environment
exhibits some interesting spikes in I/O requirements at certain
times of the day. In VDE, login/boot storms are generated
on storage boxes where a large spike of read requests are
created as users login/boot to their desktop. Such a storm is
highly predictable because most corporate users start using
their computers around the same time, e.g., 9 am. In certain
VDEs, the scheduled 3 am virus scan triggers a virus-scan
storm. These are read intensive storms that could be mitigated
as most of the clients request identical set of blocks from the
storage server. Similarly, write intensive storms such as a patch
update or virus update can be configured to occur in the trace
periodically.

Test-Dev Trace: An enterprise level test-development en-
vironment uses resources continuously to 1) deploy/compile
code, 2) install builds, and 3) perform QA activities. The QA

integrated test environment often consists of a number of sub-
environments where each sub-environment is associated with
the testing of a particular feature being developed. Thus, at
any given point in time, one of the above three processes are
running for each of the QA sub-environments. We recreated
such a test-dev environment for trace collection. In our setup,
there were around 20 build-test VMs (each of which contained
a sub-environment) on a physical host. Since most test-dev
cycles are almost identical, we emulated a larger setup by
replicating the traces and using simple Poisson arrival process
to vary the start time of each instance of a test-dev cycle,
finally giving us our Test-Dev trace. Within a single Test-Dev
environment, while 40 MB data is read, 250 MB data is
written. This is a write intensive trace.

V. EVALUATION

We evaluate SeaCache using our simulator and our proto-
type implementation of Section IV-B. In our simulator, we
configure the cache size of each VM to be 256 MB, each
physical host to accommodate 10 VMs at most, and the cache
size of storage server to be 4 GB. Most of our experiments
measure the I/O bandwidth consumption between storage
server and physical hosts, which are illustrated as bars, and
the average latency of the I/O requests, which are illustrated
as stars on the same graphs. In the following, we present the
details of our experiments and observations.

A. CSI Sharing Protocol Analysis

In our first set of experiments, we use our simulator to ana-
lyze the different CSI sharing protocol algorithms described in
Section III using the CIFS, VDI and Test-Dev workloads. The
protocols being analyzed are as follows: 1) Baseline protocol
that does not transfer any CSI information, and we use it
as the baseline to compare to when reporting performance
improvement results; 2) Dedup-Read approach used by de-
duplication box on read path; 3) W/Tracker where the storage
server exactly tracks the host cache contents; 4) SS-Push where
the storage server exactly tracks the host cache and pushes
back more CSI to clients; 5) Coop-Cache using cooperative
cache with SS-push; 6) Dedup-RW approach used by de-
duplication box both on read and write path; 7) SeaCache
in which all the proposed features are enabled including read,
write path and cooperative cache. For these experiments, the
file system block size was set to 4KB, and the network and
disk latencies (obtained from real experiments) are modeled
as 7.5 ms and 5 ms, respectively.

a) CIFS Trace: In this experiment, we analyze how much
data is transferred between the storage server and 72 hosts
for all of the above mentioned algorithms using CIFS trace.
The trace involves 717 clients reading 17.2 GB and writing
7.3 GB of data. Figure 5 shows the I/O bandwidth consump-
tion (in GB) and the average latency of CIFS trace. Note that,
we consider the amount of data that will be exchanged between
the hosts and the storage server as the measure of bandwidth
consumption, as reducing this data results in better utilization
of the available I/O bandwidth.

 0

 5

 10

 15

 20

Baseline

Dedup-R

W
/ Tracker

SS Push

Coop-Cache

Dedup-R/W

SeaCache

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

D
at

a
re

qu
es

te
d

in
 G

B
yt

es

Th
e

av
er

ag
e

la
te

nc
y(

m
s)

Fig. 5. I/O bandwidth consumption and average latency under CIFS
trace.

 0

 10

 20

 30

 40

 50

10/host*1 10/host*2 10/host*4
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

D
at

a
re

qu
es

te
d

in
 G

B
yt

es

Th
e

av
er

ag
e

la
te

nc
y(

m
s)

Baseline
Dedup-R

W/ Tracker

SS Push
Coop-Cache
Dedup-R/W

SeaCache

Fig. 6. I/O bandwidth consumption and average latency under virus-
scan storm.

Baseline performs worse than the other algorithms by con-
suming 19.5 GB bandwidth with average latency of 8.92 ms
because it does not share CSI information. Dedup-Read re-
duces I/O bandwidth consumption by 8.7% and lowers the
average latency down to 8.6 ms by eliminating duplicate read
requests. For our two read path protocol variants, W/ Tracker
and SS-push, the total I/O bandwidth reduction is about the
same with Dedup-Read, while the latency is reduced down to
7.4 ms. This shows our two variants can effectively remove
the extra I/O consumed by Dedup-Read.

Dedup-RW reduces I/O bandwidth consumption by 17.3%,
while Coop-Cache and SeaCache reduce I/O bandwidth 17.9%
and 26.5%, respectively. We see that SeaCache outperforms
Dedup-RW by 9.2% in terms of bandwidth reduction and 25%
in terms of latency. This is because SeaCache effectively opti-
mizes the read path and redistributes the read path workloads
to other physical hosts.

b) Virus Scan in VDI Trace: Figure 6 shows the I/O
bandwidth consumption and average latency in VDI environ-
ment for a Virus-Scan Storm under different protocols and
different number of VMs. The three groups of bars in the
graph are: 10 VMs on a single host, 20 VMs on two hosts,
and 40 VMs on 4 hosts. Within each group, the I/O bandwidth

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D
at

a
re

qu
es

te
d

in
 G

B
yt

es
Baseline
Dedup-R

W/ Tracker

SS Push
Coop-Cache
Dedup-R/W

SeaCache

Fig. 7. I/O consumption on persistent VDI traces for two weeks of
usage.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Th
e

av
er

ag
e

la
te

nc
y(

m
s)

Baseline
Dedup-R

W/ Tracker
SS Push

Coop-Cache
Dedup-R/W
SeaCache

Fig. 8. Average latency per I/O on persistent VDI traces for two
weeks of usage.

consumption and average latency per I/O are presented. It is
observed that SeaCache is the best protocol compared with
other six variants, as it achieves up to 96% I/O saving and 97%
latency reduction compared with Baseline. The more clients
are involved, the more benefits we can get from SeaCache. We
can see that when 40 VMs are running, SeaCache outperforms
Dedup-RW by 6% and 7% in corresponding I/O and latency
reduction, respectively. Note that, even when the number of
VMs running virus scan traces increases from 10 to 40, the I/O
load seen by server increases by only 1.4 X under SeaCache,
while Baseline saw the load increase by 4 X .

c) Two Weeks VDI Trace: For this experiment, we traced
the VDI environment for two weeks. Here since we have only
9 VMs involved, to show the effectiveness of SeaCache, we
configure each physical machine to host at most 3 VMs. Thus,
in this experiment, a total of 3 physical hosts are used.

Figure 7 and Figure 8 show I/O bandwidth consumption
and average latency, respectively, under different scenarios
for the VDI trace. The x-axis here represents each day of
the two weeks trace duration. Baseline perform significantly
worse compared to any of the CSI sharing algorithms in terms
of the amount of data transferred between hosts and storage
server as well as the latency. This experiment shows that the

 0

 2

 4

 6

 8

 10

 12

10/host*1 10/host*2 10/host*4
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

D
at

a
re

qu
es

te
d

in
 G

B
yt

es

Th
e

av
er

ag
e

la
te

nc
y(

m
s)

Baseline
Dedup-R

W/ Tracker

SS Push
Coop-Cache
Dedup-R/W

SeaCache

Fig. 9. I/O bandwidth consumption and access latency under Test-
Dev traces.

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

D
at

a
re

qu
es

te
d

in
 G

B
yt

es

Th
e

av
er

ag
e

la
te

nc
y(

m
s)

ELRU 1
ELRU 25

ELRU 50
ELRU 100

Fig. 10. Enhanced LRU in host cache for persistent VDI traces.

performance of SeaCache consistently exceeds Dedup-RW by
up to 14% in I/O saving and 24% in latency reduction.

d) Test-Dev Trace: Similar to Figure 6, Figure 9 shows
the I/O bandwidth consumption and average latency under dif-
ferent algorithms for the test-dev trace. The Dedup-R and our
read path optimizations do not gain significant benefits because
the test-dev trace is write intensive with write ratio of 86%.
On the other hand Dedup-R/W and SeaCache can effectively
reduce the duplicate writes. However, SeaCache does not win
much over Dedup-R/W in this case since SeaCache focuses
more on read path optimization (improving 1% in data saving
and 3% in latency reduction). As in the previous experiment,
increasing the number of VMs running the trace from 10 to
40 only results in a 1.8 X increase in the I/O load seen by
the storage server, where as Baseline experienced a 4 X load
increase.

The above experiments show that SeaCache can enable data
center managers to provision storage servers for average loads
instead of peak loads, and consequently improve the overall
efficiency of the center.

B. Efficiency of Enhanced Host Cache

In our next experiment, we use the simulator to test whether
enhanced LRU (ELRU) algorithm that takes CSI information

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

SeaCache

Baseline

128M
256M

512M
1G 2G 4G 8G 16G

 0

 2

 4

 6

 8

 10

 12

IO
 R

eq
ue

st
s

se
en

 b
y

st
or

ag
e

se
rv

er

Th
e

av
er

ag
e

la
te

nc
y(

m
s)

Disk CSI-hit Cache-hit

Fig. 11. Impact of CSI on storage server cache for data blocks.

into account can perform better in comparison to basic LRU
for host cache management. Figure 10 shows the results for
the two weeks of VDI traces under SeaCache. Here, ELRU-n
implies that the least shared entry within the last n LRU entries
is evicted, e.g., ELRU-1 is the same as LRU. It is observed
that ELRU-n performs slightly better than LRU; improving
1.5% in bandwidth saving and 1.5% in latency reduction. The
main reason for this behavior is that LRU already accounts
for recent accesses. Thus, if a shared block is being accessed
multiple times by different VMs, it is not evicted as it is often
not the least recently used block.

C. Storage Cache Efficiency

In this experiment, we compare the impact of adding more
memory to the storage server for storing data blocks (without
CSI sharing protocol) with a storage server that uses our
CSI sharing protocol but does not use extra cache. Note that
the I/Os shown here are for data that is not present in the
client cache, which are sent to the storage server. For this
test, we pick the 5th day of VDI traces, as that yields decent
performance under W/ Tracker. As shown in Figure 11, W/
Tracker is able to perform better against the one with the extra
cache (as much as 16 GB) for mitigating disk I/O. This is
because any CSI-Map hit causes the storage server to respond
to the host with just CSI information. In contrast, although
any storage server data cache hit eliminates disk I/O, it does
not prevent the transmission of the larger payload to the host.
The key insight here is that the CSI sharing protocols reduce
the size of payload that needs to be serviced back by the
storage server, which drastically reduces the average latency
experienced by the hosts. This is an important result because
it emphasizes that the capital spent on provisioning larger
caches on the storage server can now be moved to the hosts.
Finally, more hosts can be served using a single storage server,
especially for workloads that are friendly to our protocols, such
as VDI or Test-Dev environments.

D. Implementation Results

In this experiment, we use our prototype implementation
to show that CSI sharing is a feasible idea. To this end, we

TABLE II
AVERAGE LATENCY PER I/O ON VM BOOT.

Network CSI-Map Average
Hit (%) Cache Hit (%) Latency (ms)

Baseline VM1 100.00 - 8.58
Baseline VM2 100.00 - 7.29
SS-Push VM1 99.00 01.00 8.97
SS-Push VM2 64.56 35.44 3.39

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

Baseline

 0
 20
 40
 60
 80

 100

 0 20 40 60 80 100 120 140 160

La
te

nc
y

in
 m

s
Times in seconds

hits-1 hits-2 hits-3

SS-push CSI prototype

Fig. 12. Latency of each I/O request on booting two VM’s one after
another.

traced the I/O requests of booting Windows XP-SP3 one after
the other 100 s apart. Each boot of VM requests about 400 MB
of data.

First, we compare the overhead introduced by CSI sharing
in terms of average latency of booting the first VM for both
Baseline and SS-Push. Table II shows that the overhead is
negligible. Next, we observe the latency for booting the second
VM. The CSI-Map cache hits drastically reduce the average
latency of blocks requested on booting the second VM: about
35% of SS-Push requests for VM2 were identical to that
for VM1, and these were cache hits in the CSI-Map. That
shows that host can absorb the boot storm with out impacting
the storage server, which would drastically reduce the design
requirement on storage server from handling peak loads to
average load.

Next, we measured the request latency for each I/O request
as shown in Figure 12. We have marked three regions on
the figure: hits-1, hits-2 and hits-3. Hits-1 presents the region
where the SS-Push for VM1 re-requests blocks again post
boot. These requests are absorbed by the CSI-Map cache and
therefore we observe no latency in servicing these requests.
The regions hits-2 and hits-3 mark requests by SS-Push for
VM2 that has not been modified by VM1. We observed that
the average latency for block-reads for VM2 dropped by 62%.
With better CSI-Map between blocks and content, we expect
to obtain a high rate of hits on a boot workload. This approach
is very useful when tens of VM’s are booted on a host, and the
approach can mitigate boot-storms or virus-scan storms using
a software-only solution.

VI. CONCLUSION

In this paper, we presented an integrated approach, Sea-
Cache, which incorporates host side caching, storage server
to host data transfer and de-duplication information sharing
protocols, and a storage server side de-duplication mechanism.
SeaCache allows data center operators to (a) not provision
resources for peak loads (for VDI type workloads) and (b) not
procure extra hardware resources such as caches or on-wire
de-duplication boxes. In this regard, we present: 1) algorithms
for how storage server side de-duplication information can be
leveraged to optimize storage server to host data transfers
and host side caching; and 2) how host side client cache
information can be leveraged at the storage servers to ef-
ficiently perform data transfer operations. We analyzed the
proposed algorithms using three real-world workload traces
and the results support our hypothesis that looking at these
three system design areas in an integrated manner leads to
overall bandwidth and latency benefits. Our experiments show
that compared to dedup-box, SeaCache improves the I/O
saving by up to 14% and latency reduction by up to 25%.
Moreover, the results prove that SeaCache effectively absorbs
the peak load under Virus-scan storm and Test-Dev traces.
We have also developed a proof-of-concept implementation of
SeaCache with an NFS client using a modified NFS protocol
(that is CSI sharing protocol aware) and made the necessary
changes at the NFS server to further validate that the approach
is viable.

ACKNOWLEDGMENT

This paper is based upon work supported in part by the
National Science Foundation under Grants CCF-0746832,
CNS-1016793, and CNS-1016408.

REFERENCES

[1] F. 180-1. Secure Hash Standard. U.S. N.I.S.T. National Technical
Information Service, Springfield, VA, Apr. 1995.

[2] D. C. Anderson, J. S. Chase, S. Gadde, A. J. Gallatin, K. G. Yocum,
and M. J. Feeley. Cheating the I/O bottleneck: network storage with
trapeze/myrinet. In Proc. USENIX ATC, 1998.

[3] S. Annapureddy, M. J. Freedman, and D. Mazières. Shark: scaling file
servers via cooperative caching. In Proc. 2nd USENIX NSDI, 2005.

[4] L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. X-ray: A non-invasive exclusive caching mechanism
for RAIDs. In Proc. 31st ACM/IEEE ISCA, 2004.

[5] A. T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized
Deduplication in SAN Cluster File Systems. In Proc. USENIX ATC,
2000.

[6] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: making backup
cheap and easy. SIGOPS Oper. Syst. Rev., 36(SI):285–298, 2002.

[7] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: using remote client memory to improve file system
performance. In Proc. 1st USENIX OSDI, 1994.

[8] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference engine: harnessing memory
redundancy in virtual machines. In Proc. 8th USENIX OSDI, 2008.

[9] J. Hamilton and E. W. Olsen. Design and implementation of a storage
repository using commonality factoring. In Proc. IEEE MSST, pages
178–182, 2003.

[10] T. D. Hanson. http://uthash.sourceforge.net/. Uthash: A hashtable for C
structures. Sept. 2010.

[11] http://www.opendedup.org. Open dedup, Sept. 2010.

[12] N. Jain, M. Dahlin, and R. Tewari. TAPER: tiered approach for
eliminating redundancy in replica synchronization. In Proc. 4th USENIX
FAST, pages 21–21, Berkeley, CA, USA, 2005.

[13] S. Jiang, F. Petrini, X. Ding, and X. Zhang. A locality-aware co-
operative cache management protocol to improve network file system
performance. In Proc. IEEE ICDCS , pages 42–49, Washington, DC,
USA, 2006.

[14] S. Jin. VMware VI and vSphere SDK: Managing the VMware Infras-
tructure and vSphere. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2009.

[15] R. Koller and R. Rangaswami. I/O deduplication: Utilizing content
similarity to improve i/o performance. In Proc. 8th USENIX FAST,
2010.

[16] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey. Redundancy
elimination within large collections of files. In Proc. USENIX ATC,
pages 5–18, Berkeley, CA, USA, 2004.

[17] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao. Second-tier
cache management using write hints. In Proc. 4th USENIX FAST, pages
9–25, Berkeley, CA, USA, 2005.

[18] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble. Sparse indexing: large scale, inline deduplication using
sampling and locality. In Proc. 7th USENIX FAST, pages 111–123,
Berkeley, CA, USA, 2009.

[19] P. Macko, M. Seltzer, and K. A. Smith. Tracking Back References in
a Write-Anywhere File System. In Proc. 9th USENIX FAST, Berkeley,
CA, USA, 2010.

[20] G. Milos, D. G. Murray, S. Hand, and M. Fetterman. Satori: Enlightened
page sharing. In Proc. USENIX ATC, 2009.

[21] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth
network file system. In Proc. 8th ACM SOSP, pages 174–187, New
York, NY, USA, 2001.

[22] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and A. Rowstron.
Everest: scaling down peak loads through I/O off-loading. In Proc. 8th
USENIX OSDI, pages 15–28, Berkeley, CA, USA, 2008.

[23] A. Osuna and R. F. Javier. IBM System Storage N series Software Guide.
IBM Redbook, July 2010. SG24-7129-04.

[24] S. Quinlan and S. Dorward. Venti: A New Approach to Archival Data
Storage. In Proc. 1st USENIX FAST, pages 7–20, Berkeley, CA, USA,
2002.

[25] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive content-addressed
storage in foundation. In Proc. USENIX ATC, pages 143–156, Berkeley,
CA, USA, 2008.

[26] M. Shamma, D. T. Meyer, J. Wires, M. Ivanova, N. C. Hutchinson, and
A. Warfield. Capo: recapitulating storage for virtual desktops. In Proc.
9th USENIX FAST, pages 3–16, Berkeley, CA, USA, 2011.

[27] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp, B. Thomas, and
A. Perrig. Opportunistic use of content addressable storage for dis-
tributed file sytems. In Proc. USENIX ATC, 2003.

[28] C. A. Waldspurger. Memory resource management in Vmware ESX
server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

[29] T. M. Wong and J. Wilkes. My cache or yours? making storage more
exclusive. In Proc. USENIX ATC, pages 161–175, Berkeley, CA, USA,
2002.

[30] Y. Zhang, N. Ansari, M. Wu, and H. Yu. On wide area network
optimization. IEEE Communications Surveys Tutorials, PP(99):1–24,
2011.

[31] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data
domain deduplication file system. In Proc. 6th USENIX FAST, pages
1–14, Berkeley, CA, USA, 2008.

