
Parallelization of the Nanoscale Device Simulator nanoMOS2.0 Using a 100 Nodes
Linux Cluster

Sébastien Goasguen, Ali. R. Butt, Kevin D. Colby and Mark S. Lundstrom

Purdue University, 1285 Electrical Engineering Building, West Lafayette, IN 47907-1285
sebgoa@purdue.edu

Abstract- We use a state of the art linux cluster for
quantum simulations of nanoscale devices. The
simulator nanoMOS2.0 can be accessed through
the Purdue University Network Computing Hub
(PUNCH) that interoperates with the cluster
through the Portable Batch System. NanoMOS2.0
is also modified to speed up the energy integration
by distributing the energy grid over several
processors. A 88% speed-up is achieved using the
Parallel Matlab Interface .

I-Introduction
The program, nanoMOS2.0, simulates quantum
transport in nanoscale MOSFETs using ballistic or
dissipative transport models based on the non-
equilibrium Green’s function (NEGF) formalism [1].
NanoMOS has been written in Matlab, and it has been
a very easy way to investigate the physics of
nanoscale double gate MOSFETs [2]. Parallelizing a
Matlab code does not produce the most efficient
simulations, but it is the best way for us to focus on
the physical phenomena at this stage of its
development.

II-Linux cluster description and performance
Our Linux cluster is composed of 100 nodes dual-
Athlon 1.2 GHz with 1 GB of RAM and 10 GB of
disk. The head node is a quad Xeon 700 MHz with 2
GB of RAM and 160 GB of RAID storage. The
operating system is Red-Hat 7.2 with the 2.4.17
kernel. PBS is installed to schedule batch jobs and
monitor the usage of the cluster. Parallelization is
done through the Message Passing Interface (MPI)
routines. The Automatically Tuned Linear Algebra
Sub-programs (ATLAS) has been used to create the
BLAS and LAPACK library optimized for the slave
nodes. The High Performance Linpack (HPL) is used
to benchmark the performance of the cluster. After
careful tuning of the HPL benchmark we obtain
around 130 GFLOPS for the whole cluster. These
performances unofficially put the cluster within the
TOP500 supercomputers. Fig. 1 shows the cluster in
its final configuration.

III-Parallelization strategies
This cluster can be used in different ways to run our
quantum simulations of double gate MOSFETs (Fig.
2) using nanoMOS2.0. One way is to run multiple
simulations of nanoMOS using different input decks.
Each simulation is sent to the cluster through the PBS
that assigns this job to a free processor. One can also
decide to truly parallelize the code. In this way, one
simulation of nanoMOS will use several processors at
the same time. Both approaches can also be combined,

shipping nanoMOS runs to the cluster each run using
several processors. To implement the first strategy we
decided to make use of PUNCH, a web portal that
allows users to run all types of tools through the
internet [3]. A tool implemented in PUNCH can be
setup to interoperate with PBS [4]. We setup a new
tool on the NanoHUB: nanoMOSCluster that ships his
jobs to the cluster through the PUNCH-PBS interface.
Figure 3 shows a snapshot of the nanoMOSCluster
tool as displayed in PUNCH.
Parallelization of nanoMOS can be very
advantageous. In the NEGF formalism the electron
density is obtained by integration over energy. This
integration is the most CPU time expensive operation
in the code as shown in Fig. 5. When multiple valleys
and multiple subbands are added this integration
becomes even more CPU time intensive (Fig. 6).
Several toolboxes are available to do parallelization in
Matlab. A MPI toolbox and a Parallel Virtual
Machine (PVM) toolbox are available. For our first
attempt at parallelizing the energy integration in
NEGF formalism we used the Parallel Matlab
Interface (PMI) that uses the Matlab engines API to
manage remote Matlab sessions. Figure 6 shows the
speed up obtained by parallelizing the energy
integration over processors. A 88% speed-up can be
achieved for a fine energy grid, resulting in an overall
speed up of 52 %.

IV-Conclusions
We have successfully setup a powerful Linux cluster
to provide enormous computing power through the
web-computing portal PUNCH. An initial
parallelization of nanoMOS2.0 distributing the energy
grid in the NEGF formalism over the processors has
led to a 88% speed-up of the energy integration and an
overall 52 % speed up of nanoMOS2.0.

References
[1]-S. Datta “ Nanoscale device modeling: the Green’s
function method” Superlattices and Microstructures, 28, pp.
253-278, 2000.
[2]-Z. Ren et al. “Examination of Design and Manufacturing
Issues in a 10 nm Double Gate MOSFET using Non
equilibrium Green’s Function Simulation” IEDM, Tech. Dig.,
pp. 2001.
[3]-N.H Kapadia, R. J. Figueiredo and J.A.B. Fortes
“PUNCH a Web Portal for Running Tools” IEEE Micro. In
special issue on Computer Architecture Education, May-June
2000.
[4]-S.Adabala, N. H Kapadia and J.A.B. Fortes “Performance
and interoperability issues in incorporating cluster
management systems within a wide area network computing
environment” Supercomputing 2000: High Performance
Networking and Computing. Dallas, Texas.
This work was supported by the ARO DURINT program

Fig. 1 Purdue Computational Electronics
Laboratory Linux cluster “Superman”

F
s

F
w

32%

9%

23%

27%

9%

Poisson

Charge

Schred

Energy

Current

Fig. 4 Repartition of the CPU time in nanoMOS
simulations for a quantum ballistic simulation with
only one subband and unprimed valley.

10%

5%
13%

Poisson

ChargeY Z

ig. 2 Structure of the Double-Gate MOSFET
imulated in nanoMOS.

ig. 4 Sample screen shot of NanoMOSCluster
ebpage on the nanoHUB

13%

59%

Schred

Energy

Current

Fig. 5 Repartition of the CPU time in nanoMOS
simulations for a quantum ballistic simulation with
three subbands and all valleys.

Fig. 6 CPU time speed-up by distributing the
energy grid among processors. Three grid spacing
have been used to investigate the parallelization
algorithm.

X

Z

a

bSiO2

SiO2

Z

p- n+ n+

X X

	Abstract- We use a state of the art linux cluster for quantum simulations of nanoscale devices. The simulator nanoMOS2.0 can be accessed through the Purdue University Network Computing Hub (PUNCH) that interoperates with the cluster through the Portable

