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Abstract-  We use a state of the art linux cluster for 
quantum simulations of nanoscale devices. The 
simulator nanoMOS2.0 can be accessed through 
the Purdue University Network Computing Hub 
(PUNCH) that interoperates with the cluster 
through the Portable Batch System. NanoMOS2.0 
is also modified to speed up the energy integration 
by distributing the energy grid over several 
processors. A 88% speed-up is achieved using the 
Parallel Matlab Interface . 
 
I-Introduction 
The program, nanoMOS2.0, simulates quantum  
transport in nanoscale MOSFETs using  ballistic or 
dissipative transport models based on the non-
equilibrium Green’s function (NEGF) formalism [1]. 
NanoMOS has been written in Matlab, and it has been 
a very easy way to investigate the physics of 
nanoscale double gate MOSFETs [2]. Parallelizing a 
Matlab code does not produce the most efficient 
simulations, but it is the best way for us to focus on 
the physical phenomena at this stage of its 
development. 
 
II-Linux cluster description and performance 
Our Linux cluster is composed of 100 nodes dual-
Athlon 1.2 GHz with 1 GB of RAM and 10 GB of 
disk. The head node is a quad Xeon 700 MHz with 2 
GB of RAM and 160 GB of RAID storage. The 
operating system is Red-Hat 7.2 with the 2.4.17 
kernel. PBS is installed to schedule batch jobs and 
monitor the usage of the cluster. Parallelization is 
done through the Message Passing Interface (MPI) 
routines. The Automatically Tuned Linear Algebra 
Sub-programs (ATLAS) has been used to create the 
BLAS and LAPACK library optimized for the slave 
nodes. The High Performance Linpack (HPL) is used 
to benchmark the performance of the cluster. After 
careful tuning of the HPL benchmark we obtain 
around 130 GFLOPS for the whole cluster. These 
performances unofficially put the cluster within the 
TOP500 supercomputers. Fig. 1 shows the cluster in 
its final configuration. 
 
III-Parallelization strategies 
This cluster can be used in different ways to run our 
quantum simulations of double gate MOSFETs (Fig. 
2) using nanoMOS2.0. One way is to run multiple 
simulations of nanoMOS using different input decks. 
Each simulation is sent to the cluster through the PBS 
that assigns this job to a free processor. One can also 
decide to truly parallelize the code. In this way, one 
simulation of nanoMOS will use several processors at 
the same time. Both approaches can also be combined, 

shipping nanoMOS runs to the cluster each run using 
several processors.  To implement the first strategy we 
decided to make use of PUNCH, a web portal that 
allows users to run all types of tools through the 
internet [3]. A tool implemented in PUNCH can be 
setup to interoperate with PBS [4].  We setup a new 
tool on the NanoHUB: nanoMOSCluster that ships his 
jobs to the cluster through the PUNCH-PBS interface. 
Figure 3 shows a snapshot of the nanoMOSCluster 
tool as displayed in PUNCH. 
Parallelization of nanoMOS can be very 
advantageous. In the NEGF formalism the electron 
density is obtained by integration over energy.  This 
integration is the most CPU time expensive operation 
in the code as shown in Fig. 5.  When multiple valleys 
and multiple subbands are added this integration 
becomes even more CPU time intensive (Fig. 6). 
Several toolboxes are available to do parallelization in 
Matlab.  A MPI toolbox and a Parallel Virtual 
Machine (PVM) toolbox are available. For our first 
attempt at parallelizing the energy integration in 
NEGF formalism we used the Parallel Matlab 
Interface (PMI) that uses the Matlab engines API to 
manage remote Matlab sessions. Figure 6 shows the 
speed up obtained by parallelizing the energy 
integration over processors. A 88% speed-up can be 
achieved for a fine energy grid, resulting in an overall 
speed up of 52 %. 
 
IV-Conclusions 
We have successfully setup a powerful Linux cluster 
to provide enormous computing power through the 
web-computing portal PUNCH. An initial 
parallelization of nanoMOS2.0 distributing the energy 
grid in the NEGF formalism over the processors has 
led to a 88% speed-up of the energy integration and an 
overall 52 % speed up of nanoMOS2.0. 
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Fig. 1 Purdue Computational Electronics 
Laboratory Linux cluster “Superman” 
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Fig. 4 Repartition of the CPU time in nanoMOS 
simulations for a quantum ballistic simulation with 
only one subband and unprimed valley. 
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ig. 2 Structure of the Double-Gate MOSFET 
imulated in nanoMOS. 

 
 

ig. 4 Sample screen shot of NanoMOSCluster 
ebpage on the nanoHUB 
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Fig. 5 Repartition of the CPU time in nanoMOS 
simulations for a quantum ballistic simulation with 
three subbands and all valleys. 
 

 
 

Fig. 6 CPU time speed-up by distributing the 
energy grid among processors. Three grid spacing 
have been used to investigate the parallelization 
algorithm. 
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