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Abstract—With the rise in the use of data centers comprised
of commodity clusters for data-intensive applications, the energy
efficiency of these setups is becoming a paramount concern
for data center operators. Moreover, applications developed for
Hadoop framework, which has now become a de-facto imple-
mentation of the MapReduce framework, now comprise complex
workflows that are managed by specialized workflow schedulers,
such as Oozie. These schedulers assume cluster resources to
be homogeneous and often consider data locality to be the
only scheduling constraint. However, this is increasingly not
the case in modern data centers. The addition of low-power
computing devices and regular hardware upgrades have made
heterogeneity the norm, in that clusters are now comprised
of several logical sub-clusters each with its own performance
and energy profile. In this paper we present ǫSched, a work-
flow scheduler that profiles the performance and the energy
characteristics of applications on each hardware sub-cluster in
a heterogeneous cluster in order to improve the application-
resource match while ensuring energy efficiency and performance
related Service Level Agreement (SLA) goals. ǫSched borrows
from our earlier work, φSched, a hardware-aware scheduler, that
improves the resource–application match to improve application
performance. We evaluate ǫSched on three clusters with different
hardware configurations and energy profiles, where each sub-
cluster comprises of five homogeneous nodes. Our evaluation of
ǫSched shows that application performance and power character-
istics vary significantly across different hardware configurations.
We show that the hardware-aware scheduling can perform 12.8%
faster, while saving 21% more power than hardware oblivious
scheduling for the studied applications.

I. INTRODUCTION

In recent years, the implementation of MapReduce [10] in

Hadoop [3] has emerged as an efficient framework that is

being extensively deployed to support a variety of big-data

applications [5], [12], [23]. Modern Hadoop deployments are

evolving from homogeneous clusters of commodity computers

to a range of hardware from massive-core accelerators to low-

power ARM-based devices [9], [29]. The data center setups

are becoming heterogeneous, both from the use of advance

hardware technologies and as a result of regular upgrades to

the cluster hardware.

Trends indicate that data centers in the US consume upwards

of 100 billion KWh per year [13]. The scale of data centers

have made their power consumption an imperative issue.

Power management has become of unprecedented importance

not only from an economic perspective but also for envi-

ronment conservation. This increases the electricity cost and

aggravates carbon dioxide emissions. Most of the past work on

power management in computing has been focused on energy

harvesting by scheduling based on power profiling [15]. These

techniques cannot be directly applied to Hadoop because the

scheduling and data placement decisions in Hadoop assume

that the underlying hardware is homogeneous and cannot take

into account the heterogeneity of the underlying hardware

architectures, which makes it impossible to effectively harvest

energy benefits by using any profiling information.

Hadoop applications are becoming more intricate, and rou-

tinely comprise complex workflows with a large number of

iterative jobs [17], interactive querying [17], as well as tradi-

tional batch-friendly long running tasks [6]. These applications

show varying performance and energy behavior depending on

the characteristics of different types of underlying hardware.

Traditional Hadoop workflow schedulers are oblivious to the

underlying hardware architecture and the energy consumption

characteristics of the applications. Thus, in their scheduling

decisions, the schedulers do not consider the variation in the

application execution characteristics, such as performance and

energy consumption, of Hadoop applications on heterogeneous

computing substrates that are quickly becoming the norm. In

these environments, it is suboptimal to schedule applications

ignoring the effects of this variation. Instead, if applications

are scheduled in a manner attuned to these variations, taking

into account the power and the performance characteristics of

cluster, substantial savings in the power or large increases in

the performance can be achieved.

In this paper, we propose to improve the application-

resource match by considering heterogeneous Hadoop deploy-

ments that comprise of one or more homogeneous sub-clusters.

The set of tasks to be executed on the heterogeneous deploy-

ment cluster will be scheduled to the sub-clusters such that the

total energy consumption is minimized while the performance

goals specified in the Service Level Agreement (SLA) are

met. We propose simple, application characteristic-aware task

scheduling in Hadoop to reduce the power consumption or to

improve the throughput.

To this end, we present ǫSched, a heterogeneity-aware and

power-conserving task scheduler for Hadoop. ǫSched extends

our own φSched system [21] – a hardware characteristic-

aware scheduler that improves the resource-application match.

We extend Hadoop’s hardware-aware scheduler, which is

optimized only for performance, to be an energy efficient

scheduler. We adopt a quantitative approach where we first

study detailed behavior of applications, such as performance

and power characteristics, of various representative Hadoop

applications running on four different hardware configura-
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tions. Next, we incorporate findings of these experiments

into φSched. To ensure that job associated data is available

locally to (or nearby) a cluster in a multi-cluster deployment,

φSched configures a single Hadoop Distributed File System

(HDFS) [21] instance across all the participating clusters. As

part of ǫSched, we also design and implement a region-aware

data placement and retrieval policy for HDFS in order to

reduce the network overhead and achieve cluster-level data

locality.

Specifically, this paper makes the following contributions:

• We design a workflow management system to effectively

schedule jobs to multiple heterogeneous clusters while

considering the power and performance goals;

• We develop an effective mechanism to track, record, and

analyze the performance and the power characteristics of

Hadoop applications on clusters with different hardware

configurations; and

• We validate the design and techniques therein using ex-

periments on a real deployment using various MapReduce

applications.

We evaluate our approach on a deployment with three

clusters with different hardware configurations, where each

cluster has five homogeneous nodes. Our evaluation of ǫSched

reveals that application performance varies significantly across

different hardware configurations. The results of our evaluation

show that the ǫSched can speed up job by 12.8%, while

operating at 21% the power of hardware- and power-oblivious

scheduling for the studied applications.

II. BACKGROUND

Hadoop offers an open-source implementation of the

MapReduce framework that provides machine-independent

programming at scale. Hadoop provides a JobTracker com-

ponent that accepts jobs from the users and also manages the

compute nodes that each run a TaskTracker. Each TaskTracker

has one or more map and reduce slots, and applications

will have tens of hundreds of map and reduce tasks running

on these slots. In the case of heterogeneous clusters, the

map/reduce tasks executing on the slowest node will determine

the execution time of the application [2]. Although speculative

execution [34] can reduce this dependency, it leads to signifi-

cant resource wastage due to re-execution of tasks.

The data management is provided by the Hadoop Dis-

tributed File System (HDFS). The main functions of HDFS

are to ensure that tasks are provided with the needed data,

and to protect against data loss due to failures. HDFS uses a

NameNode component to manage worker components called

DataNodes running on each Hadoop node. Typically, each

MapReduce cluster is configured with one instance of HDFS,

and the data in one cluster is not accessible (directly) from

other clusters. HDFS divides all stored files into fixed-size

blocks (chunks) and distributes them across DataNodes in the

cluster. Moreover, the system typically maintains three replicas

of each data block, two placed within the same rack and one

on a different rack. The fact that HDFS distributes its data

across all the underlying nodes restricts the opportunity to
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Fig. 1. ǫSched architecture overview.

save energy by turning off the inactive nodes. As these set of

nodes may have all the replicas of the files that are currently

being processed and turning off the nodes may result in data

unavailability.

Workflows have become an integral part of modern Hadoop

applications, and are managed by workflow managers such as

Apache Oozie [19] and Nova [26]. The workflow scheduler

is responsible for co-ordinating the various events/tasks in a

multi-cluster setup.

III. DESIGN

A. Enabling Technology: φSched

φSched [21] is a hardware-heterogeneity-aware workflow

scheduler for Hadoop that proposes to consider applications

behavior on specific hardware configurations when scheduling

Hadoop workflows. It assumes that a deployment is made of

one or more resource clusters each with a different hardware

configuration, and that the resources within a cluster are

homogeneous. It focuses on variations in performance charac-

teristics, such as CPU, memory, storage, and network usage,

for a range of representative Hadoop applications on different

hardware configurations. Next, based on our understanding

of the applications, φSched: i) profiles applications execution

on different clusters and performs statistical analysis to deter-

mine a suitable resource–application match; and ii) effectively

utilizes the matching information to schedule future jobs on

clusters that will yield the highest performance. To schedule

a job, φSched also examines the current utilization of the

clusters and the suitability of clusters to support the job based

on prior profiling. Based on these factors, φSched suggests

the best cluster to execute the job. Such profiling is feasible

as recent research [6], [24] has shown the workflows to have

very predictable characteristics, and the number of different

kinds of jobs to be less than ten.

φSched treats a Hadoop deployment to consist of multiple

separate clusters to handle resource heterogeneity. This leads
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For workload W , arrange clusters C1 to Cn in C in the

descending order of performance to power ratio ;

foreach Ci in C do

if Ci meets SLA then

if isResourceAvailable(Ci,W ) then

Schedule W in Ci;

Increment cluster utilization for Ci;

break;

end

end

end

Algorithm 1: Energy Profiler in ǫSched.

to the problem that the best cluster, CB , in order to run

an application in terms of execution characteristics, such as

energy efficiency or execution time, may not have the data

associated with the application, entailing data movement to

CB from the cluster, CD, that has the data. CD may not be

able to support the application due to hardware constraints.

Moreover, the data movement may be very expensive and

negate the performance gain that can be realized by running

the job on CB . To this end, φSched proposes configuring a

single HDFS instance for all the Hadoop clusters and logically

arrange participating HDFS nodes by associating each node’s

storage within a virtual storage group referred to as a region.

The placement and retrieval policy are region-aware meaning

we can specify the set of nodes (in terms of “region”) to store

and retrieve the data.

B. Energy Profiler

As shown in Figure 1, ǫSched integrates an Energy Pro-

filer component to φSched to track, record and analyze the

power usage characteristics of the application on a particular

hardware. ǫSched computes the performance to power ratio for

different jobs in each cluster. As shown in Section IV, different

cluster show different performance and power characteristics.

There is no single cluster that is optimal for power and

performance for all workloads.

As illustrated in Algorithm 1, when a job is to be scheduled

in one of the homogeneous sub-clusters, C1, C2, ..., Cn in

a heterogeneous cluster, C, deployment, the Energy Profiler

component accesses its profiled power characteristics. The

sub-clusters are arranged in the order of performance to power

ratio. Energy Profiler will traverse through the ordered list of

sub-clusters to find the cluster that would meet the SLA of the

workflow to be scheduled. Upon recognizing the optimal sub-

cluster that will ensure the least power usage while meeting the

SLA requirements, the Cluster Manager in φSched checks for

the availability of resources in optimal sub-cluster to schedule

the workflow W . If the availability of resources is determined,

W is scheduled, else the process is repeated to search for the

next optimal cluster.

TABLE I
HARDWARE CONFIGURATIONS CONSIDERED IN OUR EXPERIMENTS.

Name CPUs
RAM Storage

Network
Map Reduce

(GB) (GB) Slots Slots

Cluster-1 16 16 HDD 10 Gbps 8 4
Cluster-2 2 2 HDD 128 Mbps 2 2
Cluster-3 8 8 SSD 1 Gbps 4 2

C. Discussion

The HDFS enhancement provided by φSched will ensure

data availability in a smaller set of nodes by modifying the

placement policy. At least one replica of a file is stored in

a small subset of nodes (i.e., the sub-cluster with low power-

usage) called Covering Subset [1]. This will enable us to apply

energy harvesting techniques such as turning a sub-cluster off

or running in it low power mode for any of the under-utilized

sub-clusters that are not a part of Covering Subset.

It is important to note that the power characteristics of a

workload on a cluster is linearly dependent on the data size.

Thus the profiler component can linearly extrapolate the power

characteristics to different data sizes based on the studied

workloads. Similar observations were made for performance

characteristics in φSched [21]. Moreover the number of sub-

clusters in a real deployment will be less than ten, so the

overhead constituted by the energy profiler component is

minimal.

IV. EVALUATION

We evaluate the energy characteristics of Hadoop applica-

tions on using a real deployment on a medium-scale cluster.

We first study the characteristics of 8 representative Hadoop

applications on three different cluster hardware configurations.

A. Experimental Setup

We used three clusters of five homogeneous nodes each,

where each cluster has a different hardware configuration as

listed in Table I. In all of the Hadoop deployments considered

in our tests, the master node ran both the Hadoop JobTracker

and NameNode, and was co-located with a worker node. More-

over, all worker nodes were configured with varying number

of map and reduce slots depending on the configuration of the

machines (Table I) along with a DataNode component.

For measuring the power usage we used Watts Up?

PRO [11] power meters in the worker nodes. The power

values represented in this section are usage characteristics of

one worker node in every sub-cluster. All worker nodes in a

single sub-cluster are homogeneous and showed similar power

characteristics. We do not consider the power consumption of

the master node, as we do not propose any optimization to the

Hadoop master components.

B. Studied Applications

We have used 8 applications from the well-known Hadoop

HiBench Benchmark Suite [18] in our study. These applica-

tions are representative of batch processing jobs and iterative

18



TABLE II
REPRESENTATIVE MAPREDUCE (HADOOP) APPLICATIONS USED IN OUR

STUDY.

Application Map Mappers Reducers
Input Output

WordCount 6 GB 12 KB 120 8
DFSIOE-Read 8 GB – 128 1
DFSIOE-Write 8 GB – 128 1
Kmeans 1 GB 1 GB 20 1
PageRank 128 MB 12.5 MB 16 8
Bayes 128 MB 4.5 GB 16 1
Sort 6 GB 3 GB 120 8
TeraSort 15 GB 15 GB 240 8

 10

 100

 1000

 10000

W
o
rd

C
o
u
n
t

D
F
S

IO
E

-R
e
a
d

D
F
S

IO
E

-W
rite

K
m

e
a
n
s

P
a
g
e
R

a
n
k

B
a
ye

s

S
o
rt

T
e
ra

S
o
rt

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Cluster1
Cluster2
Cluster3

Fig. 2. Time taken for each application in studied cluster.

jobs. Table II lists the applications, and summarizes parame-

ters, i.e., the input and the output data sizes, the number of

mappers and reducers, for each application.

In this experiment, we measured the execution time of

our applications on each of the studied clusters. As shown

in Figure 2, the execution time of the applications varies

across different cluster configurations. We find that across all

applications, on average, Cluster-1 performs 43% and 31%

faster than Cluster-2 and Cluster-3, respectively. However,

we observe that the variation in performance is not similar

across all applications. For instance, in the case of DFSIOE-

Read which involves significant I/O, Cluster-3 performs 14%

faster than Cluster-1, whereas for the same cluster, PageRank

performs only 22% slower.

To study this variation in detail, we compared the perfor-

mance under Cluster-1 and Cluster-2 across all the studied

applications. Figure 3 shows the results. For applications

such as WordCount, DFSIOE-Write, Kmeans, Bayes, and Sort,

Cluster-1 performs better, while for the rest of the applications

Cluster-2 performs better. One reason for this is the varying re-

source requirements of the applications. For example, Kmeans,

which is a CPU intensive application, performs 27.5% faster in

Cluster-1 that has more memory, and TeraSort, which involves

significant network and I/O usage, performs better in Cluster-3

that has better interconnects.

C. Power Usage Comparison

In this experiment, we measured the total power con-

sumption of our test applications on the studied clusters. As

shown in Figure 4 (Y-axis — log scale), the total power

consumption of the applications varies across different cluster

configurations. As expected, the power consumption of an
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Fig. 3. Performance improvement observed on Cluster-1 compared to
Cluster-2.
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Fig. 4. Total power consumption for each application in studied cluster.

application is not only dependent on the underlying hardware

architecture but also on the execution time of the applica-

tion. For applications such as WordCount, DFSIOE-Write and

DFSIOE-Write, the optimal power consumption is observed

when executed on Cluster-1; for Kmeans, PageRank, Bayes

and Sort the optimal power consumption is observed under

Cluster-2; finally, TeraSort shows the least power consumption

under Cluster-3.

To further study this variation in detail, we compared

the power consumption under Cluster-1 and Cluster-2 across

all the studied applications. Figure 5 shows the results. For

applications such as WordCount, DFSIOE-Read, and DFSIOE-

Write, Cluster-3 shows lower power consumption while for

Kmeans, PageRank, Bayes, Sort and TeraSort Cluster-1 shows

the lower power consumption. Similarly Figure 6 shows the

comparison of power consumption between Cluster-1 and

Cluster-3. For applications such as WordCount, DFSIOE-

Write, DFSIOE-Write and Kmeans, Cluster-3 performs better

while Cluster-1 performs better for the rest of the applications.

We observe that in spite of the high execution time, for

a subset of applications such as WordCount, DFSIOE-Read

and DFSIOE-write, the total power consumption is the least

in Cluster-2 because of its low average power consumption

as shown in Figure 7. It is observed that Cluster-2 consumes

the least power and Cluster-1 and Cluster-3 consume 2× and

3× the power respectively. A similar trend is observed across

all applications.
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Fig. 5. Power Consumption observed on Cluster-1 compared to Cluster-2.
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Fig. 6. Power Consumption observed on Cluster-1 compared to Cluster-3.

D. Performance to Power Ratio Comparison

Figure 8 compares the ratio (higher the better) of perfor-

mance to the total power in order to find the optimum cluster

in terms of both performance and power. For applications such

as WordCount, DFSIOE-Write and DFSIOE-Write, the optimal

cluster is Cluster-1, for Kmeans, PageRank, Bayes and Sort

the optimal cluster is Cluster-2, and for TeraSort the optimal

cluster is Cluster-3. In Figure 9, detailed examination reveals

a variation in the application behavior, similar to the above

cases.

For our next set of experiments, we develop an accurate

simulator for ǫSched to observe the power consumption and

the execution time of the considered clusters. Our fine-grained

simulator takes into account details such as the effect of

compute capacity, network and storage infrastructure, and

application-hardware affinity with reference to power and

execution time. We simulate a 300-node cluster, consisting of

three 100-node homogeneous sub-clusters. The configuration

of each node in a sub-cluster is similar to Cluster-1, Cluster-

2 and Cluster-3 shown in Table I. We use the publicly

available synthetic Facebook production traces [7] for driving

the simulation. We replay a snippet of these traces using

HiBench [17] applications (Table II). The traces run for a

length of 3 hours under baseline Hadoop (hardware oblivious

scheduling).

Figure 10 shows the completion time and the power con-

sumed by the workloads under both ǫSched and hardware

oblivious scheduling. To highlight the power savings achieved

using ǫSched we neglect the power consumption of the system

in idle state, assuming that power management schemes can
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Fig. 8. Performance to power ratio for each application in studied cluster.

be applied to nodes that are in idle state for a longer period of

time. ǫSched achieves both performance benefits and power

savings over baseline Hadoop. By the application-hardware

match improvements in ǫSched, the completion time of the

application improves by 12.8%, while consuming 21% less

power than baseline Hadoop.

In summary, the above experiments validate the claim that

different application-hardware interactions produce different

power consumption and performance characteristics. Under-

standing these characteristics will enable us to achieve our

goal of scheduling tasks in a heterogeneous cluster deployment

such that the total power consumption is minimized while the

performance goals specified in the SLA are met.

V. RELATED WORK

Many hardware and software-based solutions have been pro-

posed to reduce the power consumption of enterprise systems,

ranging from shutting down unused components to low energy

circuit designs [25], [27], [4], [16], [30]. Weiser et al. [31]

first discussed the problem of scheduling tasks to reduce the

energy consumption of CPUs. Yao et al. [32] propose an off-

line scheduling algorithm for independent tasks running with

variable speed, assuming worst-case execution time. We aim to

provide a similar power management solution for the Hadoop

ecosystem tailored to the unique characteristics for Hadoop

applications.

Much of the recent work on energy efficiency in the Hadoop

ecosystem focuses on storage [20], [22], [1]. Rini et al. [20]

propose energy-aware date placement, where unpopular data

is placed in a subset of Hadoop cluster nodes, generating sig-
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nificant periods of idleness enabling these low-activity nodes

to operate in a high-energy-saving mode without affecting

nodes containing the hot data. This framework increases the

skewness in popularity as hot data is concentrated on a subset

of nodes, resulting in degraded throughput compared to a setup

with hot data spread throughout the entire cluster. Amur et

al. [1] and Leverich et al.[22] propose maintaining a primary

replica of data on a subset of nodes that are guaranteed

to be in active power state and using these nodes as the

Hadoop compute nodes, while other replicas of the data are

maintained on secondary set of nodes that are in low power

modes. These approaches to achieve energy efficiency are

based on an underlying assumption that the cluster is always

over-provisioned in terms of number of nodes, so that the

Hadoop jobs are not affected by the shrinking number of active

compute nodes, which may not always be the case.

A number of works, such as GreenHadoop [14] and energy-

aware scheduling on MapReduce jobs [33], have focused on

reducing the operational cost of data centers. Similarly, Nan

Zhu et al. [35] aim to tame the peak power consumption in

a MapReduce cluster by using adaptive power regulation. Al-

though we share with these works the consideration of power

consumption, our study is novel and different in its focus

on evaluating the resources to support Hadoop applications.

JouleSort [28] is a software benchmark that considers only

the energy characteristics of the applications and schedules

the applications.

Chen et al. [8] proposes energy efficiency of MapReduce as

a new perspective for increasing MapReduce energy efficiency

in particular. They characterize the performance of the Hadoop

implementation of MapReduce under different workloads. The

authors propose quantitative models using traditional metrics

such as job duration. However, to the best of our knowledge

ǫSched is the fist workflow scheduler to propose energy

efficient scheduling for Hadoop.

VI. CONCLUSIONS

In this paper, we design and implement ǫSched, a novel

hardware-aware workflow scheduler for Hadoop. We observe

that different workflows have different performance and power

usage characteristics under varying cluster configurations, and

making workflow managers aware of the underlying configura-

tion can significantly increase overall performance and power

consumption. We study the impact of ǫSched on Hadoop

application performance using a range of representative ap-

plications and configuration parameters. Our evaluation shows

that ǫSched managing three different clusters can achieve

performance improvement of 12.8%, on average, while con-

suming 21% less power when compared to hardware oblivious

scheduling.
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