Program-Counter-Based Pattern Classification in Buffer Cahing

Chris Gniady AliR. Butt Y. Charlie Hu
Purdue University
West Lafayette, IN 47907
{gniady, butta, ychp@purdue.edu

Abstract a highly effective means of recording the context of pro-

%am behavior. Consequently, program-counter-based

Program-counter-based (P_C-based) predlctlon teChmq é-based) prediction techniques have been extensively
have been shown to be highly effective and are Wldes\{u

: . . . died and widely used in modern computer architec-
used in computer architecture design. In this paper, we &

lore the opportunity and viability of apolving PC-base res. However, despite their tremendous success in ar-
plore the opportunity viability ot applying F hitecture design, PC-based techniques have not been ex-
prediction to operating systems design, in particular,

optimize buffer caching. We propose a Program-Count (jpred !n operating systems design. .)
In this paper, we explore the opportunities and feasi-

based Classification (PCC) technique for use in pattern- X i)
based buffer caching that allows the operating systemlﬂj)Ity of PC-b_asIed techmque:g In ﬁperatlrll_g syster?s de-
correlate the 1/0 operations with the program context gn. In particular, we consider the application of PC-

which they are issued via the program counters of the ¢ ﬁsed prediction to the I/O management in operating sys-

instructions that trigger the 1/O requests. This correlati tems. Since the main memory, I'ke. hardware caches, is
st another level of the memory hierarchy, the 1/0O be-

allows the operating system to classify /0O access pattéﬁl _) o
on a per-PC basis which achieves significantly better J@V'Or of a program is expected to be similar to the data

curacy than previous per-file or per-application classific ovemenF in the upper Ievelg of the memory hierarchy in
tion techniques. PCC also performs classification mo tthere is a strong correlation between the 1/0 behavior
quickly as per-PC pattern just needs to be learned ong8d the program context in which the 1/O operations are
We evaluate PCC via trace-driven simulations and an ifhd9€red. Furthermore, program counters are expected to
plementation in Linux, and compare it to UBM, a state-of €Main as an effective means of recording such program
the-art pattern-based buffer replacement scheme. The ﬁé)rr]text, similar to recording the context of data movement
formance improvements are substantial: the hit ratio ifi! ("€ Upper levels of memory hierarchy. _

proves by as much as 29.3% (with an average of 13.8%),The specific PC-based prediction technique we

and the execution time is reduced by as much as 29.09gPose, called Program-Counter-based Classification
(with an average of 13.7%). (PCC), identifies the access pattern among the blocks ac-

cessed by 1/0O operations triggered by a call instruction

in the application. Such pattern classifications are then
1 Introduction used by a pattern-based buffer cache to predict the access

patterns of blocks accessed in the future by the same call
One of the most effective optimization techniques in conmstruction. A suitable replacement algorithm is then used
puter systems design is history-based prediction, basednanage the accessed disk blocks belonging to each pat-
on the principle that most programs exhibit certain deern as in previous pattern-based buffer cache schemes.
grees of repetitive behavior. Such history-based predithus, PCC correlates the 1/0 access patterns observed by
tion techniques include cache replacement and prefettiie operating system with the program context in which
ing schemes for various caches inside a computer sysey are issued, i.e., via the PC of the call instruction
tem such as hardware memory caches, TLBs, and buffiest triggers the 1/0 requests. This correlation allows the
caches inside the operating system, as well as processggrating system to classify block accesses perPC
oriented optimizations such as branch prediction. basis and distinguishes PCC from previous classification

A key observation in the processor architecture is the¢hemes in two fundamental aspects. First, if the same

program instructions (or their program counters) providestruction is observed again for newly opened files, PCC

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 1

can immediately predict the access pattern based on hisfuture reoccurrence. In particular, predictors need th
tory. Second, PCC can differentiate multiple referenggogram context of past events so that future events about
patterns in the same file if they are invoked by differemd occur in the same context can be identified. The more
instructions. accurate context information the predictor has about the
The design of PCC faces several challenges. Firpgst and future events, the more accurate prediction it can
retrieving the relevant program counter that is responsitake about future program behavior.
ble for triggering an I/O operation can be tricky, as /O A key observation made in computer architecture is that
operations in application programs are often abstract@tharticular instruction usually performs a very unique
into multiple, layered subroutines and different call siteask and seldom changes behavior, and thus program in-
may go through multiple wrappers before invoking somstructions provide a highly effective means of recording
shared I/O system calls. Second, PCC requires a pregt@ context of program behavior. Since the instructions
fined set of access patterns and implements their detage uniquely described by their program counters (PCs)
tion algorithms. Third, the buffer cache needs to be parntifich specify the location of the instructions in memory,
tioned into subcaches, one for each pattern, and the spIEs offer a convenient way of recording the program con-
cache sizes need to be dynamically adjusted accordingdst.
the distribution of the blocks of different patterns. One of the earliest predictors to take advantage of the
This papers makes the following contributions. information provided by PCs is branch prediction [40]. In
e Itis, to our knowledge, the first to apply a PC-base]c Ct.' brgngh prediction t.echnique_s have _been SO success-
prediction in operating systems design:; uI.|n eliminating Ia.tenc:|es assoc_lated with branch reso-
] . lution that they are implemented in every modern proces-
o It presents the first technique that allows the operaj;. The PC of the branch instruction uniquely identifies
ing system to correlate I/O operations with the prope pranch in the program and is associated with a par-
gram context in which they are triggered; ticular behavior, for example, to take or not to take the
e It presents experimental results demonstrating tHatanch. Branch prediction techniques correlate the past
correlating I/O operations with the program conbehavior of a branch instruction and predict its future be-
text allows for a more accurate and adaptivieavior upon encountering the same instruction.
prediction of I/O access patterns than previous The success in using the program counter in branch
classification schemes, and a pattern-based buffeediction was noticed and the PC information has been
caching scheme using PCC outperforms state-of-theidely used in other predictor designs in computer ar-
art recency/frequency-based schemes; chitecture. Numerous PC-based predictors have been

e It shows that exploiting the synergy between aRfOposed to optimize energy [4, 35], cache manage-
chitecture and operating system techniques to sofnt [21, 22], and memory prefetching [1, 6, 13, 19, 33,
problems of common characteristics, such as exploigl- For example, PCs have been used to accurately pre-

ing the memory hierarchy, is a promising researc}ct the instruction behavior in the processor’s pipeline
direction. which allows the hardware to apply power reduction tech-

niques at the right time to minimize the impact on perfor-
The rest of the paper is organized as follows. SectiomZance [4, 35]. In Last Touch Predictor [21, 22], PCs are

briefly reviews the wide use of PC-based prediction tecised to predict which data will not be used by the proces-
niques in computer architecture design. Section 3 mofor again and free up the cache for storing or prefetch-
vates the pattern classification problem in buffer cachifgg more relevant data. In PC-based prefetch predic-
and discusses the design choices. Section 4 presentsdh€[1, 6, 13, 19, 33, 38], a set of memory addresses or
PCC design and Section 5 presents the results of an expgitterns are linked to a particular PC and the next set of
imental evaluation of PCC. Section 6 discusses additioRgita is prefetched when that PC is encountered again.
related work in buffer caching. Finally, Section 7 con- pc.-pased techniques have also been used to improve
cludes the paper. processor performance by predicting instruction behavior

in the processor pipeline [12, 36] for better utilization of
2 PC-based techniques in architecture resources with fewer conflicts, as well as to predict data

movement in multiprocessors [21, 26] to reduce commu-
History-based prediction techniques exploit the prireiphication latencies in multiprocessor systems. Most re-
that most programs exhibit certain degrees of repetitizently, a PC-based technique was proposed to predict disk
behavior. For example, subroutines in an application df® activities for dynamic power management [15].
called multiple times, and loops are written to process aDespite their tremendous success in architecture de-
large amount of data. The challenge in making an asign, PC-based techniques have not been explored in op-
curate prediction is to link the past behavior (event) trating systems design. In this paper, we consider the op-

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 2

portunity and viability of PC-based prediction techniquess, or a per-PC basis, i.e., for each program instruction
in operating systems design. In particular, we considérat triggers any I/O operations.

the buffer cache management problem, which shares com-

mon characteristics with hardware cache managemenf’&§-application classification In a per-application

they essentially deal with different levels of the memor§assification scheme such as DEAR [10], the pattern
hierarchy. in accesses invoked by the same application is detected

and classified. The patterns in DEAR include sequen-

tial, looping, temporally clustered, and probabilistiher
3 Pattern classification in buffer caching scheme periodically reevaluates and reclassifies the pat-

terns and adapts the replacement policy according to the
In this section, we motivate the pattern classification probhanging reference patterns in the application. However,
lem in buffer caching and discuss various design optiongs shown in [20] and later in this section, many applica-
tions access multiple files and exhibit multiple access pat-
terns to different files or even to the same file. Thus the
accuracy of per-application classification is limited ks it

One of the most important problems in improving file sygiPplication level granularity.

tem performance is to design an effective block replace- file classificati | file classificati h
ment scheme for the buffer cache. One of the oldest e(?;l':SCS;;'I 'Zac)'o?he g?czirs_ 'Ztct:e?isi'n';iéc;g;gs (teg]e?ach
placement schemes that is yet still widely used is the Least ™. .[] . P N

ile is dynamically classified. In other words, it distin-

Recently Used (LRU) replacement policy [9]. The eﬁec‘uishes multiple concurrent patterns in the same applica-

tiveness of LRU comes from the simple yet powerful prin? o .
ciple of locality: recently accessed blocks are likely to gion as long as they occur in different files. UBM clas-

accessed again in the near future. Numerous other bl g||(es each file into one of the three possible access pat-

replacement schemes based on recency and/or frequ REY> sequen'u_a_l, Iqopmg, or ot_her. Each file can only
of accesses have been proposed [17, 18, 24, 27, 30, e one classification at any given time, though it can

However, a main drawback of the LRU scheme and reclassified multiple times. A file receives a sequential

ssification when some predetermined number (thresh-
other schemes based on recency and/or frequency Ofég) of consecutive blocks is referenced. Once the file is

cesses is that they cannot exploit regularities in block ac- ified tial. it b lassified as loobing if
cesses such as sequential and looping references [14, ﬁ%ss' ied as sequential, It can be reciassified as looping |
the file is accessed again according to the sequence seen

To overcome this drawback, pattern-based buffer 'Sarlier. The file is classified as having the other reference

placement schemes [10, 11, 14, 20, 39] have been Pifbe when the pattern is not sequential, or the sequence is

posed to exploit the fact that different types of rEferen"%ﬁporter than the threshold. The Most Recently Used [29]

patterns usually have different optimal or best known ré- lacement policy is used to manage the subcache for

2 : e
placement pollge_s. A typical pgttgrn based buffer Cac@?gcks that are accessed with a looping pattern, blocks
starts by identifying and classifying reference patterns ;

. - ith a sequential access pattern are not cached, and LRU
among accessed disk blocks. It divides up the cache
) . is used to manage the subcache for blocks of the other
into subcaches, one for blocks belonging to each patterr(rgf rence type

Based on the reference pattern, it then applies an optim he classification on a per-file basis in UBM suffers

or best known replacement policy to each subcache sg as : :
P policy faom several drawbacks. First, the pattern detection has

to maximize the cache hit ratio for each subcache. In ad- ' o
- . be performed for each new file that the application ac-
dition, a pattern-based buffer cache needs to dynamical SR . :
sses, resulting in high training overhead and delay in

adjust subcache sizes based on the distribution of differ&f e O o
ttern classification when an application accesses a large
number of files. Second, since the first iteration of a loop-

types of accesses with the goal of maximizing the overaft
cache hit ratio. Experimental results [10, 20] have ShOwri?)cgspattern is misclassified as sequential, pattern detecti

that pattern-based schemes can achieve better hit ra#) . e
. ar every new file means such misclassification happens
over pure recency/frequency schemes for a mixture of e}Br every file with a looping pattern. Third, if an appli-

plications. cation performs accesses to a file with mixed access pat-
terns, UBM will not be able to differentiate them. Lastly,
3.2 Design space the behavior of the threshold-based detection of sequen-

. o tial accesses is directly related to the file size, preventin
The design space for pattern classification centers aroyigper classification of small files.

the granularity at which the classifications are being per-
formed. In particular, the access patterns of an applinatiBer-PC classification In a per-PC classification such as
can be classified on a per-application basis, a per-file BBEC proposed in Section 4, the pattern in accesses in-

3.1 Motivation

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 3

N
(&)
N
3]

Yo vee 0 e d

20 / o o }/

- poppe®® ’ 20 /
o — —_
8 3 / 3
% 215 T et M R
x - r Ll L4 0" b
S 2 oo ® e &
g % . ’M’ o %
3 2101 g / 2101
= o * o
> = /:T oot 3]
) / 0e*’ - """
-* -
0 /‘c er e’ o ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Virtual time [x1000] Virtual time [x1000] Virtual time [x1000]
(a) All reference patterns (a) Reference patterns in a single file (b) Initial scan of the file by a single PC
16 25 25
P , PRYTI VA oo;‘;: wnwd
14 3 g
&
P il /
g12 S =2 s =20 g
S o - S o S o’
S+ 8358 oTEE e L4
<10 - 215 ‘,.d"" o’ 215 ot
i~] 'Xd T o
S 8 7] o’ »
= 5 10 . wne T e %10 o~
® 6 3 X /
=1 o - [5]
= o o
Sa , @ /: ee®’ @ s o’
e . 5 " » "
s o o e . L4 &
2 1 ‘:—. W oot EED o am /’o ". oot O’"“
[4
(B SENNEEE amstiitem mER | 0 ‘/“"‘..o" 0 ‘ ‘ S
0 20 40 60 80 0 2 4 6 8 10 12 0 2 4 6 8 10 12
Virtual time [x1000] Virtual time [x1000] Virtual time [x1000]
(b) References from reading header files (c) Processing of the file by multiple PCs (d) Final references made by a single PC

by a single instruction

Figure 2: Reference patternstjc-h
Figure 1: Reference patternsgac

voked by a call instruction in the application executabia gcc of which 99% are reoccurring to header files al-
is classified and correlated with future occurrences mfady accessed once. The remaining 1% of the accesses
the same call instruction (represented by its prograame the first accesses to repeatedly accessed header files,
counter). Compared to the per-application and per-fite to header files that are accessed only once. Most im-
classification schemes, per-PC classification correlafgsrtantly, all header files are accessed by the same single
the I/O behavior of a program with the program contextstruction. This observation suggests that the instoncti
in which the I/O operations are invoked and records theggering the I/O operations can be used to classify ac-
program context using appropriate PCs. Because of swess patterns; the access pattern of the blocks accessed
correlations, per-PC classification is expected to be mdrg it needs to be learned once and with high probability,
accurate than classification schemes that do not explbié same pattern holds when it is used to access different
such correlations. We illustrate this potential advantafjies. In contrast, UBM needs to classify the access pattern
using two of the benchmarks studied in Section 5. for each header file, incurring a delay in the classification
and, consequently, a missed opportunity in applying the
Figure 1(a) shows the space-time graphs of block rdfest known replacement scheme.
erences irgcc(details of which will be discussed in Sec-
tion 5). The horizontal axis shows the virtual time which Figure 2(a) shows the reference patterns to a single
is incremented at every block access, and the vertical afiis in the tpc-hbenchmark (details of which will be dis-
shows the corresponding block number at a given timeussed in Section 5). The vertical axis shows the offset
Figure 1(a) shows that there exists a mixture of sequesi-the blocks in the accessed file. The reference pattern
tial (a single slope) and multiple looping (repeated sldpes Figure 2(a) shows a mixture of sequential accesses and
patterns irgcc Figure 1(b) presents the reference pattetooping accesses. To illustrate the use of PCs for pattern
to blocks accessed by a single instructiogatresponsi- classification, we separate the patterns into three differ-
ble for accessing header files during the compilation. Aent components as shown in Figures 2(b)(c)(d). The ac-
cesses to header files correspond to 67% of the referenmesses in Figure 2(b) are performed by a single PC which

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 4

scans the entire file. The blocks read in Figure 2(b) are A File Cache

subsequently accessed again by multiple PCs as shown in Toop= 12 Sequential
Figure 2(c). Since the blocks accessed in Figure 2(b) are PC,; " | seq=0 T

R . NI ! ype .
accessed again in Figure 2(c), the accessing PC in Fig- | Period =100] 5eriog® Looping |
ure 2(b) is classified as looping. Similarly, blocks in Fig- P

ure 2(c) are accessed again in Figure 2(d), and therefore Block table
PCs in Figure 2(c) are also classified as looping. Finally, Blockl -"| Last PC=1 Other
the blocks accessed by a single PC in Figure 2(d) are not - - I
accessed again and the accessing PC is classified as se-
guential.

PCC is able to separate multiple concurrent access pat-

terns and make a proper prediction every time the file with)
multiple access patterns is referenced. In contrast, UB#@Ntaining the block address, the last accessing PC, and

classifies access patterns on a per-file basis, and therefBfeaccess time. The choice of the M blocks is discussed

it will not be able to separate the sequential, looping, afiti Section 4.2. The access time is simply a count of the
other access patterns. number blocks accessed since the program started. PCC

maintains the last accessing PC in the block table since a
block may be accessed by different PCs.

To simplify the description, we first describe the PCC
algorithm assuming all blocks accessed by each PC are
8’10nitored. The actual PCC uses a sampling technique to
Leduce the block hash table size and is discussed in Sec-

[(uren jeuibie) Joreooolly |

Figure 3: Data structures in PCC

4 PCC Design

The key idea behind PCC design is ttia¢re is a strong
correlation between the program context from which 1/

operations are invoked and the access pattern among the . S
accessed blocks, and the call instruction that leads to t jgn 4.2. The pseudo code for PCC without sampling is

, sﬁown in Figure 4. When a PC triggers an 1/O to a block,

the program context Each instruction is uniquel de-%c first looks up the block in the block table to retrieve
prog dueY “ihe PC and the time of the last access to the block. The

scribed by its PC. Thus, once PCC has detected a rei- . . .
erence pattern, it links the pattern to the PC of the I/Est_accessmg PCis usedto retn_eve the record of that Igst
' in the PC table. The record is updated by decreasing

instruction that has performed the accesses. Such - : . :
e e Seq count and increasing thieoop count since the
tern classifications are then used by a pattern-based buffer

: . hlock is being accessed again. The exponential average
cache to predict access patterns of blocks accessed in o .)

. . of the period is then calculated based on the time differ-
future by the same call instruction.

ence recorded in the block entry. If the current PC differs
o from the last PC, PCC performs an additional lookup into
4.1 Pattern classification the PC table to obtain the record of the current PC. At this

The main task of PCC is to classify the instructions ((?F:getyz(-e:ir?(ljafhsemszritgz ;re(;‘re;]r?r?:i%a;tﬁtrrr;and returns both

their program counters) that invoke 1/O operations into .
appropriate reference pattern categories. Once classified” CC classifies accesses based orLibep count, the

the classification of the PC is used by the cache manag&d count, and a threshold variable. The threshold aids
to manage future blocks accessed by that PC. in the classification of sequential references made by a

We define three basic reference pattern types: newly encountered PC. If_ there are fewer non-repe_ating
(Seq) blocks than repeating_6op) blocks, the PC is
Sequential referencesare sequences of distinct blockslassified as looping, disregarding the threshold. Other-
that are never referenced again; wise, the PC is classified as sequential if 8s# count is
larger than or equal to the threshold, or other if 8ex
Looping references are sequential references occurringount is smaller than the threshold. PCs that temporarily
repeatedly with some interval; have comparabl8eq andLoop counts and therefore do
Other references are references not detected as IoopingiOt fe}l! clearly into sequential or looping categories are
assified as other references. These PCs mostly have a

or sequential. combination of sequential references to some blocks and
Figure 3 shows the two data structures used in Pd@oping references to other blocks.
implementation. The PC hash table keeps track of howSimilar to UBM, PCC will misclassify the first occur-
many blocks each PC accesses or8sx)) and how many rence of a looping sequence as sequential, assuming it is
are accessed more than ontedp). The block hash ta- longer than the threshold. However, once PCC assigns the
ble keeps records of M recently referenced blocks, eddoping pattern to a PC, the first references to any file by

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 5

PCC(PC, Block, currTime) a PC,

(1) if ((currBlock = getBlockEntry(Block)) == NULL) 0653

®) currBlock = NewBlockEntry(Block); 3]

(3) else{ /I the entry for last accessing PC must exist 'g &

4) currPC = getPCEntry(currBloekLast PC); 2 PC, PCq PC, PCs

(5) currPG-Seg- -; 3| b P b '

(6) currPG—Loop++; 2 &6300 6363(9 Oooocp éﬁcp

©) currPC—Period = expAverage(currREPeriod, .
(8) currTime - currBlock-Time); Time "
© } Figure 5: An example of reference patterns

(10) if (currBlock—LastPC != PC)

(12) currPC = getPCEntry(PC);

(22) if (currPC == NULL){

(13) currPC = NewPCEntry(PC);

(14) currPC-Seq = 1;

(15) currPC-Loop = currPC~Period = 0;

the same, although the classification of the set of blocks it
accessed has changed from looping to sequential.

4.2 PCC with block sampling

(16) Type = “Other”;

(17) } else{

(18) currPC-Seq++;

(19) if (currPG—Loop > currPC—Seq)

(20) Type = “Looping”;

(22) else if (currPG-Seq>= Threshold)
(22) Type = “Sequential”;

(23) else

(24) Type = “Other”;

(25) Period = currP&-period;

(26) }

(27) currBlock—Time = currTime;
(29) currBlock—LastPC = PC;
(30) return(Type, Period);

Maintaining the blocks in the block hash table is crucial
to calculating the loop period. Keeping the information
for every accessed block would be prohibitive for large
data sets. Instead, PCC only keeps periodically sampled
referenced blocks in the block hash table, and repeated ac-
cesses to the sampled blocks are used to calculate the loop
period for each PC. Specifically, for each PC in the appli-
cation, the block hash table maintains up to N blocks, each
recorded at every T-th access by that PC. We discuss the
choices of N and the sampling period T in Section 5.3.1.
Note that sampling dictates which blocks will be inserted
in the block table and thus used for calculating the av-

. .) erage period for a PC. If the block in the block table is
Figure 4: Pseudocode for PCC without sampling 5ccessed again, the PC period calculation is performed as
before. After the update, the block is discarded from the
the same PC will be labeled as looping right away. block table to free a slot for the next sample.

We note the threshold value has different meaning andTo further limit the block table size, when the block
performance impact in PCC and UBM. In UBM, theaable is full, PCC uses the LRU policy to evict the least
threshold value is on a per-file basis and therefore filascently used PC from the PC table and the corresponding
with sizes smaller than the threshold are not classifietbck table entries.
properly. In PCC, the threshold is set on a per-PC ba-
sis, and thus a EC that accesses enough small files willép_% Obtaining signature PCs
properly classified.

Figure 5 shows some example reference patterns bsstead of obtaining a single PC of the function call from
suming that the threshold is set at three. When the applie application that invokes each I/O operation, PCC ac-
cation starts executing, PCC observes a set of sequerttially uses asignature PCwhich records theall site of
references by PC1. After three initial references are cldbe 1/0 operation by summing the sequence of PCs en-
sified as other, the threshold is reached and PC1 is classiuntered in going through multiple levels of wrappers
fied as sequential for the remaining references. When thefore reaching the actual system call. The wrapper func-
sequence is accessed again, PCC reclassifies PC1 as ltops are commonly used to simplify programming by ab-
ing, and future blocks referenced by PC1 are classifiedsigacting the details of accessing a particular file stmectu
looping. At that time, the loop period is calculated anBor example, in the call graph shown in Figure 6, Func-
recorded with PC1. In the meantime, PC2 is encounteriahs 2, 3, and 4 use the same PC in the wrapper func-
and again classified after the initial three references-as 8en for 1/0 operations. Therefore, the PC that invokes
guential. The classification is not changed for PC2 sintlee 1/0 system call within the wrapper cannot differenti-
no looping references are encountered. When PC3 ate the behavior of different caller functions. To obtain
cesses the same set of blocks that were accessed by RQinique characterization of the accessing PC, PCC tra-
PC3 is classified as sequential, since PC3 is observedverses multiple function stacks in the application. The
the first time. Note that the classification of PC1 remai®Cs obtained during the stack frame traversal are summed

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 6

ing two LRU lists: one contains pages seen only once

while the other contains pages seen more than once. At

any given time, ARC selects top elements from both lists

[PC3 funct3()] [PC,: functd()] to reside in the cache. Finally, we implemented both PCC
and UBM in Linux kernel 2.4.

|PCy: functl()] |PC,: funct2()]

[PCs: 1/0 wrapper()]

Application I) .
Library PE. 5.1 Cache organization and management
p:cN Both the UBM-based and the PCC-based replacement

schemes in our comparison study use the marginal gain
in the original UBM [20] to manage the three partitions
)]) -) of the buffer cache, used to keep blocks with sequen-
together to obtain a unique identifier as gignature PC 5 |00ping, and other references, respectively. Onee th
of the I/0 operation. In the applications studied in Segjocks are classified, they are stored in the appropriate
tion 5, traversal of only two additional stack frames prosypcache and managed with the corresponding replace-
vided sufficient information to PCC. As the minimumpent policy. Sequentially referenced blocks, as defined,
number of stack frames needed to generate unique $igs not accessed again, and therefore they can be dis-
nature PCs varies from application to application, PCG,,qed immediately after being accessed. Looping ref-
alw_ays tra\(erses all the function stagkg in the applicati@Rances are primarily managed based on the looping in-
until reachingmai n() . We note that it is extremely Un-yer\ 5| | ooping blocks with the largest interval will be
likely that the signature PCs of different call sites willco g p|aced first since they will be used furthest in the future.
lide as each signature PC is 32-bit, while an applicatigng| piocks in the cache have the same detected interval,
typically has up to a few hundred call sites. For simpliGhe replacement is made based on the MRU [29] replace-
ity, in the rest of the paper, we will refer to the signaturgent policy. References classified as other are managed
PC of an I/O operation simply as its PC. by LRU as in the original UBM [20], but can be managed
Compared to previous pattern classification sc:hemeq,yaother recency/frequency-based policies as well.
unique property of PCC is that the PCs that trigger I/O 0p- The cache management module uses marginal gain
erations and their access patterns tend not to change inJHmputation to dynamically allocate the cache space
ture invocations of the same a_pplicgtion. Thus, PCC Sav&Rong the three reference types [29, 43]. As mentioned
the per-PC pattern classifications in the PC table for pgjier, sequential references can be discarded immedi-
tential future reuse. Similar to the block table, the size %ely. Since there is no benefit from caching them, the
the PC table can be easily managed using LRU. We noi,4inal gain is zero, and the subcache for sequential ref-
that the PC table is usually much smaller than the blogkences consists of only one block per application thread.
table as mpst applications have a few call sites responsiple, remaining portion of the cache is distributed dynami-
for accessing a large number of blocks. cally between sequential and other references. The benefit
of having an additional block is estimated for each sub-
5 Performance evaluation cache, and th_e block is remoyed from th_e_ subcache that
would have gained less by having the additional block and
We compare the performance of UBM, PCC, ARC [27given to the subcache that will benefit more.
and LRU via trace-driven simulations and an actual im-
plementation in Linux. Simulated UBM results were ob5_2 Applications
tained using the unmodified UBM simulator from the au-
thors of UBM [20]. To obtain results for PCC, we modTables 1 and 2 show the five applications and three con-
ified the UBM simulator by replacing its classificatiorcurrent executions of the mixed applications used in this
routine with PCC; UBM’s cache management based study. For each application, Table 1 lists the number
marginal gain evaluations was kept without any modificaf I/O references, the size of the I/O reference stream,
tion. Using the same marginal gain in PCC and UBM isdhe number of unique files accessed, and the number of
lates the performance difference due to different pattemnique signature PCs used for the 1/O references. The se-
classification schemes. We also implemented the AR€xted applications and workload sizes are comparable to
scheme [27] as presented in [28]. ARC is a state-of-thiéte workloads in recent studies [11, 17, 24, 27] and re-
art recency/frequency-based policy that offers compaxgsire cache sizes up to 1024MB.
ble performance to the best online and off-line algorithms. Cscope [42] performs source code examination.
It dynamically adjusts the balance between the LRU afidhe examined source code is Linux kernel 2.4.20.
LFU components for a changing workload by maintairGlimpse[25] is an indexing and query system and is used

Figure 6: An example function call graph

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 7

Appl. Num. of Data Num. of | Num. of 100%)
references| size [MB] files PCs f //‘H‘*****’
cscope 1119161 260 10635 107 D 2o ’f
glimpse || 519382 669 43649 | 25 & 80% - J‘: / cscope impse
/ ¢ -
.gcc 158667 41 2098 334 g T/ gee viewperf
viewperf 303123 495 289 179 % 60% ¥ ——— —x—tpc-h |
tpc-h 121307 196 80 242 = |
multil 1278135 297 12246 442 g . X ‘/‘/*/r""‘
multi2 | 1580908 | 792 12514 | 605 S 40% 1y L
multi3 640467 865 43738 268 & ’lk v 3
L 20% - IPOUNROORC S LS s
Table 1:Applications and trace statistics Fy"c‘
— — O% T T T T
Appl. || Applications executed concurrently 0 20 40 60 80 100
multil CSCOpe, gee Number of files
multi2 cscope, gcc, viewperf)) . . .
multi3 glimpse, tpc-h Figure 7: Cumulative distribution of file accesses
Table 2:Concurrent applications 100% |

to search for text strings in 550MB of text files under the
/ usr directory. In bothCscopeandGlimpse an index is

first built, and single word queries are then issued. Only
I/O operations during the query phases are used in the e
periments. In both applications, looping references dom
inate sequential and other referenc&xcc builds Linux .
kernel 2.4.20 and is one of the commonly used bench g
marks. It shows both looping and sequential reference: T 20% | —e—cscope —s—glimpse |

o ®

2 2

> >
L

f references

40%

1on o

t

but looping references, i.e., repeated accesses to sm —+—gce —x— viewperf
header files, dominate sequential references. As aresu o, %tpc'h ‘ ‘

it has a very small working set; 4MB of buffer cache is 0 5 10 15 20
enough to contain the header files. This constrains th Number of signature PCs

buffer cache sizes used in the evaluatiodiewperfis

a SPECbenchmark that measures the performance of a
graphics workstation. The benchmark executes multiple]]
tests to stress different capabilities of the system. TREreferences spans a wide range. The number of files
patterns are mostly regular loopswiswperireads entire affects the performance of UBM. Since UBM trains on
files to render images. THeostgred34] database system®ach new file to detect the looping and sequential refer-
from the University of California is used to ruRPC-H €nces, the amount of training in UBM is proportional to

(tpc-h) [44]. Tpc-haccesses a few large data files, sontBe number of filles tha.t an application accesses. The num-
of which have multiple concurrent access patterns. ber of I/O call sites (signature PCs) has a similar impact

Multi1 consists of concurrent executionsastopeand on training in PCC. Figure 8 shows the cumulative distri-
lﬁltltion of the references triggered by signature PCs in the

gce It represents the workload in a code developme o .
environmentMulti2 consists of concurrent executions o pplications. Compared to UBM, in PCC, few_er than 30.
Cs are responsible for almost all references in all appli-

cscope gcg andviewperf It represents the workload in® ™~

a workstation environment used to develop graphical aL- I ,h ber of lication f . K
plications and simulationdulti3 consists of concurrent astly, the average number of application function stac

executions ofylimpseandtpc-h It represents the work- frame traversals to reagtai n() for the eight applica-

load in a server environment running a database serJgp versionsis 6.45.
and a web index server.

We briefly discuss the characteristics of the individug 3 Simulation results
applications that affect the performance of the eviction
policies. Figure 7 shows the cumulative distribution ofFhe detailed traces of the applications were obtained by
the references to the files in these applications. We abhedifying thestraceLinux utility. Straceintercepts the
serve that the number of files contributing to the numbsystem calls of the traced process and is modified to

Figure 8: Cumulative distribution of signature PCs

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 8

100%

—x—cscope —a—glimpse —=—gcc . H sequential dlooping Oother
—o—viewperf —x—1{pc-h —e— multil 100% \pe M MO MO0 A MO 0O An
0 —+—multi2 —e— multi3 i | i s
80% 88 5 5 5 o = R e
o o o N 900 A
;-:\\%: R 779/#:%7’* :f:ifgffﬁffﬂ 880@ | | | 1
60% Tt T 3 I
o 0) =
= T 60% - I
® S %GOA)
= —————%—§—x =
£ 40% - DEbes Sna -
o o o o o X m © 40% A
c
. o
% - 3] |
20% —X—x—x & 20% - |
[
O% T T T T T T T T T T T T O% B
" N M TN OO0 0000 00 £8|128|238|2383|28/ 28 28|83
— N < 00 © N < O >DAQa|(>a |>a |>a |>a|>a|>a |>a
A © 8 cscope |glimpse| gcc |viewperf| tpc-h | multil | multi2 | multi3

Sampling period
Figure 9: Impact of sampling period on PCC’s hit ratio Figure 10: Reference classification in UBM and PCC

record the following information about the 1/O operation$.3.2 Pattern classification
PC of the calling instruction, access type, file identifi

(i node), and 1/O size o help understand the measured hit ratios, we first

present the classification results for PCC and UBM in Fig-
ure 10. The classification results are a characteristioof th
5.3.1 Impact of sampling frequency in PCC applications and are independent of the cache size. The
accuracies of the classification schemes will dictate how
Figure 9 shows the impact of block sampling on thgften the cache manager can apply the appropriate evic-
hit ratio in PCC. We selected a single cache size fgpn policies for the accessed blocks.
each benchmark — 128MB faiscopetpc-h multil, and UBM and PCC on average have 15% and 13% sequen-
multi2, 512MB for glimpseandmulti3, 2MB for gcg and tja| references, respectively. PCC has an advantage in de-
32MB forviewperf The same cache sizes are used in Sagcting looping references when the same PC is used to
tion 5.4 to compare the performance of LRU, UBM, angccess multiple files. As a result, PCC has an average
PCC in our Linux implementation. No limit is imposedsf 809% looping references and only 7% other references.
on the block table size, and the threshold value is setiy®Mm classifies many more references as other, resulting
100. Figure 9 shows that increasing the sampling perigglan average 46% looping and 39% other references. In
to 20 barely affects the hit ratio for all applications. Howthe cases q_[’ccandtpc_h UBM classifies a limited frac-
ever, as the sampling period continues to increase, P§&n of references, and thus the performance of UBM is
may not capture changes in the loop periods and resulighected to degrade to that of LRU. In these cases, ARC
reduced hit ratios. We also performEd SenSitiVity analﬁnd PCC will provide improved performance over UBM.
sis on the threshold value of PCC. The results show that
varying the threshold between 5 and 400 results in | Lo
than a 2% variation in hit ratios for the eight applicati(;ergl'%'3 Cache hit ratios
versions. Thus, we chose a sampling period of 20 afijure 11 shows the hit ratios for the studied applications
a threshold of 100 in our simulation and implementatiamder different cache sizes in Megabytes. We plot the
experiments below. results for five replacement policies for each application:
Using sampling significantly reduces the storage oveédPT, PCC, UBM, ARC, and LRU. The optimal replace-
head of the block table. Recording all blocks accessewnt policy (OPT) assumes future knowledge and selects
by an application require as much as 220K entries in ttige cache block for eviction that is accessed furthest in the
block table for the eight application versions in Table future [3]. PCC performs block sampling as described in
Using a sampling period of 20, the maximum number &ection 4.2. The threshold value of 3 was found to be op-
entries in the block table is less than 9K entries for dilmal for UBM for the studied applications and was used
applications. Since the memory overhead of a block tabfethe experiments.
with 9K entries is comparable to that of the per-file pattern Overall, compared to UBM, PCC improves the abso-
table in UBM (up to 20K entries for these applications)ute hit ratio by as much as 29.3% with an average of
we do not explore the impact of the LRU replacement ih3.8% maximum improvement over the eight application
the PC table in this paper. versions. Compared to ARC, PCC improves the absolute

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 9

100%
80% - ~~®= - UBM —-u4--ARC
_ x _LRU
o 60% T
S a :
=2 40%) /
= /
20%
0% |
256
cscope Cache size [MB]
100%
80% //9 /4’7
© 60% A
E // /‘////;/
= 40% <
T Xy
20% - T o OPT e PCC
--m--UBM --a4-- ARC
0% X LRE
025 050 1 2 4
cc
g Cache size [MB]
60%
—~m-—~UBM --a-- ARC /
% LRU /
40% 'U
o ///
s} / ////
g
= — /
T 20% B R B
Tx--x- "
e
O% : ; T T T T T
4 8 16 32 64 128 256
tpc-h i
Cache size [MB]
80% .. —o—OPT —e—PCC
--m--UBM --a-- ARC
~x- - LRU
60% T
. / ,
-) :
€ 40% A—
j_: ///// */
20% -+ /G//%‘:/i/:/ﬁizl*//‘
¥
0% ‘ ‘
| 8 16 32 64 128 256
multi2

USENIX Association

Cache size [MB]

——o—OPT —«—PCC
60% & o _UBM --a-- ARC
--x-- LRU
2 40%
c
I //
20% - /
. /
T om /
0% ‘;%‘;’f;‘;; :::k:f:k:f:* :
16 32 64 128 256 512 1024
glimpse Cache size [MB]
60%
40%
RS
8
T 20%
~— o OPT —« PCC
--m--UBM --a-- ARC
--x-- LRU
0% ‘
. 16 32 64
viewperf _
Cache size [MB]
100%
—o—0OPT —«—PCC
~-m--UBM --a-- ARC
80% + __» - LRU
2 60% 7 1
e /q/// ///
= 40% =
T =
/ //
20% ?i/;//:/'i’:j;*: B S
| EEE
0% T T
Itil 6 32 64 128 256
multi .
u Cache size [MB]
—o—OPT —e—PCC Wi
60% + ——m-- UBM --a-- ARC .
~-x-- LRU ////o
///
©° 40% '/
: // ////
N iy
I
20% -
e/e/;/.// //
s =W —a---k
ov | AT AR AT
. 32 64 128 256 512 1024
multi3

Cache size [MB]

Figure 11: Comparison of cache replacement schemes

6th Symposium on Operating Systemsdreand Implementation

10

hit ratio by as much as 63.4% with an average of 35.28antly higher hit ratio than UBM. When the cache size is
maximum improvement. 1MB, UBM achieves a lower hit ratios than LRU. This

is due to accesses to temporary files that are accessed
Cscope Cscopescans an index file and many text filegnly twice. First-time accesses to a temporary file are
during source code examination and shows the loopiRgsclassified by UBM as sequential and discarded from
behavior for a large number of files. This is a pathologicge cache. Second-time accesses to the temporary file are
case for LRU when the blocks accessed in the loop canBglin misclassified by UBM as looping and the blocks are
fit in the cache. Similar behavior is present in ARC as %"aced in the |00p Cache' tak|ng resources away from the

blocks are accessed more than once and the frequencylist) cache. These misclassifications in UBM hurt the hit
iS a|SO managed by LRU The beneﬁt Of LRU and AR@&“O the most When the Cache Size is 1MB

caching is only observed when the entire looping file set

fits in the cache. Both UBM and PCC show significaniewperf Viewperfis driven by five different datasets,
gains over LRU and ARC. UBM is able to classify theeach having several files describing the data. Over 95% of
references and take advantage of the MRU replacemthd references when driven by the five datasets are to 8, 4,
policy, achieving a maximum of 57.3% improvement id, 4, and 3 different files, respectively. Each file is reused
hit ratio over LRU. In contrast, PCC achieves as much as input to several invocations of the viewperf application
a 64.4% higher hit ratio than LRU and 7.1% higher thanith different parameters and is then discarded. A total
UBM. Two factors contribute to the hit ratio differenceof four files in viewperfare accessed only twice, which
between PCC and UBM. First, UBM is unable to classifgesults in wrong classifications in UBM for both passes,
small files which are inside a loop and account for 10%milarly as ingcc. As ingcc PCC uses only the first file

of the references. Secon@scopeperiodically calls the to learn and correctly classifies accesses to the remaining
seek function to adjust the file position during sequentifilles, resulting in higher hit ratios than UBM.

reading of the index file. The adjustment, although very

small, disrupts the looping classification in UBM, causingPc-h Tpc-hhas three files that account for 88% of all
the the classification to switch to other and subsequen@§cesses, and therefore the training overhead for new files
to sequential. In contrast, PCC only observes small fluct§-not @ major issue for UBM. The main difference be-

ations in the resulting loop period but maintains the loop¥¢en PCC and UBM is due to accesses to one of the
ing classification. three files which accounts for 19% of the references. As

explained in Section 3, accesses to the file contain multi-
Glimpse Glimpseis similar tocscopeas it scans both an ple concurrentlooping references, and UBM will misclas-
index file and many text files during string search. UBMify all references to the file. Accesses in Figures 2(b) and
has to train for each of the 43649 files it accesses. It clasafe) should be classified as looping, and accesses in Fig-
fies 56% of these files as other since they have sizes belaw 2(d) sequential. However, irregularities and multiple
the threshold of three blocks. Each of the remaining filesncurrent looping references will cause UBM to classify
is first classified as other during the initial two referenceaccesses in Figures 2(b)(c)(d) as other. Because of the
and then as sequential upon the third reference, and finddlgh percentage of other references in UBM as shown in
looping once a loop is detected. Since all of these fileggure 10, UBM performs similarly as LRU as shown in
are accessed by a single PC, PCC will train much mdregure 11.
quickly, resulting in the accurate classification of loop- .)))
ing. Figure 10 shows that PCC detects 12% more loopifHltil, multizandmulti3 - The traces fomultil, multi2,
references than UBM. Figure 11 shows that PCC closé}yd multi3 contain the references of the individual appli-
matches the hit ratio of OPT across different cache siZe&fions and thus inherit their characteristics. The patter

as it is able to classify all references as looping and apl§tection is performed as in the case of individual appli-
the MRU policy to the accessed blocks. cations, since there is no interference among different ap-

plications due to their distinct PCs.
Gee In Geg 50% of references are to files shorter than The resulting cache hit ratio curves are dominated by
the threshold. As discussed in Section 3.2, accessesh® applications that perform accesses more frequently,
all the headers files are triggered by a single PC, ane.,cscopan multil andmulti2andglimpsein multi3. In
thus PCC is able to learn the looping access patternrofiltil andmulti2, gccis able to cache the looping header
the PC once and makes a correct looping prediction files in under 4MB, while for larger buffer sizes, the ac-
all the remaining accesses to the header files. In caress pattern is primarily dominated by the remaining ap-
trast, files shorter than the threshold will be classified Ipfications. Interleaved references frgtimpseandtpc-h
UBM as having other references. Figure 10 shows PGE&multi3 affect the period calculation, resulting in lower
is able to detect more looping references as compaltgtratios for PCC than expected from individual execu-
to UBM, and Figure 11 shows PCC achieves a signitions of the two applications as shown in Figure 11.

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 11

5.4 Implementation in Linux 100% .
We implemented both UBM-based and PCC-based & 80%
placement schemes in Linux kernel 2.4.20 running or i 60% |
2Ghz Intel Pentium 4 PC with 2GB RAM and a 40GI| .2
Seagate Barracuda hard disk. We modified the kerne g 40%
obtain the signature PCs. Specifically, we modified t X 20% |
read andwri t e system calls such that upon each a g
cess to these calls, PCC traverses the call stack toretr 5 0% - T 0TS 0 T=s0 s 0050 =0
the relevant program counters. Since multiple levels Z SR|38 82|38 |82 38|38 |8¢8
stacks have to be traversed to determine the signature cscope glimpse| - gec Mewperf| toc-h | multid | multi2 | multi3
the traversal involves repeatedly accessing the user si glOO%
from the kernel space. = 80% A M]
We also modified the cache in Linux to allow settin §
a fixed cache size. This modification allows us to va 5 0%
the cache size and study the effectiveness of the cla § 40% -
fication schemes for different cache sizes while keepi g
all other system parameters unchanged. One limitatior 20% 1
our implementation is that it cannot retrieve the PCs 1§ o -
references to files mapped into memoryroynap Such £ 50|28 |88(80(88(832/830 |28
references are classified as other references. Out of the 2 cscope |glimpse| gec |viewperf| tpc-h | multil | multi2 | multia

plications we studied, onlgcchas a few memory mapped
file accesses.

Based one the working set sizes, we selected the ca
size to be 128MB focscope tpc-h, multil, and multi2,
512MB for glimpseandmulti3, 2MB for gcc, and 32MB
for viewperf Figure 12 shows the number of disk 1/0s and
the execution time for each application under UBM an
PCC normalized to those under the basic LRU sche

For all three schemes, the standard file system prefetch :
y P microbenchmark to go through 7 subroutine calls before

of Linux (generic_fil er eadahead) was enabled, . _) . .
which prefetches up to 32 blocks from the disk for S‘ér_wokmg the actual system call. The time to service a hit

guential accesses. The execution times reported here'gr@e buffer cache_ln the unmo_d|f|ed .kernEI S 2.99 mi-
the average of three separate executions. Each exec i econds. In our implementation, this time increases to

was run after the system was rebooted to eliminate a))52 microseconds for LRU. because of cpde changes we
effects from prior buffer cache content. incorporated to support a f|x§d cache size and_ (_jn‘ferent
Overall, compared to the basic LRU, UBM reduces ﬂ{(gplacement schemes. The time to service a hit in UBM

average number of disk I/Os by 20.7%, while better clas:3-26 microseconds due to the marginal gain cache man-

sification in PCC results in an average of 41.5% reducti@gement and pattern classification overhead. This time

in the number of disk I/Os. or 20.8% over UBM. The rencreases to 3.75 microseconds in PCC. The additional

duction in disk I/Os leads to a reduction in the executioc?"lverhead of 0.19 microsecond is due to obtaining the sig-

time: UBM reduces the average execution time of | r{ature PC of the 1/O operation. The additional overhead

by 6.8%, while PCC reduces the average execution tirﬂ{eo‘z3 microsecond compared to LRU is promising: one

of LRU by 20.5%, or 13.7% compared to UBM. We noSaved cache miss which would cost 5-10 milliseconds is

tice that inviewperfthe small decrease in 1/0s does no(?quivalent to the PCC overhead in about 20000 — 40000

translate into saving in execution time becavssvperfis cache accesses (hits or misses), and thu; the overhgad is
a CPU-bound application. All other application are |/O(_expected to be_ove_rshadowed by the gain from the im-
bound and the reduction in execution time follows the rg_roved cache hit ratio.

duction in the number of I/Os. Finally, we measured the impact of PCC overhead
when the applications do not benefit from PCC. Using

a 1GB cache, which is large enough that all replacement
schemes result in identical cache hit ratios for all five-indi

To measure the overhead of PCC, we used a microbengigual applications. The average running time of the five
mark that repeatedly reads the same block of a file whiapplications using PCC is 0.65% longer than that using
results in hits under all of the LRU, UBM, and PCQO_RU.

Fki%ure 12: Performance of UBM and PCC integrated into
ﬁwe Linux kernel (Normalized to the performance of the
basic LRU scheme)

d . L
ghemes. Since the average number of application stack
yme traversals in our experiments is 6.45, we set our

5.4.1 Runtime overhead of PCC

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 12

6 Related work cide what cached data to discard and when. This can be a
difficult task as the programmer has to carefully consider
The vast amount of work on PC-based techniques in cothe access patterns of the application so that the resulting
puter architecture design have been discussed in Skigits do not degrade the performance. To eliminate the
tion 2. Here we briefly review previous buffer cachingurden on the programmers, compiler inserted hints were
replacement policies which fall into three categorieproposed [7]. These methods provide the benefits of user
recency/frequency-based, hint-based, and pattern-basétkerted hints for existing applications that can be simply
. L . recompiled with the proposed compiler. However, more
Fr_eguency/Recency—based _pohmesDes_pne Its sim- complicated access patterns or input dependent patterns
plicity, LRU can suffer from its pathological case Whe'f‘nay be difficult for the compiler to characterize.
the working set size is larger than the cache and the appli-
cation has looping access pattern. Similarly, LFU suffepsttern-based policies Dynamically adaptable pattern
from its pathological case when initially popular cachgetection not only eliminates the burden on the program-
blocks are subsequently never used. Many policies hawer but also adapts to the user behavior. SEQ [14] de-
been proposed to avoid the pathological cases of LRU adts sequential page fault patterns and applies the Most
LFU. LRU-K [30, 31] is related to LFU and replaces &ecently Used (MRU) policy to those pages. For other
block based on the Kth-to-the-last reference. LRU-K -pfages’ the LRU replacement is applied. However, SEQ
more adaptable to the changing behavior but it still rgioes not distinguish sequential and looping references.
quires the logarithmic complexity of LFU to manage thgELRU [39] detects looping references by examining
priority queue. To eliminate the logarithmic complexityyggregate recency distribution of referenced pages and
of LRU-K, 2Q [18] maintains two queues: one queue fathanges the eviction point using a simple cost/benefit
blocks referenced only once, and another for reoccurriggalysis. As discussed in Section 3, DEAR and UBM [10,
references. If a blockin the first queue is referenced again, 20] are closely related to PCC in that they are pattern-
it is moved to the second queue. This simple algorithehsed buffer cache replacement schemes and explicitly
results in constant complexity per access; however, it i&eparate and manage blocks that belong to different ref-
quires two tunable parameters. Low Inter-reference Rerence patterns. They differ from PCC in the granularity
cency Set (LIRS) [17] maintains a complexity similar t®f classification; classification is on a per-application ba

that of LRU by using the distance between the last arfs in DEAR, a per-file basis in UBM, and a per-call-site
second-to-the-last references to estimate the likeliltdodpasijs in PCC.

the block being referenced again.
Many policies have been proposed to combine recency .
and frequency. The first policy to combine LRU and LFU ~ Conclusions

is Frequency-Based Replacement (FBR) [37]. It com-

bines the access frequency with the block age by maiH?is paper presents the first design that applies PC-based
taining an LRU queue divided into three sections: neRreédiction to the /O management in operating systems.

middle, and old. Least Recently/Frequently Used (LRFUY® Proposed PCC pattern classification scheme allows
[24] provides a continuous range of policies between LRU® Operating system to correlate I/O operations with the
and LFU. A parametek is used to control the amount ofProgram contextin which they are triggered, and thus has
recency and frequency that is included in the value usttf Potential to predict access patterns much more accu-
for replacement. Adaptive LRFU (ALRFU) [23] dynam-"ately than previous schemes. Compared to the per-file
ically adjusts), eliminating the need to properly sat aCCess pattern cla55|f|ca_t|0n scheme in UBM,_PCC offers
for a particular workload. The most recent additions f#Fveral advantages: (1) it can accurately predict the-refer
the LFU/LRU policies are Adaptive Replacement CacHIce patterns of new files before any access is performed,
(ARC) [27] and its variant CAR [2]. The basic idea of!iminating the training delay; (2) it can differentiate mu
ARC/CAR is to partition the cache into two queues, eadlpl® concurrent access patterns in a single file.

managed using either LRU (ARC) or CLOCK (CAR): Ourevaluation using arange of benchmarks shows that,
one contains pages accessed only once, while the otf@fpared to UBM, PCC achieves on average a 13.8%

contains pages accessed more than once. Like LF&igher maximum hit ratio in simulations with varying
ARC/CAR has constant complexity per request. cache sizes, and reduces the average number of disk 1/Os

by 20.8% and the average execution time by 13.7% in our
Hint-based policies In application controlled cacheLinuximplementation. These results demonstrate that ex-
management [8, 32], the programmer is responsible faloiting the synergy between architecture and operating
inserting hints into the application which indicate to OSystem techniques to solve problems of common charac-
what data will or will not be accessed in the future aniristics, such as exploiting the memory hierarchy, is a
when. The OS then takes advantage of these hints to gesmising research direction.

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 13

Acknowledgments [20]

We wish to thank Mendel Rosenblum, our shepherd, and
the anonymous reviewers for their constructive feedb

on this work. We would also like to thank Jongmoo Choi
for giving us access to the UBM simulator code. [22]

References [23]

[1] J.-L.Baer and T.-F. Chen. An effective on-chip preloapscheme
to reduce data access penalty.Pioc. ICS June 1991.

[2] S.Bansal and D. S. Modha. CAR: Clock with Adaptive Replac
ment. Proc. FAST March 2004.

[3] L. A. Belady. A study of replacement algorithms for a uit-
storage computeiBM Systems Journab(2):78-101, 1966. [25]

[4] N.Bellas, I. Hajj, and C. Polychronopoulos. Using dynaache
management techniques to reduce energy in a high-perfaaman
processor. IiProc. ISLPED August 1999. [26]

[5] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking détase
systems: A systematic approach.Rroc. VLDB October 1983.

[6] B. Black, B. Mueller, S. Postal, R. Rakvic, N. Utamaptattand
J. P. Shen. Load execution latency reduction.Ptac. ICS July
1998.

[7] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-base@®I|
prefetching for out-of-core application®CM TOCS 19(2):111— [29]
170, 2001.

[8] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementati
and performance of integrated application-controlleddédehing, [30]
prefetching, and disk schedulingACM TOCS 14(4):311-343,
1996.

[9] R. W. Carrand J. L. Hennessy. WSCLOCK - a simple and effe¢31]
tive algorithm for virtual memory management. fnoc. SOSP-8
December 1981.

[10] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. An Implementatio [32]
study of a detection-based adaptive block replacementsehin
Proc. 1999 USENIX ATCGlune 1999.

[11] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. Towards[33l
application/file-level characterization of block refecen: a case
for fine-grained buffer management. Pfnoc. ACM SIGMETRICS
June 2000. [34]

[12] G. Z. Chrysos and J. S. Emer. Memory dependence predicti[35]
using store sets. IRroc. ISCA June 1998.

[13] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. Mgmo [36]
system design considerations for dynamically-scheduledgs-
sors. InProc. ISCA June 1997.

[14] G. Glass and P. Cao. Adaptive page replacement base@won
reference behavior. IRroc. ACM SIGMETRICSJune 1997.

[15] C. Gniady, Y. C. Hu, and Y.-H. Lu. Program counter basef{B8]
techniques for dynamic power management.Ptoc. HPCA-10
February 2004. [39]

[16] R. J. Hanson. TPC Benchmark B - What it means and how to
use it. InTransaction Processing Performance Council. TPC-B
standard specification, revision 2.0, 1994 [40]

[17] S.Jiang and X. Zhang. LIRS: an efficient low inter-refece re-
cency setreplacement policy to improve buffer cache peréoice. [41]
In Proc. ACM SIGMETRICSlune 2002. [42]

[18] T. Johnson and D. Shasha. 2Q: a low overhead high pesgfocen
buffer management replacement algorithm. Proc. VLDB-20
September 1994.

[19] Y. Jgou and O. Temam. Speculative prefetchingPtac. ICS-7
July 1993.

[24]

[27]

(28]

(37]

(43]

[44]

J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and &.
Kim. A low-overhead, high-performance unified buffer mamag
ment scheme that exploits sequential and looping refesentie
Proc. OSD] October 2000.

] A.-C. Lai and B. Falsafi. Selective, accurate, and timstlf-

invalidation using last-touch prediction. Rroc. ISCA June 2000.
A.-C. Lai, C. Fide, and B. Falsafi. Dead-block predintand dead-
block correlating prefetchers. Froc. ISCA June 2001.

D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, a@dS.
Kim. On the existence of a spectrum of policies that subsuhees
least recently used (LRU) and least frequently used (LFUgies.
In Proc. ACM SIGMETRICSViay 1999.

D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, a@dS.
Kim. LRFU: A spectrum of policies that subsumes the least re-
cently used and least frequently used polici#sEE Transactions
on Computers50(12):1352-1360, 2001.

U. Manber and S. Wu. GLIMPSE: A tool to search throughrent
file systems. IrProc. USENIX Winter 1994 Technical Conference
January 1994.

M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and
D. A. Wood. Using destination-set prediction to improve the
tency/bandwidth tradeoff in shared-memory multiprocessdn
Proc. ISCA June 2003.

N. Megiddo and D. S. Modha. ARC: A Self-tuning, Low Ovesd
Replacement Cache. RProc. FAST March 2003.

N. Megiddo and D. S. Modha. One up on LRUlogin: - The
Magazine of the USENIX AssociatjatB(4):7-11, 2003.

R. Ng, C. Faloutsos, and T. Sellis. Flexible and addptéiiffer
management techniques for database management sys$EHis.
Transactions on Computerg4(4):546-560, 1995.

E. J. O'Neil, P. E. O'Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk bufferingPtac. ACM
SIGMOD, May 1993.

E. J. O'Neil, P. E. O'Neil, and G. Weikum. An optimalityrgof of
the LRU-K page replacement algorithrd. ACM 46(1):92-112,
1999.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolskyd J. Ze-
lenka. Informed prefetching and caching. Rroc. SOSP-15De-
cember 1995.

S. S. Pinter and A. Yoaz. Tango: a hardware-based dafatph-
ing technique for superscalar processorsPioc. MICRO-29 De-
cember 1996.

Postgres. http://www.postgresgl.org/.

M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, dn
K. Roy. Reducing set-associative cache energy via wayigired
and selective direct-mapping. Rroc. MICRO-34 Dec. 2001.

G. Reinman and B. Calder. Predictive techniques foreggive
load speculation. liProc. MICRO-31 December 1998.

J. T. Robinson and M. V. Devarakonda. Data cache managem
using frequency-based replacementPhoc. ACM SIGMETRICS
May 1990.

T. Sherwood, S. Sair, and B. Calder. Predictor-dicteream
buffers. InProc. ISCA June 2000.

Y. Smaragdakis, S. Kaplan, and P. Wilson. EELRU: singptiel
effective adaptive page replacementPioc. ACM SIGMETRICS
May 1999.

J. E. Smith. A study of branch prediction strategiesPtac. ISCA
May 1981.

SPEC. http://lwww.spec.org/gpc/opc.static/vievipgtinfo.html.
J. Steffen. Interactive examination of a C program v@tscope.
In Proc. USENIX Winter 1985 Technical Conferent@85.

D. Thibaut, H. S. Stone, and J. L. Wolf. Improving diskcha
hit-ratios through cache partitioningEEE Transactions on Com-
puters 41(6):665-676, 1992.

TPC. Transaction Processing Council. http://www.dpg.

USENIX Association 6th Symposium on Operating Systemsdreand Implementation 14

