
φSched: A Heterogeneity-Aware Hadoop Workflow

Scheduler

Krish K.R., Ali Anwar, Ali R. Butt

Department of Computer Science, Virginia Tech

Email: {kris, ali, butta}@cs.vt.edu

Abstract—Enterprise Hadoop applications now routinely com-
prise complex workflows that are managed by specialized work-
flow schedulers such as Oozie. The resources are assumed
to be similar or homogeneous and data locality is often the
only scheduling constraint considered. However, introduction
of specialized architectures and regular system upgrades lead
to Hadoop data center hardware becoming increasingly het-
erogeneous, in that a data center may have several clusters
each boasting different characteristics. However, the workflow
scheduler is not aware of such heterogeneity, and thus cannot
ensure that a cluster selected based on data locality is also suitable
for supporting the jobs efficiently in terms of execution time and
resource consumption.

In this paper, we adopt a quantitative approach where we
first study detailed behavior of various representative Hadoop
applications running on four different hardware configurations.
Next, we incorporate this information into a hardware-aware
scheduler, φSched, to improve the resource–application match.
To ensure that job associated data is available locally (or nearby)
to a cluster in a multi-cluster deployment, we configure a single
Hadoop Distributed File System (HDFS) instance across all the
participating clusters. We also design and implement region-
aware data placement and retrieval for HDFS in order to reduce
the network overhead and achieve cluster-level data locality.

We evaluate our approach using experiments on Amazon EC2
with four clusters of eight homogeneous nodes each, where each
cluster has a different hardware configuration. We find that
φSched’s optimized placement of applications across the test
clusters reduces the execution time of the test applications by
18.7%, on average, when compared to extant hardware oblivious
scheduling. Moreover, our HDFS enhancement increases the I/O
throughput by up to 23% and the average I/O rate by up to
26% for the TestDFSIO benchmark.

I. INTRODUCTION

MapReduce [12] and Hadoop [3] have become synonymous

with big-data frameworks for supporting a variety of appli-

cations [7], [14], [24]. Hadoop deployments now regularly

boast a range of hardware from massive-core machines to low-

power ARM-based devices [10], [32]. The setups are becom-

ing heterogeneous, both from the use of advance hardware

technologies and due to regular upgrades to the system. This

in effect leads to a Hadoop deployment resembling a cluster

of clusters that each has distinct hardware characteristics. In

this paper, our goal is to sustain Hadoop in the face of such

underlying heterogeneous hardware.

Hadoop applications are also becoming more intricate,

and now comprise complex workflows with a large num-

ber of iterative jobs, interactive querying, as well as tradi-

tional batch-friendly long running tasks [9]. Moreover, the

 0
 100
 200
 300
 400
 500
 600
 700
 800

NuthchIndex PageRank DFSIOE-Read TeraSort

T
im

e
 (

s
)

17%

4% -3%

-16%

Cluster-1
Cluster-2

Fig. 1. Observed variation in application execution time on two different
hardware configurations. The percentages represent the variation in execution
time for Cluster-1 vs. Cluster-2. Cluster-1 is 8 nodes, 6.5 ECUs, 17.1 GB ram,
420 GB SATA HDD; Cluster-2 is 8 nodes, 6.5 ECUs, 7.5 GB ram, 32 GB
SATA SSD.

workflows are realized through a variety of high-level tools

and languages [18] instead of manual MapReduce program-

ming. Therefore, systems such as Oozie [20], Nova [27],

and Hadoop+Kepler [33] have been developed to manage

and schedule the workflows, and provide ease of use. The

main goals of the workflow schedulers are to support high

scalability, multi-tenancy, security, and inter operability [20].

The challenge is that extant workflow schedulers are (mostly)

oblivious of the underlying hardware architecture. Thus, the

schedulers do not consider in their scheduling decisions the

varying execution characteristics such as CPU, memory, stor-

age, and network usage of Hadoop applications on hetero-

geneous computing substrates that are quickly becoming the

norm.

To further study the problem, we ran four MapReduce

applications1 namely NuthchIndex, PageRank, DFSIOE-Read,

and TeraSort, on two different clusters configurations. Figure 1

shows the observed execution time for the studied cases. For

NuthchIndex and PageRank, Cluster-1 performed 17% and 4%

faster than Cluster-2, respectively. In contrast, for DFSIOE-

Read and TeraSort, Cluster-1 performs 3% and 16% slower,

respectively. In a deployment where Cluster-1 and Cluster-2

may exist together, an ideal schedule would place NuthchIndex

and PageRank on Cluster-2, and DFSIOE-Read and TeraSort

on Cluster-1. This yields an execution time improvement of

2% (DFSIOE-Read) to 20% (TeraSort) compared to the worst

case placement (Cluster-1 with NuthchIndex and PageRank;

Cluster-2 with DFSIOE-Read and TeraSort). Thus, it is crucial

to consider hardware-specific application performance when

scheduling jobs on heterogeneous clusters.

1We selected the applications to especially highlight the range of impact
that different configurations can have.

In this paper, we propose to consider applications behavior

on specific hardware configurations when scheduling Hadoop

workflows. We assume that a deployment is made of one

or more resource clusters each with a different hardware

configuration, and that the resources within a cluster are

similar/homogeneous. For this work, we focus on variations

in performance characteristics, where the same application

binaries can be run on the different clusters. However, the

techniques presented here can also be extended to clusters

comprising advanced architectures such as GPUs, accelera-

tors, and Microservers. We first study characteristics such as

CPU, memory, storage, and network usage for a range of

representative Hadoop applications on four different hardware

configurations. Next, based on our understanding of the appli-

cations, we design a hardware-heterogeneity-aware workflow

scheduler, φSched2, which: i) profiles applications execution

on different clusters and performs statistical analysis to deter-

mine a suitable resource–application match; and ii) effectively

utilizes the matching information to schedule future jobs on

clusters that will yield the highest performance. Such profiling

is feasible as recent research [9], [25] has shown the workflows

to have very predictable characteristics, and the number of

different kinds of jobs to be less than ten. To schedule a job,

φSched examines the current utilization of the clusters and

the suitability of clusters to support the job based on prior

profiling. Based on these factors, φSched then suggests the

best cluster to execute the job.

As stated above, we treat a Hadoop deployment to consist

of multiple separate clusters to handle resource heterogene-

ity. This leads to the problem that the best cluster, CB ,

to run an application in terms of execution time may not

have the data associated with the application, entailing data

copying/movement to CB from the cluster, CD, that has the

data. CD may not be able to support the application due to

hardware constraints. Moreover, the data movement may be

very expensive and negate the performance gain that can be

realized by running the job on CB . A similar problem is

faced in standard Hadoop deployments in large Enterprises

as well. For instance, Yahoo! has numerous “common data

sets” that are actually stored across independently-managed

storage substrates [30], i.e., the data that may be required

across multiple clusters is managed and stored at only one

cluster that cannot always run the jobs associated with the data.

The extant solution is to use the distcp [5] tool to copy data

from one cluster to another. However, this is very expensive,

and not desirable.

Configuring a single Hadoop Distributed File System

(HDFS) for all the Hadoop clusters can help mitigate the above

problems. This can lead to two issues. First, a single HDFS

instance may not scale to accommodate all the nodes from

the multiple clusters. This is resolved by the use of HDFS

Federation [29] that supports multiple master components,

which ensure increased horizontal scalability. Second, the data

2The φ in φSched is inspired by the use of φ as the work function in solid
state physics.

placement supported by HDFS is not suitable to the multi-

cluster setup. To this end, we enhance the HDFS with the

notion of a “region,” and the storage substrate attached to each

cluster is associated with a unique region. We then exploit the

region information to achieve better cluster locality for the

data. Moreover, we also provide APIs to move data across

regions and use region-specific replication factors for data

items. φSched can leverage these APIs to extract file specific

storage information such as regions in which a file is stored

and the number of replicas of a file in a region. This also

leads to better management of data movement when needed,

e.g., by pre-staging data from one cluster to another to improve

performance.

Specically, this paper makes the following contributions:

• Design a workflow management system to effectively

manage multiple heterogeneous clusters.

• Develop an effective mechanism to track, record and

analyze applications behavior on clusters with different

hardware configurations.

• Optimize the scheduler to launch Hadoop applications on

suitable clusters based on runtime analysis of prior jobs

of the same kind.

• Realize enhancements for HDFS to support data-sharing

between multiple clusters.

We evaluate our approach using experiments on Ama-

zon EC2 [1] with four clusters with different hardware

configurations, where each cluster had eight homogeneous

nodes. Our evaluation of φSched reveals that the performance

of application varies significantly across different hardware

configurations. Experiments suggest that the hardware-aware

scheduling can perform 34% faster than hardware oblivious

scheduling for the studied applications. We find that φSched’s

optimized placement of applications across the test clusters

reduces the execution time of the test applications by 18.7%,

on average, when compared to extant hardware oblivious

scheduling. Moreover, our HDFS enhancement increases the

I/O throughput by up to 23% and the average I/O rate by up

to 26%, for the well-known TestDFSIO HDFS benchmark.

II. BACKGROUND

Hadoop offers an open-source implementation of the

MapReduce framework that provides machine-independent

programming at scale. A Hadoop cluster node consists of

both compute processors and directly-attached storage. A

small number of nodes (typically 12 − 24 [6]) are grouped

together and connected with a network switch to form a

rack. One or more racks form the Hadoop cluster. Hadoop

provides a JobTracker component that accepts jobs from the

users and also manages the compute nodes that each run a

TaskTracker. All data in MapReduce is represented as key-

value pairs [36]. Programmers specify user defined map and

reduce functions, which operate on the key-value pairs. Each

TaskTracker has one or more map and reduce slots, and

applications will have tens of hundreds of map and reduce

tasks running on these slots. In case of heterogeneous clusters,

the map/reduce tasks executing on the slowest node will

determine the execution time of the application [2]. Although

speculative execution [39] can reduce this dependency, it leads

to significant resource wastage due to re-execution of tasks.

The data management is provided by the Hadoop Dis-

tributed File System (HDFS). The main functions of HDFS

are to ensure that tasks are provided with the needed data,

and to protect against data loss due to failures. HDFS uses a

NameNode component to manage worker components called

DataNodes running on each Hadoop node. Typically, each

MapReduce cluster is configured with one instance of HDFS,

and the data in one cluster is not accessible (directly) from

other clusters. HDFS divides all stored files into fixed-size

blocks (chunks) and distributes them across DataNodes in

the cluster. Moreover, the system typically maintains three

replicas of each data block, two placed within the same rack

and one on a different rack. The replica placement policy

distributes each data block across multiple racks to ensure fault

tolerance against node and rack failure. For data retrieval, a

list of DataNodes ordered with respect to network proximity to

the application instance is obtained from the NameNode and

the nearest replicas are used. For large clusters, the default

placement policy may not be efficient as it can choose two

neighboring racks to store a block, while a TaskTracker that

needs the block may be several network hops away.

Workflows have become an integral part of modern Hadoop

applications, and are managed by workflow managers such

as Apache Oozie [20] and Nova [27]. A typical workflow

scheduler provides a command-line program for submitting a

job that is then transformed to a control dependency Directed

Acyclic Graph (DAG). The workflow scheduler is responsible

for co-ordinating the various events/tasks in the DAG and

allocating the events within a workflow to Hadoop. The actual

execution of the tasks is done by the Hadoop’s scheduler.

In a multi-cluster setup, current workflow managers schedule

jobs based on resource availability in a cluster as well as

on completion of other dependent events or tasks, but the

characteristics of the underlying hardware are not explicitly

considered.

III. DESIGN

In this section, we present the design of φSched and how

we enhance HDFS to integrate data from multiple clusters into

a single storage component.

A. Architecture Overview

Figure 2 shows the overall architecture of φSched. The

target environment consists of multiple heterogeneous clusters,

where each cluster comprise of homogeneous resources. To ef-

fectively manage the heterogeneity, we propose a hierarchical

approach where we manage each cluster separately using an

instance of the JobTracker, and then build a software layer for

the multiple JobTrackers to interact with each other. Moreover,

to avoid data partitioning between clusters, we utilize a single

NameNode — that we enhance and make heterogeneity aware

— to manage all the clusters.

Compute

Substrate

Storage

Substrate

Compute

Substrate

Storage

Substrate

Compute

Substrate

Storage

Substrate

Different Heterogeneous Configurations

HDFS

APIs

Cluster

Manager

Exec. Predictor

ΦSched

Job Queue

Fig. 2. φSched architecture overview.

The system works as follows. When a job is submitted to

φSched, it is placed in a job queue. Next, we utilize enhanced

HDFS APIs to determine the clusters where the data associated

with the job is stored. We examine the current cluster load

along with data availability information to schedule the job to

an appropriate cluster. The actual execution is done by handing

over the job to the JobTracker of the selected cluster. We also

perform static statistical analysis to determine the expected

execution time and resources required by the job. Moreover,

the actual execution time of the job is compared with the

expected values and also recorded for further fine tuning and

analysis, which can then be used to guide future jobs.

B. Cluster Manager

We employ a Cluster Manager that manages all the clusters

in a deployment. The manager tracks the load as it is assigned

to the clusters, and is also responsible for profiling and

predicting the utilization of resources such as CPU, memory,

network and disk, for the clusters. To this end, we use both

static analysis and dynamic profiling.

To drive our static analysis, we studied 12 representative

MapReduce applications from HiBench [19], which cover a

wide range of workload behavior such as batch processing,

iterative jobs and interactive querying. This is motivated by

previous research [9], [25] that has shown that MapReduce

workloads are predictable in terms of their behavior and that

the number of different kinds of jobs is small. By studying a

range of test applications on the target clusters, we can build

knowledge to better guide initial scheduling of jobs in a multi-

cluster deployment.

Once a job is scheduled, the Cluster Manager switches to

the dynamic profiling phase. Here, we exploit the observation

that the resource consumption per task is similar across the

many map (or reduce) tasks of an application, provided the

underlying hardware is homogeneous. Thus, within a cluster,

we can profile a single map/reduce task to predict the overall

consumption, Rr, by the job. The expected Rr depends on

initialization : Ra = SystemResource;

foreach job j in already scheduled job list do
Ra = Ra - Rr(j);

wait(expectedExecutionT ime of j);

Ra = Ra + Rr(j);

end

Algorithm 1: Determining resource availability. Ra is the

resource available in the cluster and Rr is the resource

required by a job.

forall job j in job queue do

forall clusters ci in cluster list do
Historyj,ci=FetchCatalog(j, ci);
Rr(j)=HistorylookupResource(datasize);
//From catalog

Rr(j)=ScaleToDevice(datasize); //From static

analysis

Ra = GetRa(ci); //From Cluster Manager

if Rr < Ra then
Et(j) = HistorylookupT ime(j, datasize, ci);
OptimalListj .add(ci, Et(j));

end

end

Sort(OptimalListj(ci, Et(j));
end

Algorithm 2: Steps taken by the Execution Predictor.

the number of map and reduce tasks therein, the utilization

of a single map/reduce task, as well as the input data size.

Algorithm 1 shows the steps taken by the Cluster Manager

to update the available resources, Ra, at a cluster as jobs are

submitted and complete.

C. Execution Predictor

The main task of the Execution Predictor is to determine

expected Rr for submitted jobs and identify suitable clusters

to execute the jobs. This component maintains a catalog

of job execution histories for each cluster, which includes

information such as a list of recently executed applications,

associated execution times, input data size, and the average

Rr across prior runs of an application. The Predictor interacts

with the Cluster Manager to analyze the catalog in conjunction

with the Ra information, and creates lists of potential clusters

that can efficiently support each application in the job queue.

Moreover, the lists are sorted from least to most suitable cluster

for supporting the associated job in terms of execution time

and resource utilization. Algorithm 2 shows the steps taken by

the Execution Predictor.

D. HDFS Enhancement

A key challenge that we face in φSched is to ensure that

data is seamlessly available in all the clusters managed by

separate JobTrackers. The solution that we employ is to run

one instance of HDFS, i.e., one NameNode, to manage all the

nodes across all the clusters. This leads to the problem that the

default replica placement may store data associated with a job

in racks that are multiple hops away from a suitable cluster

for running the job. Consequently, resulting in expensive cross-

cluster accesses, as well as network contention between data

movement and other Hadoop operations, e.g., shuffle traffic.

To mitigate the above issue, we enhance HDFS to logically

arrange participating HDFS nodes by associating each node’s

storage within a virtual storage group referred to as “region.”

Typically, all the storage in a cluster will be assigned to

the same region, and storage from different clusters will be

associated with different unique regions. To achieve this, we

modify the DataNode to also include a region identifier as

part of its characteristics specification. At the time of cluster

configuration the administrator specifies the regions for the

DataNodes. We also modify the NameNode to use region

identifiers to group the DataNodes into their associated region.

We exploit the region information to strategize when and

where to place replicas of a block.

We also provide runtime APIs, shown in Table I, to manage

region-aware data placement. The APIs allow the system to

move files between regions, create a replica of an already

existing file in a specified region and delete a file from a

specified region. We note that, similarly as in default HDFS,

all the APIs modify data placement at the granularity of a file

and do not support block-level modifications.

Our placement policy maintains the invariant that a region

contains all blocks belonging to a file. This is to avoid the

inter-region fetch that might be needed for the blocks that

are not in the region. Moreover, a region can have more than

one replica of a file, and a file can be replicated in multiple

regions as long as each region contains a complete copy of the

file. This provides for routing accesses to frequently used files.

Data Placement is a crucial design decision as naive replication

can compromise performance and reduce the efficacy of our

approach. The proposed region-aware placement policy takes

into account the different regions and distributes the three

default replicas across the regions. We can also observe

workload patterns and job queue predictions, and use the APIs

to move or pre-stage replicas across regions to ensure that the

suitable clusters identified using Algorithm 1 have the needed

data.

A problem of cross-region replication is that the write time

for a data item may increase. We can mitigate it by relaxing

the reliability requirement and returning to the application after

writing to the first replica only, while other replicas are created

asynchronously. However, given that HDFS is write-once read-

many file system, even if we wait for all replicas to be

written synchronously, the write overhead is amortized quickly

by the performance and data locality advantages achieved

using our region-aware placement. Thus, we expect the impact

on the overall application execution time due to our HDFS

enhancement to be negligible.

E. Hardware-Heterogeneity-Aware Scheduling

φSched realizes heterogeneity-aware scheduling as follows.

TABLE I
φSCHED APIS FOR ENHANCING HDFS WITH REGION INFORMATION.

API Arguments & Return Type Description

boolean createFileRegion(...) Creates a replica of a file in the specified region.

String filename Name of the file to be replicated.
String region Region in which the replica will be created.
boolean return_value Returns 0 on success, 1 on failure.

boolean deleteFileRegion(...) Removes a replica of a file from a region.
String filename Name of the file whose replica will be deleted.
String region Region from which to remove the replica.
boolean return_value Returns 0 on success, 1 on failure.

boolean moveRegion(...) Moves replicas of a file across regions.
String filename Name of the file to be moved.
String from_region Source region from which replica will be removed.
String to_region Destination region for the new replica.
int number_of_replicas Number of file replicas to be moved.
boolean return_value Returns 0 on success, 1 on failure.

void setRepRegion(...) Modifies the replication policy for a file.
String filename Name of the file to be affected.
String region Region for the new replica.
int number_of_replicas Number of replicas under the new policy.

void findRegion(...) Map of block distributions across different regions.
String filename Name of the file to be tracked.

Whenever a job is submitted to the job queue, φSched invokes

the Cluster Manager to compute the expected execution time

of the job on the different clusters. The Cluster Manager in

turn consults the Execution Predictor to return a sorted list of

clusters. φSched then uses the list and the enhanced HDFS

APIs to find the region that contains the job associated data.

This information is then used to select an appropriate cluster

to execute the job. The job information is also tracked to

guide future analysis and scheduling. In case a cluster, Ca,

is available but does not have the required data, φSched will

wait for a pre-specified time for a cluster with the data to

become available. If that does not happen, φSched will invoke

the HDFS APIs to copy the data to Ca. This ensures that jobs

wait time is bounded as long as resources are available in the

system.

Profiling execution time for all applications across all the

clusters in a deployment will help us understand the behavior

of studied applications. Once we have a sorted list of the time

that each application takes to complete on a specific hardware,

Execution Predictor will be able to estimate the execution

time and required resources for upcoming jobs based on this

information. This approach enables φSched to appropriately

schedule each application according to available resources and

the performance of the application on a particular hardware.

IV. IMPLEMENTATION

In this section, we describe our implementation of the

various components of φSched and the HDFS enhancements.

a) Cluster Manager and Execution Predictor: We have

implemented a proof-of-concept Cluster Manager and Execu-

tion Predictor in Python. We used the SAR tool [21] to collect

job execution traces containing information such as disk,

network, memory, and CPU usage for applications running on

various clusters. We also parse the Hadoop logs to determine

the timestamps associated with the start and finish time for

the applications, which are then used to separate execution

information for each application. The Execution Predictor

uses the MySQL database to store the collected application

information as well as the associated resource utilization. We

used MySQLdb module [17] (package name python-mysqldb)

to enable this interaction.

b) Region Identification: The HDFS region-awareness is

realized by modifying or adding about 1800 lines of Java

code in Hadoop to add the features of and to enable the

APIs of Table I. We introduce a new parameter dfs.region.id

in the Hadoop configuration file (hdfs-site.xml), which

the cluster administrator can use to identify the region to

which different DataNodes belong. Next, we modify HDFS’s

DataNodeDescriptor data structure to incorporate the unique

identifier as an additional global characteristic of each DataN-

ode. The extended descriptor can then be used by the HDFS’s

DataNodeRegistration process for registering the region-based

DataNode with the NameNode.

To support region based data placement, we modify the Na-

meNode’s ReplicationTargetChooser component to implement

the proposed region-aware data placement. A list of nodes

is chosen from the NetworkTopology structure that provides

information about various racks and regions in the cluster

(clusterMap). The nodes selected to store a replica of a data is

added to the excludenode list to ensure that multiple replicas

of a block are not placed on the same node.

After a DataNode is chosen to store a block, the block and

its corresponding INodeFile structure are associated with the

DataNode’s region. This is to enable re-replication of the block

in the same region in case of a failure. A background daemon

periodically runs to ensure that the blocks are associated

with appropriate regions, and if not, the daemon initiates

our moveRegion API to move the replicas to the appropriate

regions.

V. EVALUATION

We evaluate φSched using a real deployment on a medium-

scale cluster. In the following, we first study the characteristics

of 12 representative Hadoop applications on four different

cluster hardware configurations. Next, we evaluate the impact

of our HDFS enhancement and data placement policy. Finally,

TABLE II
HARDWARE CONFIGURATIONS CONSIDERED IN OUR EXPERIMENTS.

VCPUS: VIRTUAL CPU; ECU: EC2 COMPUTE UNIT; 1 ECU’S
EQUIVALENT CPU CAPACITY IS 1.0-1.2 GHZ 2007 OPTERON PROCESSOR.

Name ECUs vCPUs RAM (GB) Storage (GB) Network

m3.large 6.5 2 7.5 1 x 32 (SSD) Moderate
m3.xlarge 13 4 15 2 x 40 (SSD) High
m2.xlarge 6.5 2 17.1 1 x 420 Moderate
c1.xlarge 20 8 7 4 x 420 High

TABLE III
REPRESENTATIVE MAPREDUCE (HADOOP) APPLICATIONS USED IN OUR

STUDY.

Application Map Reduce Number
Input Output Output Mapper Reducer

NutchIndex 1.5 GB 2.8 GB 1 GB 1 81
WordCount 6 GB 30 GB 12 KB 102 8
DFSIOE-Read 8 GB – – 128 1
DFSIOE-Write 8 GB – – 128 1
Kmeans 1 GB 64 KB 1 GB 20 1
Hive-bench 5 GB 3.2 GB 256 MB 8 16
PageRank 128 MB 1 GB 12.5 MB 16 8
Bayes 128 MB 256 KB 4.5 GB 16 1
RandomWriter – – 3 GB 32 0
Sort 3 GB 11.5 GB 3 GB 64 8
TeraGen – – 15 GB 16 0
TeraSort 15 GB 15 GB 15 GB 249 8

we compare the overall φSched performance against a hard-

ware oblivious workflow scheduler.

A. Experimental Setup

We used the Amazon EC2 [1] to perform our experiments.

We used four clusters of eight homogeneous nodes, where

each cluster had a different hardware configuration as listed in

Table II3. All the virtual machines that we use are based on 64-

bit Ubuntu Server 12.04.3. In all of the Hadoop deployments

considered in our tests, the master node ran both the Hadoop

JobTracker and NameNode, and was co-located with a worker

node. Moreover, all worker nodes were configured with two

map slots and two reduce slots, along with a DataNode

component.

B. Studied Applications

In this section, we describe 12 applications from the well-

known Hadoop HiBench Benchmark Suite [19], which we

have used in our study. These applications are representative of

batch processing jobs, iterative jobs and interactive querying

jobs. Table III lists the applications, and for each also summa-

rizes parameters such as the input and output data size, and

the number of mappers and reducers.

RandomWriter: is a map-only application where each map

task takes as input a name of a file and writes random keys

and values to the file. There is no intermediate output, and the

reduce phase is an identity function.

TeraGen: generates a large number of random numbers, and

is typically used for driving sorting benchmarks. This is a also

a map-only application and does not take any input.

3Amazon EC2 description does not specify the exact networking charac-
teristics, rather provide a relative ranking only, which we report in the table.

WordCount: counts the frequency of all the different words

in the input. The map task simply emits (word, 1) for each

word in the input, a local-combiner computes the partial

frequency of each word, and the reduce tasks perform a global

combine to generate the final result.

Sort: performs a sort of the input. A mapper is an identity

function and simply directs input records to the correct re-

ducer. The actual sorting happens thanks to the internal shuffle

and sort phase of MapReduce, thus the reducer is also an

identity function.

TeraSort: samples the input data and estimates the distri-

bution of the input. It performs sampling-based partitioning

of data, which also provides for an even distribution of input

across reducers so as to achieve a scalable MapReduce-based

sort. The sorting is achieved similarly as in Sort.

NutchIndex: is representative of a large-scale search in-

dexing system. Nutch is a subsystem of the Apache search

engine [26], which crawls the web links and converts the link

information into inverted index files.

PageRank: is a key component of a web search workflow.

It iteratively calculates representative score for each page, P ,

by adding the scores of all pages that refer to P . The process

is iterated until all scores converge.

Kmeans: takes a set of points in an N-dimensional space as

an input, and groups the points into a set number of clusters

with approximately an equal number of points in each cluster.

Bayes: is a popular classification algorithm for knowledge

discovery and data mining and is a part of Mahout distribu-

tion [23]. Bayes implements the training module for the naive

Bayesian knowledge discovery algorithm atop Hadoop.

HiveBench: is representative of analytic querying on

Hive [31], a parallel analytical database built on top of

Hadoop. The benchmark performs join and aggregate queries

over structured data.

DFSIOE-Write: is a micro benchmark that uses a specified

number of Hadoop tasks to perform parallel writes to HDFS

and reports the measured write throughput.

DFSIOE-Read: is a similar to DFSIOE-Write except that

it performs simultaneous reads to the data generated by

DFSIOE-Write.

C. Application Analysis

In our first set of experiments, we analyze the perfor-

mance of our test applications under four different clusters

configurations. The input parameters of the application are

specified in Table III. The results discussed below are average

of four executions; the standard deviation across the runs was

observed to be negligible.

1) Performance Comparison: In this test, we measured the

execution time of our test applications on the studied clusters.

As shown in Figure 3, the execution time of the applications

varies across different cluster configurations. We find that

across all applications, on average, m3.xlarge performs 17.5%

faster than both m3.large and m2.xlarge cluster configurations.

However, we observe that the variation in performance is

not similar across all applications. For instance, in case of

 0

 100

 200

 300

 400

 500

 600

 700

N
u
tch

In
d
e
x

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

H
ive

-b
e
n
ch

P
a
g
e
R

a
n
k

B
a
ye

s
R

.W
rite

r
S

o
rt

T
e
ra

G
e
n

T
e
ra

S
o
rt

T
im

e
 (

s
)

m3.xlarge
m2.xlarge
m3.large
c1.xlarge

Fig. 3. Application execution time on the
studied hardware configurations.

-20

-10

 0

 10

 20

N
u
tch

In
d
e
x

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

H
ive

-b
e
n
ch

P
a
g
e
R

a
n
k

B
a
ye

s
R

.W
rite

r
S

o
rt

T
e
ra

G
e
n

T
e
ra

S
o
rt

%
 v

a
ri
a

ti
o

n
 i
n

 p
e

rf
o

rm
a

n
c
e

Fig. 4. Performance improvement observed on
m3.large compared to m2.xlarge.

 0

 500

 1000

 1500

 2000

 2500

 3000

1x 1.5x 2x 2.5x 3x

T
im

e
 (

s
)

Data size

NutchIndex
WordCount

DFSIOE-Read
DFSIOE-Write

Kmeans
Hive-bench
PageRank

Bayes
R.Writer

Sort
TeraGen
TeraSort

Fig. 5. Effect of increasing the input data size
on execution time.

NutchIndex, m3.xlarge performs 48% faster than c1.xlarge,

whereas for the same cluster, Bayes perform only 6% faster.

To study this variation in detail, we compared the perfor-

mance under m3.large and m2.xlarge across all the studied

applications. Figure 4 shows the results. For applications

such as NutchIndex, Kmeans, PageRank, Bayes, and Sort,

m3.large performs better, while for the rest of the applications

m2.xlarge performs better. One reason for this is the varying

resource needs of the applications. For example, TeraSort

that is a memory intensive application performs 16.5% faster

in m2.xlarge that has more memory, and NutchIndex that

involves significant network and I/O usage performs better in

m3.large that has better interconnects. Similar pattern is also

observed while comparing the execution time of m3.xlarge

with c1.xlarge, in fact the best case placement will perform

34% faster than the worst case. These results validate our claim

that the performance of the application varies significantly

across various cluster configurations, and can be problematic

if the entire deployment is managed using a single Hadoop

instance or in a hardware oblivious manner.

2) Impact of Data Size: In the next set of experiments, we

study the impact of increase in data size on the performance of

the studied applications. Figure 5 shows the execution time of

the applications under varying data size for the m2.xlarge con-

figuration. We increase the input size shown in Table III from

1× to 3×. We find that although the increase in the execution

time is linear, the rate of increase is not the same across the

applications, e.g., PageRank takes 1.31× the time to process

3× more data, whereas NutchIndex takes 2.87× the time.

Understanding the scaling factor for an application enables

us to better estimate the time and resources required by the

application to execute on a particular hardware configuration

with a given data set size. We note that a similar performance-

data size pattern was also observed under other hardware

configurations, though the rate of increase in application

execution time varied across the hardware configurations.

3) Usage Characteristics: Next, we study the CPU, mem-

ory, storage, and network usage of our test applications. While,

we studied all the applications and observed similar variations,

we present the results only for Kmeans, TeraSort, and Bayes.

Kmeans is an iterative application and the size of the data

does not vary between iterations. Moreover, Figure 6 shows

that the resource usage is similar across iterations. We observe

that Kmeans is CPU bound and uses almost 28% of the CPU,

on average. Next, Figure 7 shows the usage characteristics

of TeraSort. Although the execution time of the application

is similar to that of Kmeans, it shows 35% increase in the

CPU usage and 24% increase in memory utilization with

the peak memory utilization reaching up to 50% compared

to that for Kmeans. Similarly, while comparing the storage

and network usage of TeraSort and Kmeans, we observe that

TeraSort shows higher usage characteristics with up to 9× for

storage and 10× for the network on average. The peak usage

reaches up to 2× for storage and 4× for the network. Thus,

execution time alone is not a good indicator of the suitability

of a resource to efficiently support an application.

The results for Bayes are shown in Figure 8. We see

that Bayes has 2× the execution time compared to both

Kmeans and TeraSort. We observe that in spite of the increased

execution time, the average resource utilization is very low.

The peak memory usage is less than 20% throughout the

execution of the application, and it is 5× less than that of the

peak utilization of TeraSort. Moreover, the average memory

utilization is 6× lower than that of TeraSort. Similarly, the

average utilization of CPU, storage and network is also low

and bursty. Understanding such usage behavior enables us to

co-locate appropriate tasks, e.g., a compute-intensive task with

an I/O-intensive task running on the same cluster, in order to

achieve efficient resource usage without sacrificing application

performance.

D. HDFS Enhancement

In the next experiment, we evaluate how our HDFS en-

hancements impact φSched. For this test, we use a local cluster

instead of EC2. This is because we want to use a slower

interconnect that can help highlight the impact on the network,

which may be masked due to the high-speed interconnects

in EC2. To emulate a large cluster with a large number of

DataNodes, we run five DataNodes in each physical node,

which gives us a total of 50 DataNodes. We categorize the

nodes into five regions.
1) Validation of Placement Policy: To validate our region-

aware placement policy, we ran TeraGen to generate 20 GB

(318 blocks) of data distributed across different nodes. Fig-

ure 9 shows the distribution of blocks, which we determine by

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250

%
 o

f
C

P
U

 u
ti
liz

a
ti
o

n

Time (s)

(a) CPU Utilization.

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 50 100 150 200 250

%
 o

f
m

e
m

o
ry

 u
ti
liz

a
ti
o

n

Time (s)

(b) Memory Utilization.

 0

 50000

 100000

 150000

 200000

 250000

 0 50 100 150 200 250

S
e

c
to

rs
/s

Time (s)

Read
Write

(c) Disk Usage.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250

K
B

/s

Time (s)

Read
Write

(d) Network Usage.

Fig. 6. Resource usage characteristics of Kmeans on m3.xlarge.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

%
 o

f
C

P
U

 u
ti
liz

a
ti
o

n

Time (s)

(a) CPU Utilization.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

%
 o

f
m

e
m

o
ry

 u
ti
liz

a
ti
o

n

Time (s)

(b) Memory Utilization.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250

S
e

c
to

rs
/s

Time (s)

Read
Write

(c) Disk Usage.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250

K
B

/s

Time (s)

Read
Write

(d) Network Usage.

Fig. 7. Resource usage characteristics of TeraSort on m3.xlarge.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350 400 450 500

%
 o

f
C

P
U

 u
ti
liz

a
ti
o

n

Time (s)

(a) CPU Utilization.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

%
 o

f
m

e
m

o
ry

 u
ti
liz

a
ti
o

n

Time (s)

(b) Memory Utilization.

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

 0 50 100 150 200 250 300 350 400 450 500
S

e
c
to

rs
/s

Time (s)

Read
Write

(c) Disk Usage.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 0 50 100 150 200 250 300 350 400 450 500

K
B

/s

Time (s)

Read
Write

(d) Network Usage.

Fig. 8. Resource usage characteristics of Bayes on m3.xlarge.

 0

 50

 100

 150

 200

 250

 300

 350

Region-1 Region-2 Region-3 Region-4 Region-5

#
 o

f
b

lo
c
k
s

Default
Region aware

Fig. 9. Distribution of data blocks across
different regions under default and region-aware
policies.

 0

 50

 100

 150

 200

 250

 300

 350

Region-1 Region-2 Region-3

#
 o

f
b

lo
c
k
s

Default
Region aware

Fig. 10. Number of blocks that are repli-
cated across multiple regions under default and
region-aware policies.

 0

 10

 20

 30

 40

 50

Default Region-aware Default Region-aware

M
B

/s

DFSIO-Write DFSIO-Read

Throughput
Average I/O rate

Fig. 11. Overall write throughput and average
I/O rate per map task in TestDFSIOE-Write and
TestDFSIOE-Read under default and region-
aware policies.

parsing HDFS logs. We find that both the default placement

and region-aware placement distributes the data uniformly

among different regions. However, a closer analysis (Fig-

ure 10) reveals that for the default policy, only 24% of the

files have all their blocks replicated across three different

regions, and more than 22% of the files have their data

blocks replicated within only one region. This would lead to

expensive remote accesses if the jobs are scheduled to the

clusters associated with the other four regions. In contrast, the

region-aware policy distributed all the blocks across different

regions, thereby providing a more efficient distribution of data,

which in turn would reduce the network overhead when jobs

are scheduled across regions.

To ensure this is the case, we took the data placement

distributions created by the two policies, and ran TeraSort on

the distributed data. We observed that the default policy re-

sulted in 48% accesses that are remote reads, whereas region-

aware policy has only 14% remote reads. This eliminates the

additional network overhead for 34% of reads, consequently

improving the overall performance.

2) Performance Analysis: In our next test, we measured the

read and write performance under our HDFS enhancements

using the HDFS benchmark TestDFSIO. Here, each worker

node writes a 1024 MB file (16 blocks) during the write test

followed by reads of a file of the same size during the read

test. Figure 11 shows the overall I/O throughput for each of the

map tasks, as well as the average I/O rate across all map tasks.

We find that the HDFS enhancements yield lower throughput

and average I/O rate for the write operations. This is because

of the network overhead involved in writing all the replicas to

different racks. As pointed our earlier, this overhead can be

amortized due to write-once read-many workloads of Hadoop,

as well as through use of asynchronous replication. In case

of read operations, the region-aware placement shows 23%

improvement in throughput and 26% improvement in average

I/O rate. Moreover, we find that the variance in the average I/O

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Sched Baseline

T
im

e
 (

s
)

φ

Fig. 12. Execution time of the test workflow
under φSched and hardware oblivious workflow
scheduler.

 0

 10

 20

 30

 40

 50

CPU Memory Disk Network

%
 o

f
u

ti
liz

a
ti
o

n

m3.xlarge
m2.xlarge
m3.large
c1.xlarge

Fig. 13. Average hardware usage of the test
workflow under hardware oblivious scheduler.

 0

 10

 20

 30

 40

 50

CPU Memory Disk Network

%
 o

f
u

ti
liz

a
ti
o

n

m3.xlarge
m2.xlarge
m3.large
c1.xlarge

Fig. 14. Average hardware usage of the test
workflow under φSched.

rate for the default policy is high because of the high variation

in the network overhead associated with each read operation.

As observed, this is minimized under the region-aware policy.

These experiments outline the benefits that the proposed

region-aware HDFS enhancements can provide for Hadoop

workflow scheduling.

E. Performance of φSched

In our next experiment, we evaluate the performance of

φSched. We use a 20-node Hadoop deployment with the

four cluster configurations of Table II, each with five nodes.

The Hadoop master components co-exist with a worker node

in each of the clusters. Moreover, we run the management

components of φSched on a separate m3.xlarge node. For

comparison, we use a hardware oblivious workflow scheduler

(similar to schedulers such as Oozie or Nova) as our baseline,

where data is randomly assigned to clusters and workloads

are scheduled to clusters that store the input data whenever

possible. To drive our test, we generated a large workflow

comprising of 48 applications chosen randomly from Table III.

Each of the application was included at least once, with mul-

tiple instances of the same application processing randomly

varying input data. First, we measured the execution time for

baseline and φSched as shown in Figure 12. We repeated the

experiment three times. The baseline scheduler results varied,

while those for φSched were consistent across the runs. We

observe that φSched yields 17% to 22% better execution time

than that under baseline, and the average improvement is

observed to be 18.7%.

Next, we compared the average resource utilization across

different hardware configurations under baseline and φSched.

Figures 13 and 14 show the results. We find that the average

memory utilization for the high-memory cluster m2.xlarge is

lower than that of m3.large under baseline. Similarly, c1.xlarge

that is provisioned only with a HDD performs 1.2× more

I/O operations than m3.xlarge that is provisioned with a SSD.

This leads to an increased execution time. In contrast, φSched

considers resource availability while scheduling the jobs to

different clusters, which results in better utilization of available

resources as seen in the figures. For example, the average

memory utilization in m2.xlarge is 1.5× higher than m3.large,

which is the expected behavior.

In summary, our evaluation of φSched reveals that

hardware-aware scheduling is a viable solution in large de-

ployments with multiple heterogeneous clusters. φSched can

improve the execution time of the applications by scheduling

jobs to clusters that are better suited to support them. These

features are key to sustaining Hadoop for emerging architec-

tures and applications.

VI. RELATED WORK

Several recent works [40], [8], [11] integrate workflow

management in Hadoop. Apache Oozie [20] is a popular

workflow scheduler for Hadoop jobs that considers availability

of job-specific data and the completion of dependent events in

its scheduling decisions. Cascading [35] supports a data flow

paradigm that transforms the user generated data flow logic

into Hadoop jobs. Similarly, Clustera [13] extends Hadoop to

handle a wide variety of job types ranging from long running

compute intensive jobs to complex SQL queries. Nova [27]

workflow manager uses Pig Latin to deal with continually

arriving data in large batches using disk-based processing.

Kepler+Hadoop [33] is another high-level abstraction built on

top of Hadoop, which allow users to compose and execute

applications in Kepler scientific workflows. Percolator [28]

performs transactional updates to data sets, and uses triggers

to cascade updates similar to a workflow. These works are

complementary to φSched in that they provide means for

handling different types of workflows. However, φSched is

unique in its hardware-aware application scheduling, which to

the best of our knowledge has not been attempted by any of

the existing works for Hadoop workflows. We note that our

HDFS enhancements can co-exist with other Hadoop workflow

schedulers as well.

There has been work [15], [4], [38] on hardware-

heterogeneity-aware workflow scheduling for High Perfor-

mance Computing (HPC) workloads. However, these have

not been extended to the Hadoop ecosystem, and given the

inherent differences in HPC and Hadoop cluster architectures,

cannot be simply applied to Hadoop.

HDFS data placement has also been explored [34], [16],

[37], [22]. However, such works do not optimize the inter-

cluster data movement. Moreover, φSched’s HDFS extension

APIs are unique and provide efficient means to support work-

flow scheduling on a heterogeneous computing substrate. Ya-

hoo! acknowledges the existence of “common data sets” across

multiple cluster and proposes a framework [30] for multiple

Hadoop clusters to share these data sets. However, unlike

φSched, such data sharing still involves explicit copying of the

data across different clusters, which is expensive compared to

our approach.

VII. CONCLUSIONS

In this paper, we design and implement φSched, a novel

hardware-aware workflow scheduler for Hadoop. We observe

that different workflows perform differently under varying

cluster configurations, and making workflow managers aware

of the underlying configuration can significantly increase over-

all performance. To implement this approach, we developed a

hierarchical scheduler that treats a Hadoop deployment as a

collection of multiple heterogeneous clusters. We also enhance

HDFS to manage storage across a multi-cluster deployment,

which allows φSched to handle data locality as well as enable

pre-staging of data to appropriate clusters as needed. We study

the impact of φSched on Hadoop application performance

using a range of representative applications and configuration

parameters. Our evaluation shows that φSched managing four

different clusters can achieve performance improvement of

18.7%, on average, compared to hardware oblivious schedul-

ing. Moreover, for the well-known TestDFSIO benchmark, our

HDFS enhancement increased the I/O throughput by up to

23% and the average I/O rate by up to 26%.

In our future work, we aim to extend φSched to handle

clusters comprising heterogeneous architectures as well, such

as those comprising ARM-based microservers, GPUs and

accelerators.

ACKNOWLEDGMENT

This work is sponsored in part by the NSF under the CNS-
1016793 and CCF-0746832 grants.

REFERENCES

[1] E. Amazon. Amazon elastic compute cloud (amazon ec2). 2010.
[2] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,

S. Shenker, and I. Stoica. Pacman: Coordinated memory caching for
parallel jobs. In Proc. USENIX NSDI, 2012.

[3] Apache Software Foundation. Hadoop, 2011. http://hadoop.apache.org/
core/.

[4] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and
K. Kennedy. Task scheduling strategies for workflow-based applications
in grids. In Proc. IEEE CCGrid, 2005.

[5] D. Borthakur. The hadoop distributed file system: Architecture and
design. Hadoop Project Website, 2007.

[6] D. Borthakur. Facebook has the world’s largest hadoop
cluster!, 2010. http://hadoopblog.blogspot.com/2010/05/
facebook-has-worlds-largest-hadoop.html.

[7] D. e. Borthakur. Apache hadoop goes realtime at Facebook. Proc. ACM
SIGMOD, 2011.

[8] Q. Chen, L. Wang, and Z. Shang. Mrgis: A mapreduce-enabled high
performance workflow system for gis. In Proc. IEEE International

Conference on eScience, 2008.
[9] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing

in big data systems: A cross-industry study of mapreduce workloads.
Proc. VLDB Endowment, 5(12):1802–1813, 2012.

[10] E. S. Chung, J. D. Davis, and J. Lee. Linqits: Big data on little clients.
In Proc. ACM ISCA, 2013.

[11] F. Corona. Facebook, 2012. https://gigaom.com/2012/11/08/facebook-
open-sources-corona-a-better-way-to-do-webscale-hadoop.

[12] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[13] D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton, J. Royalty,
S. Shankar, and A. Krioukov. Clustera: an integrated computation and
data management system. Proc. VLDB Endowment, 1(1):28–41, 2008.

[14] F. Dong. Extending Starfish to Support the Growing Hadoop Ecosystem.
PhD thesis, Duke University, 2012.

[15] F. Dong and S. G. Akl. Pfas: a resource-performance-fluctuation-aware
workflow scheduling algorithm for grid computing. In Proc. IEEE

IPDPS, 2007.
[16] M. Y. Eltabakh, Y. Tian, F. Özcan, R. Gemulla, A. Krettek, and

J. McPherson. Cohadoop: flexible data placement and its exploitation
in hadoop. Proc. VLDB Endowment, 4(9):575–585, 2011.

[17] C. Esterbrook. Using mix-ins with python. Linux Journal, 2001(84es):7,
2001.

[18] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu. Starfish: A self-tuning system for big data analytics. In Proc.

CIDR, 2011.
[19] S. Huang, J. Huang, Y. Liu, L. Yi, and J. Dai. Hibench: A representative

and comprehensive hadoop benchmark suite. In Proc. ICDE Workshops,
2010.

[20] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters,
A. Neumann, and A. Abdelnur. Oozie: towards a scalable workflow
management system for hadoop. In Proc. ACM SIGMOD Workshop on

Scalable Workflow Execution Engines and Technologies, 2012.
[21] Linux man page. sar(1), 2013. http://linux.die.net/man/1/sar.
[22] N. Maheshwari, R. Nanduri, and V. Varma. Dynamic energy efficient

data placement and cluster reconfiguration algorithm for mapreduce
framework. Future Generation Computer Systems, 28(1):119–127, 2012.

[23] A. Mahout. Mahout, 2010.
[24] R. Mantri, R. Ingle, and P. Patil. Scdp: Scalable, cost-effective,

distributed and parallel computing model for academics. In Proc.

ICECT, 2011.
[25] M. Mihailescu, G. Soundararajan, and C. Amza. Mixapart: Decoupled

analytics for shared storage systems. In Proc. USENIX HotStorage,
2012.

[26] A. Nutch. Nutch, 2010. http://nutch.apache.org.
[27] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neu-

mann, V. B. Rao, V. Sankarasubramanian, S. Seth, et al. Nova:
continuous pig/hadoop workflows. In Proc. ACM SIGMOD, 2011.

[28] D. Peng and F. Dabek. Large-scale incremental processing using
distributed transactions and notifications. In Proc. USENIX OSDI, 2010.

[29] S. Radia and S. Srinivas. Scaling hdfs cluster using namenode federation.
HDFS-1052, August, 2010.

[30] S. Rao, B. Reed, and A. Silberstein. Hotrod: Managing grid storage
with on-demand replication. In Proc. IEEE ICDEW, 2013.

[31] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy. Hive: a warehousing solution over a map-
reduce framework. Proc. VLDB Endowment, 2(2):1626–1629, 2009.

[32] C. Wang, X. Li, X. Zhou, Y. Chen, and R. C. Cheung. Big data genome
sequencing on zynq based clusters. In Proc. ACM SIGDA, 2014.

[33] J. Wang, D. Crawl, and I. Altintas. Kepler + hadoop: A general
architecture facilitating data-intensive applications in scientific workflow
systems. Proc. WORKS, 2009.

[34] Q. Wei, B. Veeravalli, B. Gong, L. Zeng, and D. Feng. Cdrm: A
cost-effective dynamic replication management scheme for cloud storage
cluster. In Proc. IEEE CLUSTER, 2010.

[35] C. Wensel. Cascading: Defining and executing complex and fault tolerant
data processing workflows on a hadoop cluster, 2008.

[36] T. White. Hadoop: The Definitive Guide: The Definitive Guide. O’Reilly
Media, 2009.

[37] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,
and X. Qin. Improving mapreduce performance through data placement
in heterogeneous hadoop clusters. In Proc. IEEE IPDPSW, 2010.

[38] J. Yu and R. Buyya. A taxonomy of workflow management systems for
grid computing. Journal of Grid Computing, 3(3-4):171–200, 2005.

[39] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
Proc. USENIX OSDI, 2008.

[40] C. Zhang and H. De Sterck. Cloudwf: A computational workflow system
for clouds based on hadoop. In Cloud Computing, pages 393–404.
Springer, 2009.

