
Program-Counter-Based Pattern Classification in Buffer Caching

Chris Gniady Ali R. Butt Y. Charlie Hu
Purdue University

West Lafayette, IN 47907
{gniady, butta, ychu}@purdue.edu

Abstract

Program-counter-based (PC-based) prediction techniques
have been shown to be highly effective and are widely
used in computer architecture design. In this paper, we ex-
plore the opportunity and viability of applying PC-based
prediction to operating systems design, in particular, to
optimize buffer caching. We propose a Program-Counter-
based Classification (PCC) technique for use in pattern-
based buffer caching that allows the operating system to
correlate the I/O operations with the program context in
which they are issued via the program counters of the call
instructions that trigger the I/O requests. This correlation
allows the operating system to classify I/O access pattern
on a per-PC basis which achieves significantly better ac-
curacy than previous per-file or per-application classifica-
tion techniques. PCC also performs classification more
quickly as per-PC pattern just needs to be learned once.
We evaluate PCC via trace-driven simulations and an im-
plementation in Linux, and compare it to UBM, a state-of-
the-art pattern-based buffer replacement scheme. The per-
formance improvements are substantial: the hit ratio im-
proves by as much as 29.3% (with an average of 13.8%),
and the execution time is reduced by as much as 29.0%
(with an average of 13.7%).

1 Introduction

One of the most effective optimization techniques in com-
puter systems design is history-based prediction, based
on the principle that most programs exhibit certain de-
grees of repetitive behavior. Such history-based predic-
tion techniques include cache replacement and prefetch-
ing schemes for various caches inside a computer sys-
tem such as hardware memory caches, TLBs, and buffer
caches inside the operating system, as well as processor
oriented optimizations such as branch prediction.

A key observation in the processor architecture is that
program instructions (or their program counters) provide

a highly effective means of recording the context of pro-
gram behavior. Consequently, program-counter-based
(PC-based) prediction techniques have been extensively
studied and widely used in modern computer architec-
tures. However, despite their tremendous success in ar-
chitecture design, PC-based techniques have not been ex-
plored in operating systems design.

In this paper, we explore the opportunities and feasi-
bility of PC-based techniques in operating systems de-
sign. In particular, we consider the application of PC-
based prediction to the I/O management in operating sys-
tems. Since the main memory, like hardware caches, is
just another level of the memory hierarchy, the I/O be-
havior of a program is expected to be similar to the data
movement in the upper levels of the memory hierarchy in
that there is a strong correlation between the I/O behavior
and the program context in which the I/O operations are
triggered. Furthermore, program counters are expected to
remain as an effective means of recording such program
context, similar to recording the context of data movement
in the upper levels of memory hierarchy.

The specific PC-based prediction technique we
propose, called Program-Counter-based Classification
(PCC), identifies the access pattern among the blocks ac-
cessed by I/O operations triggered by a call instruction
in the application. Such pattern classifications are then
used by a pattern-based buffer cache to predict the access
patterns of blocks accessed in the future by the same call
instruction. A suitable replacement algorithm is then used
to manage the accessed disk blocks belonging to each pat-
tern as in previous pattern-based buffer cache schemes.
Thus, PCC correlates the I/O access patterns observed by
the operating system with the program context in which
they are issued, i.e., via the PC of the call instruction
that triggers the I/O requests. This correlation allows the
operating system to classify block accesses on aper-PC
basis, and distinguishes PCC from previous classification
schemes in two fundamental aspects. First, if the same
instruction is observed again for newly opened files, PCC

USENIX Association 6th Symposium on Operating Systems Design and Implementation 1



can immediately predict the access pattern based on his-
tory. Second, PCC can differentiate multiple reference
patterns in the same file if they are invoked by different
instructions.

The design of PCC faces several challenges. First,
retrieving the relevant program counter that is responsi-
ble for triggering an I/O operation can be tricky, as I/O
operations in application programs are often abstracted
into multiple, layered subroutines and different call sites
may go through multiple wrappers before invoking some
shared I/O system calls. Second, PCC requires a prede-
fined set of access patterns and implements their detec-
tion algorithms. Third, the buffer cache needs to be parti-
tioned into subcaches, one for each pattern, and the sub-
cache sizes need to be dynamically adjusted according to
the distribution of the blocks of different patterns.

This papers makes the following contributions.

• It is, to our knowledge, the first to apply a PC-based
prediction in operating systems design;

• It presents the first technique that allows the operat-
ing system to correlate I/O operations with the pro-
gram context in which they are triggered;

• It presents experimental results demonstrating that
correlating I/O operations with the program con-
text allows for a more accurate and adaptive
prediction of I/O access patterns than previous
classification schemes, and a pattern-based buffer
caching scheme using PCC outperforms state-of-the-
art recency/frequency-based schemes;

• It shows that exploiting the synergy between ar-
chitecture and operating system techniques to solve
problems of common characteristics, such as exploit-
ing the memory hierarchy, is a promising research
direction.

The rest of the paper is organized as follows. Section 2
briefly reviews the wide use of PC-based prediction tech-
niques in computer architecture design. Section 3 moti-
vates the pattern classification problem in buffer caching
and discusses the design choices. Section 4 presents the
PCC design and Section 5 presents the results of an exper-
imental evaluation of PCC. Section 6 discusses additional
related work in buffer caching. Finally, Section 7 con-
cludes the paper.

2 PC-based techniques in architecture

History-based prediction techniques exploit the principle
that most programs exhibit certain degrees of repetitive
behavior. For example, subroutines in an application are
called multiple times, and loops are written to process a
large amount of data. The challenge in making an ac-
curate prediction is to link the past behavior (event) to

its future reoccurrence. In particular, predictors need the
program context of past events so that future events about
to occur in the same context can be identified. The more
accurate context information the predictor has about the
past and future events, the more accurate prediction it can
make about future program behavior.

A key observation made in computer architecture is that
a particular instruction usually performs a very unique
task and seldom changes behavior, and thus program in-
structions provide a highly effective means of recording
the context of program behavior. Since the instructions
are uniquely described by their program counters (PCs)
which specify the location of the instructions in memory,
PCs offer a convenient way of recording the program con-
text.

One of the earliest predictors to take advantage of the
information provided by PCs is branch prediction [40]. In
fact, branch prediction techniques have been so success-
ful in eliminating latencies associated with branch reso-
lution that they are implemented in every modern proces-
sor. The PC of the branch instruction uniquely identifies
the branch in the program and is associated with a par-
ticular behavior, for example, to take or not to take the
branch. Branch prediction techniques correlate the past
behavior of a branch instruction and predict its future be-
havior upon encountering the same instruction.

The success in using the program counter in branch
prediction was noticed and the PC information has been
widely used in other predictor designs in computer ar-
chitecture. Numerous PC-based predictors have been
proposed to optimize energy [4, 35], cache manage-
ment [21, 22], and memory prefetching [1, 6, 13, 19, 33,
38]. For example, PCs have been used to accurately pre-
dict the instruction behavior in the processor’s pipeline
which allows the hardware to apply power reduction tech-
niques at the right time to minimize the impact on perfor-
mance [4, 35]. In Last Touch Predictor [21, 22], PCs are
used to predict which data will not be used by the proces-
sor again and free up the cache for storing or prefetch-
ing more relevant data. In PC-based prefetch predic-
tors [1, 6, 13, 19, 33, 38], a set of memory addresses or
patterns are linked to a particular PC and the next set of
data is prefetched when that PC is encountered again.

PC-based techniques have also been used to improve
processor performance by predicting instruction behavior
in the processor pipeline [12, 36] for better utilization of
resources with fewer conflicts, as well as to predict data
movement in multiprocessors [21, 26] to reduce commu-
nication latencies in multiprocessor systems. Most re-
cently, a PC-based technique was proposed to predict disk
I/O activities for dynamic power management [15].

Despite their tremendous success in architecture de-
sign, PC-based techniques have not been explored in op-
erating systems design. In this paper, we consider the op-

USENIX Association 6th Symposium on Operating Systems Design and Implementation 2



portunity and viability of PC-based prediction techniques
in operating systems design. In particular, we consider
the buffer cache management problem, which shares com-
mon characteristics with hardware cache management as
they essentially deal with different levels of the memory
hierarchy.

3 Pattern classification in buffer caching

In this section, we motivate the pattern classification prob-
lem in buffer caching and discuss various design options.

3.1 Motivation

One of the most important problems in improving file sys-
tem performance is to design an effective block replace-
ment scheme for the buffer cache. One of the oldest re-
placement schemes that is yet still widely used is the Least
Recently Used (LRU) replacement policy [9]. The effec-
tiveness of LRU comes from the simple yet powerful prin-
ciple of locality: recently accessed blocks are likely to be
accessed again in the near future. Numerous other block
replacement schemes based on recency and/or frequency
of accesses have been proposed [17, 18, 24, 27, 30, 37].
However, a main drawback of the LRU scheme and all
other schemes based on recency and/or frequency of ac-
cesses is that they cannot exploit regularities in block ac-
cesses such as sequential and looping references [14, 39].

To overcome this drawback, pattern-based buffer re-
placement schemes [10, 11, 14, 20, 39] have been pro-
posed to exploit the fact that different types of reference
patterns usually have different optimal or best known re-
placement policies. A typical pattern-based buffer cache
starts by identifying and classifying reference patterns
among accessed disk blocks. It divides up the cache
into subcaches, one for blocks belonging to each pattern.
Based on the reference pattern, it then applies an optimal
or best known replacement policy to each subcache so as
to maximize the cache hit ratio for each subcache. In ad-
dition, a pattern-based buffer cache needs to dynamically
adjust subcache sizes based on the distribution of different
types of accesses with the goal of maximizing the overall
cache hit ratio. Experimental results [10, 20] have shown
that pattern-based schemes can achieve better hit ratios
over pure recency/frequency schemes for a mixture of ap-
plications.

3.2 Design space

The design space for pattern classification centers around
the granularity at which the classifications are being per-
formed. In particular, the access patterns of an application
can be classified on a per-application basis, a per-file ba-

sis, or a per-PC basis, i.e., for each program instruction
that triggers any I/O operations.

Per-application classification In a per-application
classification scheme such as DEAR [10], the pattern
in accesses invoked by the same application is detected
and classified. The patterns in DEAR include sequen-
tial, looping, temporally clustered, and probabilistic. The
scheme periodically reevaluates and reclassifies the pat-
terns and adapts the replacement policy according to the
changing reference patterns in the application. However,
as shown in [20] and later in this section, many applica-
tions access multiple files and exhibit multiple access pat-
terns to different files or even to the same file. Thus the
accuracy of per-application classification is limited by its
application level granularity.

Per-file classification In a per-file classification scheme
such as UBM [20], the access pattern in accesses to each
file is dynamically classified. In other words, it distin-
guishes multiple concurrent patterns in the same applica-
tion as long as they occur in different files. UBM clas-
sifies each file into one of the three possible access pat-
terns: sequential, looping, or other. Each file can only
have one classification at any given time, though it can
be reclassified multiple times. A file receives a sequential
classification when some predetermined number (thresh-
old) of consecutive blocks is referenced. Once the file is
classified as sequential, it can be reclassified as looping if
the file is accessed again according to the sequence seen
earlier. The file is classified as having the other reference
type when the pattern is not sequential, or the sequence is
shorter than the threshold. The Most Recently Used [29]
replacement policy is used to manage the subcache for
blocks that are accessed with a looping pattern, blocks
with a sequential access pattern are not cached, and LRU
is used to manage the subcache for blocks of the other
reference type.

The classification on a per-file basis in UBM suffers
from several drawbacks. First, the pattern detection has
to be performed for each new file that the application ac-
cesses, resulting in high training overhead and delay in
pattern classification when an application accesses a large
number of files. Second, since the first iteration of a loop-
ing pattern is misclassified as sequential, pattern detection
for every new file means such misclassification happens
for every file with a looping pattern. Third, if an appli-
cation performs accesses to a file with mixed access pat-
terns, UBM will not be able to differentiate them. Lastly,
the behavior of the threshold-based detection of sequen-
tial accesses is directly related to the file size, preventing
proper classification of small files.

Per-PC classification In a per-PC classification such as
PCC proposed in Section 4, the pattern in accesses in-

USENIX Association 6th Symposium on Operating Systems Design and Implementation 3



0

2

4

6

8

10

12

14

16

0 20 40 60 80

Virtual time [x1000]

V
ir

tu
al

 b
lo

ck
 [

x1
00

0]

(a) All reference patterns

0

2

4

6

8

10

12

14

16

0 20 40 60 80

Virtual time [x1000]

V
ir

tu
al

 b
lo

ck
 [

x1
00

0]

(b) References from reading header files
by a single instruction

Figure 1: Reference patterns ingcc

0

5

10

15

20

25

0 2 4 6 8 10 12

Virtual time [x1000]

B
lo

ck
 o

ff
se

t 
[x

10
0]

(a) Reference patterns in a single file

0

5

10

15

20

25

0 2 4 6 8 10 12

Virtual time [x1000]

B
lo

ck
 o

ff
se

t 
[x

10
0]

(b) Initial scan of the file by a single PC

0

5

10

15

20

25

0 2 4 6 8 10 12

Virtual time [x1000]

B
lo

ck
 o

ff
se

t 
[x

10
0]

(c) Processing of the file by multiple PCs

0

5

10

15

20

25

0 2 4 6 8 10 12

Virtual time [x1000]

B
lo

ck
 o

ff
se

t 
[x

10
0]

(d) Final references made by a single PC

Figure 2: Reference patterns intpc-h

voked by a call instruction in the application executable
is classified and correlated with future occurrences of
the same call instruction (represented by its program
counter). Compared to the per-application and per-file
classification schemes, per-PC classification correlates
the I/O behavior of a program with the program context
in which the I/O operations are invoked and records the
program context using appropriate PCs. Because of such
correlations, per-PC classification is expected to be more
accurate than classification schemes that do not exploit
such correlations. We illustrate this potential advantage
using two of the benchmarks studied in Section 5.

Figure 1(a) shows the space-time graphs of block ref-
erences ingcc(details of which will be discussed in Sec-
tion 5). The horizontal axis shows the virtual time which
is incremented at every block access, and the vertical axis
shows the corresponding block number at a given time.
Figure 1(a) shows that there exists a mixture of sequen-
tial (a single slope) and multiple looping (repeated slopes)
patterns ingcc. Figure 1(b) presents the reference pattern
to blocks accessed by a single instruction ingccresponsi-
ble for accessing header files during the compilation. Ac-
cesses to header files correspond to 67% of the references

in gcc of which 99% are reoccurring to header files al-
ready accessed once. The remaining 1% of the accesses
are the first accesses to repeatedly accessed header files,
or to header files that are accessed only once. Most im-
portantly, all header files are accessed by the same single
instruction. This observation suggests that the instruction
triggering the I/O operations can be used to classify ac-
cess patterns; the access pattern of the blocks accessed
by it needs to be learned once and with high probability,
the same pattern holds when it is used to access different
files. In contrast, UBM needs to classify the access pattern
for each header file, incurring a delay in the classification
and, consequently, a missed opportunity in applying the
best known replacement scheme.

Figure 2(a) shows the reference patterns to a single
file in the tpc-hbenchmark (details of which will be dis-
cussed in Section 5). The vertical axis shows the offset
of the blocks in the accessed file. The reference pattern
in Figure 2(a) shows a mixture of sequential accesses and
looping accesses. To illustrate the use of PCs for pattern
classification, we separate the patterns into three differ-
ent components as shown in Figures 2(b)(c)(d). The ac-
cesses in Figure 2(b) are performed by a single PC which

USENIX Association 6th Symposium on Operating Systems Design and Implementation 4



scans the entire file. The blocks read in Figure 2(b) are
subsequently accessed again by multiple PCs as shown in
Figure 2(c). Since the blocks accessed in Figure 2(b) are
accessed again in Figure 2(c), the accessing PC in Fig-
ure 2(b) is classified as looping. Similarly, blocks in Fig-
ure 2(c) are accessed again in Figure 2(d), and therefore
PCs in Figure 2(c) are also classified as looping. Finally,
the blocks accessed by a single PC in Figure 2(d) are not
accessed again and the accessing PC is classified as se-
quential.

PCC is able to separate multiple concurrent access pat-
terns and make a proper prediction every time the file with
multiple access patterns is referenced. In contrast, UBM
classifies access patterns on a per-file basis, and therefore
it will not be able to separate the sequential, looping, and
other access patterns.

4 PCC Design

The key idea behind PCC design is thatthere is a strong
correlation between the program context from which I/O
operations are invoked and the access pattern among the
accessed blocks, and the call instruction that leads to the
I/O operations provides an effective means of recording
the program context. Each instruction is uniquely de-
scribed by its PC. Thus, once PCC has detected a ref-
erence pattern, it links the pattern to the PC of the I/O
instruction that has performed the accesses. Such pat-
tern classifications are then used by a pattern-based buffer
cache to predict access patterns of blocks accessed in the
future by the same call instruction.

4.1 Pattern classification

The main task of PCC is to classify the instructions (or
their program counters) that invoke I/O operations into
appropriate reference pattern categories. Once classified,
the classification of the PC is used by the cache manager
to manage future blocks accessed by that PC.

We define three basic reference pattern types:

Sequential referencesare sequences of distinct blocks
that are never referenced again;

Looping referencesare sequential references occurring
repeatedly with some interval;

Other references are references not detected as looping
or sequential.

Figure 3 shows the two data structures used in PCC
implementation. The PC hash table keeps track of how
many blocks each PC accesses once (Seq) and how many
are accessed more than once (Loop). The block hash ta-
ble keeps records of M recently referenced blocks, each

PC1

PCC

Loop = 12
Seq = 0

Sequential

Looping

Other

Type
Period

A
llo

oca
to

r (M
a

rgin
a

l G
a

in
)

File Cache

Period = 100

PC table

Last_PC = 1
Time = 75

Block table

Block

Figure 3: Data structures in PCC

containing the block address, the last accessing PC, and
the access time. The choice of the M blocks is discussed
in Section 4.2. The access time is simply a count of the
number blocks accessed since the program started. PCC
maintains the last accessing PC in the block table since a
block may be accessed by different PCs.

To simplify the description, we first describe the PCC
algorithm assuming all blocks accessed by each PC are
monitored. The actual PCC uses a sampling technique to
reduce the block hash table size and is discussed in Sec-
tion 4.2. The pseudo code for PCC without sampling is
shown in Figure 4. When a PC triggers an I/O to a block,
PCC first looks up the block in the block table to retrieve
the PC and the time of the last access to the block. The
last accessing PC is used to retrieve the record of that last
PC in the PC table. The record is updated by decreasing
theSeq count and increasing theLoop count since the
block is being accessed again. The exponential average
of the period is then calculated based on the time differ-
ence recorded in the block entry. If the current PC differs
from the last PC, PCC performs an additional lookup into
the PC table to obtain the record of the current PC. At this
time PCC classifies the reference pattern and returns both
the type and the period from the PC entry.

PCC classifies accesses based on theLoop count, the
Seq count, and a threshold variable. The threshold aids
in the classification of sequential references made by a
newly encountered PC. If there are fewer non-repeating
(Seq) blocks than repeating (Loop) blocks, the PC is
classified as looping, disregarding the threshold. Other-
wise, the PC is classified as sequential if theSeq count is
larger than or equal to the threshold, or other if theSeq
count is smaller than the threshold. PCs that temporarily
have comparableSeq andLoop counts and therefore do
not fall clearly into sequential or looping categories are
classified as other references. These PCs mostly have a
combination of sequential references to some blocks and
looping references to other blocks.

Similar to UBM, PCC will misclassify the first occur-
rence of a looping sequence as sequential, assuming it is
longer than the threshold. However, once PCC assigns the
looping pattern to a PC, the first references to any file by

USENIX Association 6th Symposium on Operating Systems Design and Implementation 5



PCC(PC, Block, currTime)
(1) if ((currBlock = getBlockEntry(Block)) == NULL)
(2) currBlock = NewBlockEntry(Block);
(3) else{ // the entry for last accessing PC must exist
(4) currPC = getPCEntry(currBlock→Last PC);
(5) currPC→Seq- -;
(6) currPC→Loop++;
(7) currPC→Period = expAverage(currPC→Period,
(8) currTime - currBlock→Time);
(9) }
(10) if (currBlock→Last PC != PC)
(11) currPC = getPCEntry(PC);
(12) if (currPC == NULL){
(13) currPC = NewPCEntry(PC);
(14) currPC→Seq = 1;
(15) currPC→Loop = currPC→Period = 0;
(16) Type = “Other”;
(17) } else{
(18) currPC→Seq++;
(19) if (currPC→Loop> currPC→Seq)
(20) Type = “Looping”;
(21) else if (currPC→Seq>= Threshold)
(22) Type = “Sequential”;
(23) else
(24) Type = “Other”;
(25) Period = currPC→period;
(26) }
(27) currBlock→Time = currTime;
(29) currBlock→Last PC = PC;
(30) return(Type, Period);

Figure 4: Pseudocode for PCC without sampling

the same PC will be labeled as looping right away.
We note the threshold value has different meaning and

performance impact in PCC and UBM. In UBM, the
threshold value is on a per-file basis and therefore files
with sizes smaller than the threshold are not classified
properly. In PCC, the threshold is set on a per-PC ba-
sis, and thus a PC that accesses enough small files will be
properly classified.

Figure 5 shows some example reference patterns as-
suming that the threshold is set at three. When the appli-
cation starts executing, PCC observes a set of sequential
references by PC1. After three initial references are clas-
sified as other, the threshold is reached and PC1 is classi-
fied as sequential for the remaining references. When the
sequence is accessed again, PCC reclassifies PC1 as loop-
ing, and future blocks referenced by PC1 are classified as
looping. At that time, the loop period is calculated and
recorded with PC1. In the meantime, PC2 is encountered
and again classified after the initial three references as se-
quential. The classification is not changed for PC2 since
no looping references are encountered. When PC3 ac-
cesses the same set of blocks that were accessed by PC1,
PC3 is classified as sequential, since PC3 is observed for
the first time. Note that the classification of PC1 remains

Time

B
lo

ck
 n

um
b

er

PC1 PC1 PC3

PC2

PC1

Figure 5: An example of reference patterns

the same, although the classification of the set of blocks it
accessed has changed from looping to sequential.

4.2 PCC with block sampling

Maintaining the blocks in the block hash table is crucial
to calculating the loop period. Keeping the information
for every accessed block would be prohibitive for large
data sets. Instead, PCC only keeps periodically sampled
referenced blocks in the block hash table, and repeated ac-
cesses to the sampled blocks are used to calculate the loop
period for each PC. Specifically, for each PC in the appli-
cation, the block hash table maintains up to N blocks, each
recorded at every T-th access by that PC. We discuss the
choices of N and the sampling period T in Section 5.3.1.
Note that sampling dictates which blocks will be inserted
in the block table and thus used for calculating the av-
erage period for a PC. If the block in the block table is
accessed again, the PC period calculation is performed as
before. After the update, the block is discarded from the
block table to free a slot for the next sample.

To further limit the block table size, when the block
table is full, PCC uses the LRU policy to evict the least
recently used PC from the PC table and the corresponding
block table entries.

4.3 Obtaining signature PCs

Instead of obtaining a single PC of the function call from
the application that invokes each I/O operation, PCC ac-
tually uses asignature PCwhich records thecall site of
the I/O operation by summing the sequence of PCs en-
countered in going through multiple levels of wrappers
before reaching the actual system call. The wrapper func-
tions are commonly used to simplify programming by ab-
stracting the details of accessing a particular file structure.
For example, in the call graph shown in Figure 6, Func-
tions 2, 3, and 4 use the same PC in the wrapper func-
tion for I/O operations. Therefore, the PC that invokes
the I/O system call within the wrapper cannot differenti-
ate the behavior of different caller functions. To obtain
a unique characterization of the accessing PC, PCC tra-
verses multiple function stacks in the application. The
PCs obtained during the stack frame traversal are summed

USENIX Association 6th Symposium on Operating Systems Design and Implementation 6



Library PC6

PC1: funct1()

PC0: main()

PC2: funct2()

PC3: funct3() PC4: funct4()

PC5: I/O wrapper()

PC

PCNPC

Application

Figure 6: An example function call graph

together to obtain a unique identifier as thesignature PC
of the I/O operation. In the applications studied in Sec-
tion 5, traversal of only two additional stack frames pro-
vided sufficient information to PCC. As the minimum
number of stack frames needed to generate unique sig-
nature PCs varies from application to application, PCC
always traverses all the function stacks in the application
until reachingmain(). We note that it is extremely un-
likely that the signature PCs of different call sites will col-
lide as each signature PC is 32-bit, while an application
typically has up to a few hundred call sites. For simplic-
ity, in the rest of the paper, we will refer to the signature
PC of an I/O operation simply as its PC.

Compared to previous pattern classification schemes, a
unique property of PCC is that the PCs that trigger I/O op-
erations and their access patterns tend not to change in fu-
ture invocations of the same application. Thus, PCC saves
the per-PC pattern classifications in the PC table for po-
tential future reuse. Similar to the block table, the size of
the PC table can be easily managed using LRU. We note
that the PC table is usually much smaller than the block
table as most applications have a few call sites responsible
for accessing a large number of blocks.

5 Performance evaluation

We compare the performance of UBM, PCC, ARC [27],
and LRU via trace-driven simulations and an actual im-
plementation in Linux. Simulated UBM results were ob-
tained using the unmodified UBM simulator from the au-
thors of UBM [20]. To obtain results for PCC, we mod-
ified the UBM simulator by replacing its classification
routine with PCC; UBM’s cache management based on
marginal gain evaluations was kept without any modifica-
tion. Using the same marginal gain in PCC and UBM iso-
lates the performance difference due to different pattern
classification schemes. We also implemented the ARC
scheme [27] as presented in [28]. ARC is a state-of-the-
art recency/frequency-based policy that offers compara-
ble performance to the best online and off-line algorithms.
It dynamically adjusts the balance between the LRU and
LFU components for a changing workload by maintain-

ing two LRU lists: one contains pages seen only once
while the other contains pages seen more than once. At
any given time, ARC selects top elements from both lists
to reside in the cache. Finally, we implemented both PCC
and UBM in Linux kernel 2.4.

5.1 Cache organization and management

Both the UBM-based and the PCC-based replacement
schemes in our comparison study use the marginal gain
in the original UBM [20] to manage the three partitions
of the buffer cache, used to keep blocks with sequen-
tial, looping, and other references, respectively. Once the
blocks are classified, they are stored in the appropriate
subcache and managed with the corresponding replace-
ment policy. Sequentially referenced blocks, as defined,
are not accessed again, and therefore they can be dis-
carded immediately after being accessed. Looping ref-
erences are primarily managed based on the looping in-
terval. Looping blocks with the largest interval will be
replaced first since they will be used furthest in the future.
If all blocks in the cache have the same detected interval,
the replacement is made based on the MRU [29] replace-
ment policy. References classified as other are managed
by LRU as in the original UBM [20], but can be managed
by other recency/frequency-based policies as well.

The cache management module uses marginal gain
computation to dynamically allocate the cache space
among the three reference types [29, 43]. As mentioned
earlier, sequential references can be discarded immedi-
ately. Since there is no benefit from caching them, the
marginal gain is zero, and the subcache for sequential ref-
erences consists of only one block per application thread.
The remaining portion of the cache is distributed dynami-
cally between sequential and other references. The benefit
of having an additional block is estimated for each sub-
cache, and the block is removed from the subcache that
would have gained less by having the additional block and
given to the subcache that will benefit more.

5.2 Applications

Tables 1 and 2 show the five applications and three con-
current executions of the mixed applications used in this
study. For each application, Table 1 lists the number
of I/O references, the size of the I/O reference stream,
the number of unique files accessed, and the number of
unique signature PCs used for the I/O references. The se-
lected applications and workload sizes are comparable to
the workloads in recent studies [11, 17, 24, 27] and re-
quire cache sizes up to 1024MB.

Cscope [42] performs source code examination.
The examined source code is Linux kernel 2.4.20.
Glimpse[25] is an indexing and query system and is used

USENIX Association 6th Symposium on Operating Systems Design and Implementation 7



Appl. Num. of Data Num. of Num. of
references size [MB] files PCs

cscope 1119161 260 10635 107
glimpse 519382 669 43649 25

gcc 158667 41 2098 334
viewperf 303123 495 289 179

tpc-h 121307 196 80 242
multi1 1278135 297 12246 442
multi2 1580908 792 12514 605
multi3 640467 865 43738 268

Table 1:Applications and trace statistics

Appl. Applications executed concurrently
multi1 cscope, gcc
multi2 cscope, gcc, viewperf
multi3 glimpse, tpc-h

Table 2:Concurrent applications

to search for text strings in 550MB of text files under the
/usr directory. In bothCscopeandGlimpse, an index is
first built, and single word queries are then issued. Only
I/O operations during the query phases are used in the ex-
periments. In both applications, looping references dom-
inate sequential and other references.Gcc builds Linux
kernel 2.4.20 and is one of the commonly used bench-
marks. It shows both looping and sequential references,
but looping references, i.e., repeated accesses to small
header files, dominate sequential references. As a result,
it has a very small working set; 4MB of buffer cache is
enough to contain the header files. This constrains the
buffer cache sizes used in the evaluation.Viewperf is
a SPECbenchmark that measures the performance of a
graphics workstation. The benchmark executes multiple
tests to stress different capabilities of the system. The
patterns are mostly regular loops asviewperfreads entire
files to render images. ThePostgres[34] database system
from the University of California is used to runTPC-H
(tpc-h) [44]. Tpc-haccesses a few large data files, some
of which have multiple concurrent access patterns.

Multi1 consists of concurrent executions ofcscopeand
gcc. It represents the workload in a code development
environment.Multi2 consists of concurrent executions of
cscope, gcc, andviewperf. It represents the workload in
a workstation environment used to develop graphical ap-
plications and simulations.Multi3 consists of concurrent
executions ofglimpseand tpc-h. It represents the work-
load in a server environment running a database server
and a web index server.

We briefly discuss the characteristics of the individual
applications that affect the performance of the eviction
policies. Figure 7 shows the cumulative distribution of
the references to the files in these applications. We ob-
serve that the number of files contributing to the number

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100
Number of files

F
ra

ct
io

n
 o

f 
re

fe
re

n
ce

s

cscope glimpse
gcc viewperf
tpc-h

Figure 7: Cumulative distribution of file accesses

0%

20%

40%

60%

80%

100%

0 5 10 15 20
Number of signature PCs

F
ra

ct
io

n
 o

f 
re

fe
re

n
ce

s

cscope glimpse
gcc viewperf
tpc-h

Figure 8: Cumulative distribution of signature PCs

of references spans a wide range. The number of files
affects the performance of UBM. Since UBM trains on
each new file to detect the looping and sequential refer-
ences, the amount of training in UBM is proportional to
the number of files that an application accesses. The num-
ber of I/O call sites (signature PCs) has a similar impact
on training in PCC. Figure 8 shows the cumulative distri-
bution of the references triggered by signature PCs in the
applications. Compared to UBM, in PCC, fewer than 30
PCs are responsible for almost all references in all appli-
cations, resulting in shorter training in PCC than in UBM.
Lastly, the average number of application function stack
frame traversals to reachmain() for the eight applica-
tion versions is 6.45.

5.3 Simulation results

The detailed traces of the applications were obtained by
modifying thestraceLinux utility. Straceintercepts the
system calls of the traced process and is modified to

USENIX Association 6th Symposium on Operating Systems Design and Implementation 8



0%

20%

40%

60%

80%

100%

1 2 3 4 5 1 0 2 0 4 0 8 0 1 6
0

3 2
0

6 4
0

1 0
00

Sampling period

H
it

 r
at

io
cscope glimpse gcc
viewperf tpc-h multi1
multi2 multi3

Figure 9: Impact of sampling period on PCC’s hit ratio

record the following information about the I/O operations:
PC of the calling instruction, access type, file identifier
(inode), and I/O size.

5.3.1 Impact of sampling frequency in PCC

Figure 9 shows the impact of block sampling on the
hit ratio in PCC. We selected a single cache size for
each benchmark – 128MB forcscope, tpc-h, multi1, and
multi2, 512MB forglimpseandmulti3, 2MB for gcc, and
32MB forviewperf. The same cache sizes are used in Sec-
tion 5.4 to compare the performance of LRU, UBM, and
PCC in our Linux implementation. No limit is imposed
on the block table size, and the threshold value is set to
100. Figure 9 shows that increasing the sampling period
to 20 barely affects the hit ratio for all applications. How-
ever, as the sampling period continues to increase, PCC
may not capture changes in the loop periods and result in
reduced hit ratios. We also performed sensitivity analy-
sis on the threshold value of PCC. The results show that
varying the threshold between 5 and 400 results in less
than a 2% variation in hit ratios for the eight application
versions. Thus, we chose a sampling period of 20 and
a threshold of 100 in our simulation and implementation
experiments below.

Using sampling significantly reduces the storage over-
head of the block table. Recording all blocks accessed
by an application require as much as 220K entries in the
block table for the eight application versions in Table 1.
Using a sampling period of 20, the maximum number of
entries in the block table is less than 9K entries for all
applications. Since the memory overhead of a block table
with 9K entries is comparable to that of the per-file pattern
table in UBM (up to 20K entries for these applications),
we do not explore the impact of the LRU replacement in
the PC table in this paper.

0%

20%

40%

60%

80%

100%

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

cscope glimpse gcc viewperf tpc-h multi1 multi2 multi3

F
ra

ct
io

n
 o

f 
re

fe
re

n
ce

s

sequential looping other

Figure 10: Reference classification in UBM and PCC

5.3.2 Pattern classification

To help understand the measured hit ratios, we first
present the classification results for PCC and UBM in Fig-
ure 10. The classification results are a characteristic of the
applications and are independent of the cache size. The
accuracies of the classification schemes will dictate how
often the cache manager can apply the appropriate evic-
tion policies for the accessed blocks.

UBM and PCC on average have 15% and 13% sequen-
tial references, respectively. PCC has an advantage in de-
tecting looping references when the same PC is used to
access multiple files. As a result, PCC has an average
of 80% looping references and only 7% other references.
UBM classifies many more references as other, resulting
in an average 46% looping and 39% other references. In
the cases ofgccandtpc-h, UBM classifies a limited frac-
tion of references, and thus the performance of UBM is
expected to degrade to that of LRU. In these cases, ARC
and PCC will provide improved performance over UBM.

5.3.3 Cache hit ratios

Figure 11 shows the hit ratios for the studied applications
under different cache sizes in Megabytes. We plot the
results for five replacement policies for each application:
OPT, PCC, UBM, ARC, and LRU. The optimal replace-
ment policy (OPT) assumes future knowledge and selects
the cache block for eviction that is accessed furthest in the
future [3]. PCC performs block sampling as described in
Section 4.2. The threshold value of 3 was found to be op-
timal for UBM for the studied applications and was used
in the experiments.

Overall, compared to UBM, PCC improves the abso-
lute hit ratio by as much as 29.3% with an average of
13.8% maximum improvement over the eight application
versions. Compared to ARC, PCC improves the absolute

USENIX Association 6th Symposium on Operating Systems Design and Implementation 9



viewperf

0%

20%

40%

60%

8 16 32 64

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

multi3

0%

20%

40%

60%

16 32 64 128 256 512 1024

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

multi2

0%

20%

40%

60%

80%

4 8 16 32 64 128 256

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

multi1

0%

20%

40%

60%

80%

100%

8 16 32 64 128 256

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

tpc-h

0%

20%

40%

60%

2 4 8 16 32 64 128 256

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

gcc

0%

20%

40%

60%

80%

100%

0.25 0.50 1 2 4

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

cscope

0%

20%

40%

60%

80%

100%

8 16 32 64 128 256

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

glimpse

0%

20%

40%

60%

16 32 64 128 256 512 1024

Cache size [MB]

H
it 

ra
tio

OPT PCC
UBM ARC
LRU

Figure 11: Comparison of cache replacement schemes

USENIX Association 6th Symposium on Operating Systems Design and Implementation 10



hit ratio by as much as 63.4% with an average of 35.2%
maximum improvement.

Cscope Cscopescans an index file and many text files
during source code examination and shows the looping
behavior for a large number of files. This is a pathological
case for LRU when the blocks accessed in the loop cannot
fit in the cache. Similar behavior is present in ARC as all
blocks are accessed more than once and the frequency list
is also managed by LRU. The benefit of LRU and ARC
caching is only observed when the entire looping file set
fits in the cache. Both UBM and PCC show significant
gains over LRU and ARC. UBM is able to classify the
references and take advantage of the MRU replacement
policy, achieving a maximum of 57.3% improvement in
hit ratio over LRU. In contrast, PCC achieves as much as
a 64.4% higher hit ratio than LRU and 7.1% higher than
UBM. Two factors contribute to the hit ratio difference
between PCC and UBM. First, UBM is unable to classify
small files which are inside a loop and account for 10%
of the references. Second,Cscopeperiodically calls the
seek function to adjust the file position during sequential
reading of the index file. The adjustment, although very
small, disrupts the looping classification in UBM, causing
the the classification to switch to other and subsequently
to sequential. In contrast, PCC only observes small fluctu-
ations in the resulting loop period but maintains the loop-
ing classification.

Glimpse Glimpseis similar tocscopeas it scans both an
index file and many text files during string search. UBM
has to train for each of the 43649 files it accesses. It classi-
fies 56% of these files as other since they have sizes below
the threshold of three blocks. Each of the remaining files
is first classified as other during the initial two references,
and then as sequential upon the third reference, and finally
looping once a loop is detected. Since all of these files
are accessed by a single PC, PCC will train much more
quickly, resulting in the accurate classification of loop-
ing. Figure 10 shows that PCC detects 12% more looping
references than UBM. Figure 11 shows that PCC closely
matches the hit ratio of OPT across different cache sizes
as it is able to classify all references as looping and apply
the MRU policy to the accessed blocks.

Gcc In Gcc, 50% of references are to files shorter than
the threshold. As discussed in Section 3.2, accesses to
all the headers files are triggered by a single PC, and
thus PCC is able to learn the looping access pattern of
the PC once and makes a correct looping prediction for
all the remaining accesses to the header files. In con-
trast, files shorter than the threshold will be classified by
UBM as having other references. Figure 10 shows PCC
is able to detect more looping references as compared
to UBM, and Figure 11 shows PCC achieves a signifi-

cantly higher hit ratio than UBM. When the cache size is
1MB, UBM achieves a lower hit ratios than LRU. This
is due to accesses to temporary files that are accessed
only twice. First-time accesses to a temporary file are
misclassified by UBM as sequential and discarded from
the cache. Second-time accesses to the temporary file are
again misclassified by UBM as looping and the blocks are
placed in the loop cache, taking resources away from the
LRU cache. These misclassifications in UBM hurt the hit
ratio the most when the cache size is 1MB.

Viewperf Viewperf is driven by five different datasets,
each having several files describing the data. Over 95% of
the references when driven by the five datasets are to 8, 4,
1, 4, and 3 different files, respectively. Each file is reused
as input to several invocations of the viewperf application
with different parameters and is then discarded. A total
of four files in viewperfare accessed only twice, which
results in wrong classifications in UBM for both passes,
similarly as ingcc. As in gcc, PCC uses only the first file
to learn and correctly classifies accesses to the remaining
files, resulting in higher hit ratios than UBM.

Tpc-h Tpc-hhas three files that account for 88% of all
accesses, and therefore the training overhead for new files
is not a major issue for UBM. The main difference be-
tween PCC and UBM is due to accesses to one of the
three files which accounts for 19% of the references. As
explained in Section 3, accesses to the file contain multi-
ple concurrent looping references, and UBM will misclas-
sify all references to the file. Accesses in Figures 2(b) and
2(c) should be classified as looping, and accesses in Fig-
ure 2(d) sequential. However, irregularities and multiple
concurrent looping references will cause UBM to classify
accesses in Figures 2(b)(c)(d) as other. Because of the
high percentage of other references in UBM as shown in
Figure 10, UBM performs similarly as LRU as shown in
Figure 11.

Multi1, multi2 and multi3 The traces formulti1, multi2,
andmulti3 contain the references of the individual appli-
cations and thus inherit their characteristics. The pattern
detection is performed as in the case of individual appli-
cations, since there is no interference among different ap-
plications due to their distinct PCs.

The resulting cache hit ratio curves are dominated by
the applications that perform accesses more frequently,
i.e.,cscopein multi1andmulti2andglimpsein multi3. In
multi1andmulti2, gcc is able to cache the looping header
files in under 4MB, while for larger buffer sizes, the ac-
cess pattern is primarily dominated by the remaining ap-
plications. Interleaved references fromglimpseandtpc-h
in multi3 affect the period calculation, resulting in lower
hit ratios for PCC than expected from individual execu-
tions of the two applications as shown in Figure 11.

USENIX Association 6th Symposium on Operating Systems Design and Implementation 11



5.4 Implementation in Linux

We implemented both UBM-based and PCC-based re-
placement schemes in Linux kernel 2.4.20 running on a
2Ghz Intel Pentium 4 PC with 2GB RAM and a 40GB
Seagate Barracuda hard disk. We modified the kernel to
obtain the signature PCs. Specifically, we modified the
read andwrite system calls such that upon each ac-
cess to these calls, PCC traverses the call stack to retrieve
the relevant program counters. Since multiple levels of
stacks have to be traversed to determine the signature PC,
the traversal involves repeatedly accessing the user space
from the kernel space.

We also modified the cache in Linux to allow setting
a fixed cache size. This modification allows us to vary
the cache size and study the effectiveness of the classi-
fication schemes for different cache sizes while keeping
all other system parameters unchanged. One limitation of
our implementation is that it cannot retrieve the PCs for
references to files mapped into memory bymmap. Such
references are classified as other references. Out of the ap-
plications we studied, onlygcchas a few memory mapped
file accesses.

Based one the working set sizes, we selected the cache
size to be 128MB forcscope, tpc-h, multi1, andmulti2,
512MB for glimpseandmulti3, 2MB for gcc, and 32MB
for viewperf. Figure 12 shows the number of disk I/Os and
the execution time for each application under UBM and
PCC normalized to those under the basic LRU scheme.
For all three schemes, the standard file system prefetching
of Linux (generic file readahead) was enabled,
which prefetches up to 32 blocks from the disk for se-
quential accesses. The execution times reported here are
the average of three separate executions. Each execution
was run after the system was rebooted to eliminate any
effects from prior buffer cache content.

Overall, compared to the basic LRU, UBM reduces the
average number of disk I/Os by 20.7%, while better clas-
sification in PCC results in an average of 41.5% reduction
in the number of disk I/Os, or 20.8% over UBM. The re-
duction in disk I/Os leads to a reduction in the execution
time; UBM reduces the average execution time of LRU
by 6.8%, while PCC reduces the average execution time
of LRU by 20.5%, or 13.7% compared to UBM. We no-
tice that inviewperfthe small decrease in I/Os does not
translate into saving in execution time becauseviewperfis
a CPU-bound application. All other application are I/O-
bound and the reduction in execution time follows the re-
duction in the number of I/Os.

5.4.1 Runtime overhead of PCC

To measure the overhead of PCC, we used a microbench-
mark that repeatedly reads the same block of a file which
results in hits under all of the LRU, UBM, and PCC

0%

20%

40%

60%

80%

100%

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

cscope glimpse gcc viewperf tpc-h multi1 multi2 multi3

N
o

rm
al

iz
ed

 d
is

k 
I/O

s

0%

20%

40%

60%

80%

100%

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

U
B

M

P
C

C

cscope glimpse gcc viewperf tpc-h multi1 multi2 multi3N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

Figure 12: Performance of UBM and PCC integrated into
the Linux kernel (Normalized to the performance of the
basic LRU scheme)

schemes. Since the average number of application stack
frame traversals in our experiments is 6.45, we set our
microbenchmark to go through 7 subroutine calls before
invoking the actual system call. The time to service a hit
in the buffer cache in the unmodified kernel is 2.99 mi-
croseconds. In our implementation, this time increases to
3.52 microseconds for LRU because of code changes we
incorporated to support a fixed cache size and different
replacement schemes. The time to service a hit in UBM
is 3.56 microseconds due to the marginal gain cache man-
agement and pattern classification overhead. This time
increases to 3.75 microseconds in PCC. The additional
overhead of 0.19 microsecond is due to obtaining the sig-
nature PC of the I/O operation. The additional overhead
of 0.23 microsecond compared to LRU is promising: one
saved cache miss which would cost 5-10 milliseconds is
equivalent to the PCC overhead in about 20000 – 40000
cache accesses (hits or misses), and thus the overhead is
expected to be overshadowed by the gain from the im-
proved cache hit ratio.

Finally, we measured the impact of PCC overhead
when the applications do not benefit from PCC. Using
a 1GB cache, which is large enough that all replacement
schemes result in identical cache hit ratios for all five indi-
vidual applications. The average running time of the five
applications using PCC is 0.65% longer than that using
LRU.

USENIX Association 6th Symposium on Operating Systems Design and Implementation 12



6 Related work

The vast amount of work on PC-based techniques in com-
puter architecture design have been discussed in Sec-
tion 2. Here we briefly review previous buffer caching
replacement policies which fall into three categories:
recency/frequency-based, hint-based, and pattern-based.

Frequency/Recency-based policiesDespite its sim-
plicity, LRU can suffer from its pathological case when
the working set size is larger than the cache and the appli-
cation has looping access pattern. Similarly, LFU suffers
from its pathological case when initially popular cache
blocks are subsequently never used. Many policies have
been proposed to avoid the pathological cases of LRU and
LFU. LRU-K [30, 31] is related to LFU and replaces a
block based on the Kth-to-the-last reference. LRU-K is
more adaptable to the changing behavior but it still re-
quires the logarithmic complexity of LFU to manage the
priority queue. To eliminate the logarithmic complexity
of LRU-K, 2Q [18] maintains two queues: one queue for
blocks referenced only once, and another for reoccurring
references. If a block in the first queue is referenced again,
it is moved to the second queue. This simple algorithm
results in constant complexity per access; however, it re-
quires two tunable parameters. Low Inter-reference Re-
cency Set (LIRS) [17] maintains a complexity similar to
that of LRU by using the distance between the last and
second-to-the-last references to estimate the likelihoodof
the block being referenced again.

Many policies have been proposed to combine recency
and frequency. The first policy to combine LRU and LFU
is Frequency-Based Replacement (FBR) [37]. It com-
bines the access frequency with the block age by main-
taining an LRU queue divided into three sections: new,
middle, and old. Least Recently/Frequently Used (LRFU)
[24] provides a continuous range of policies between LRU
and LFU. A parameterλ is used to control the amount of
recency and frequency that is included in the value used
for replacement. Adaptive LRFU (ALRFU) [23] dynam-
ically adjustsλ, eliminating the need to properly setλ

for a particular workload. The most recent additions to
the LFU/LRU policies are Adaptive Replacement Cache
(ARC) [27] and its variant CAR [2]. The basic idea of
ARC/CAR is to partition the cache into two queues, each
managed using either LRU (ARC) or CLOCK (CAR):
one contains pages accessed only once, while the other
contains pages accessed more than once. Like LRU,
ARC/CAR has constant complexity per request.

Hint-based policies In application controlled cache
management [8, 32], the programmer is responsible for
inserting hints into the application which indicate to OS
what data will or will not be accessed in the future and
when. The OS then takes advantage of these hints to de-

cide what cached data to discard and when. This can be a
difficult task as the programmer has to carefully consider
the access patterns of the application so that the resulting
hints do not degrade the performance. To eliminate the
burden on the programmers, compiler inserted hints were
proposed [7]. These methods provide the benefits of user
inserted hints for existing applications that can be simply
recompiled with the proposed compiler. However, more
complicated access patterns or input dependent patterns
may be difficult for the compiler to characterize.

Pattern-based policies Dynamically adaptable pattern
detection not only eliminates the burden on the program-
mer but also adapts to the user behavior. SEQ [14] de-
tects sequential page fault patterns and applies the Most
Recently Used (MRU) policy to those pages. For other
pages, the LRU replacement is applied. However, SEQ
does not distinguish sequential and looping references.
EELRU [39] detects looping references by examining
aggregate recency distribution of referenced pages and
changes the eviction point using a simple cost/benefit
analysis. As discussed in Section 3, DEAR and UBM [10,
11, 20] are closely related to PCC in that they are pattern-
based buffer cache replacement schemes and explicitly
separate and manage blocks that belong to different ref-
erence patterns. They differ from PCC in the granularity
of classification; classification is on a per-application ba-
sis in DEAR, a per-file basis in UBM, and a per-call-site
basis in PCC.

7 Conclusions

This paper presents the first design that applies PC-based
prediction to the I/O management in operating systems.
The proposed PCC pattern classification scheme allows
the operating system to correlate I/O operations with the
program context in which they are triggered, and thus has
the potential to predict access patterns much more accu-
rately than previous schemes. Compared to the per-file
access pattern classification scheme in UBM, PCC offers
several advantages: (1) it can accurately predict the refer-
ence patterns of new files before any access is performed,
eliminating the training delay; (2) it can differentiate mul-
tiple concurrent access patterns in a single file.

Our evaluation using a range of benchmarks shows that,
compared to UBM, PCC achieves on average a 13.8%
higher maximum hit ratio in simulations with varying
cache sizes, and reduces the average number of disk I/Os
by 20.8% and the average execution time by 13.7% in our
Linux implementation. These results demonstrate that ex-
ploiting the synergy between architecture and operating
system techniques to solve problems of common charac-
teristics, such as exploiting the memory hierarchy, is a
promising research direction.

USENIX Association 6th Symposium on Operating Systems Design and Implementation 13



Acknowledgments

We wish to thank Mendel Rosenblum, our shepherd, and
the anonymous reviewers for their constructive feedback
on this work. We would also like to thank Jongmoo Choi
for giving us access to the UBM simulator code.

References

[1] J.-L. Baer and T.-F. Chen. An effective on-chip preloading scheme
to reduce data access penalty. InProc. ICS, June 1991.

[2] S. Bansal and D. S. Modha. CAR: Clock with Adaptive Replace-
ment.Proc. FAST, March 2004.

[3] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer.IBM Systems Journal, 5(2):78–101, 1966.

[4] N. Bellas, I. Hajj, and C. Polychronopoulos. Using dynamic cache
management techniques to reduce energy in a high-performance
processor. InProc. ISLPED, August 1999.

[5] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking database
systems: A systematic approach. InProc. VLDB, October 1983.

[6] B. Black, B. Mueller, S. Postal, R. Rakvic, N. Utamaphethai, and
J. P. Shen. Load execution latency reduction. InProc. ICS, July
1998.

[7] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-based I/O
prefetching for out-of-core applications.ACM TOCS, 19(2):111–
170, 2001.

[8] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation
and performance of integrated application-controlled filecaching,
prefetching, and disk scheduling.ACM TOCS, 14(4):311–343,
1996.

[9] R. W. Carr and J. L. Hennessy. WSCLOCK – a simple and effec-
tive algorithm for virtual memory management. InProc. SOSP-8,
December 1981.

[10] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. An Implementation
study of a detection-based adaptive block replacement scheme. In
Proc. 1999 USENIX ATC, June 1999.

[11] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards
application/file-level characterization of block references: a case
for fine-grained buffer management. InProc. ACM SIGMETRICS,
June 2000.

[12] G. Z. Chrysos and J. S. Emer. Memory dependence prediction
using store sets. InProc. ISCA, June 1998.

[13] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. Memory-
system design considerations for dynamically-scheduled proces-
sors. InProc. ISCA, June 1997.

[14] G. Glass and P. Cao. Adaptive page replacement based on memory
reference behavior. InProc. ACM SIGMETRICS, June 1997.

[15] C. Gniady, Y. C. Hu, and Y.-H. Lu. Program counter based
techniques for dynamic power management. InProc. HPCA-10,
February 2004.

[16] R. J. Hanson. TPC Benchmark B - What it means and how to
use it. InTransaction Processing Performance Council. TPC-B
standard specification, revision 2.0, 1994.

[17] S. Jiang and X. Zhang. LIRS: an efficient low inter-reference re-
cency set replacement policy to improve buffer cache performance.
In Proc. ACM SIGMETRICS, June 2002.

[18] T. Johnson and D. Shasha. 2Q: a low overhead high performance
buffer management replacement algorithm. InProc. VLDB-20,
September 1994.

[19] Y. Jgou and O. Temam. Speculative prefetching. InProc. ICS-7,
July 1993.

[20] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. A low-overhead, high-performance unified buffer manage-
ment scheme that exploits sequential and looping references. In
Proc. OSDI, October 2000.

[21] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. InProc. ISCA, June 2000.

[22] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction and dead-
block correlating prefetchers. InProc. ISCA, June 2001.

[23] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, andC. S.
Kim. On the existence of a spectrum of policies that subsumesthe
least recently used (LRU) and least frequently used (LFU) policies.
In Proc. ACM SIGMETRICS, May 1999.

[24] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, andC. S.
Kim. LRFU: A spectrum of policies that subsumes the least re-
cently used and least frequently used policies.IEEE Transactions
on Computers, 50(12):1352–1360, 2001.

[25] U. Manber and S. Wu. GLIMPSE: A tool to search through entire
file systems. InProc. USENIX Winter 1994 Technical Conference,
January 1994.

[26] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood. Using destination-set prediction to improve thela-
tency/bandwidth tradeoff in shared-memory multiprocessors. In
Proc. ISCA, June 2003.

[27] N. Megiddo and D. S. Modha. ARC: A Self-tuning, Low Overhead
Replacement Cache. InProc. FAST, March 2003.

[28] N. Megiddo and D. S. Modha. One up on LRU.;login: - The
Magazine of the USENIX Association, 18(4):7–11, 2003.

[29] R. Ng, C. Faloutsos, and T. Sellis. Flexible and adaptable buffer
management techniques for database management systems.IEEE
Transactions on Computers, 44(4):546–560, 1995.

[30] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. InProc. ACM
SIGMOD, May 1993.

[31] E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality proof of
the LRU-K page replacement algorithm.J. ACM, 46(1):92–112,
1999.

[32] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,and J. Ze-
lenka. Informed prefetching and caching. InProc. SOSP-15, De-
cember 1995.

[33] S. S. Pinter and A. Yoaz. Tango: a hardware-based data prefetch-
ing technique for superscalar processors. InProc. MICRO-29, De-
cember 1996.

[34] Postgres. http://www.postgresql.org/.
[35] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and

K. Roy. Reducing set-associative cache energy via way-prediction
and selective direct-mapping. InProc. MICRO-34, Dec. 2001.

[36] G. Reinman and B. Calder. Predictive techniques for aggressive
load speculation. InProc. MICRO-31, December 1998.

[37] J. T. Robinson and M. V. Devarakonda. Data cache management
using frequency-based replacement. InProc. ACM SIGMETRICS,
May 1990.

[38] T. Sherwood, S. Sair, and B. Calder. Predictor-directed stream
buffers. InProc. ISCA, June 2000.

[39] Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: simpleand
effective adaptive page replacement. InProc. ACM SIGMETRICS,
May 1999.

[40] J. E. Smith. A study of branch prediction strategies. InProc. ISCA,
May 1981.

[41] SPEC. http://www.spec.org/gpc/opc.static/viewperf711info.html.
[42] J. Steffen. Interactive examination of a C program withCscope.

In Proc. USENIX Winter 1985 Technical Conference, 1985.
[43] D. Thibaut, H. S. Stone, and J. L. Wolf. Improving disk cache

hit-ratios through cache partitioning.IEEE Transactions on Com-
puters, 41(6):665–676, 1992.

[44] TPC. Transaction Processing Council. http://www.tpc.org.

USENIX Association 6th Symposium on Operating Systems Design and Implementation 14


