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Abstract—Linear algebraic operations such as matrix manipu-
lations form the kernel of many machine learning and other cru-
cial algorithms. Scaling up as well as scaling out such algorithms
are highly desirable to enable efficient processing over millions
of data points. To this end, we present a matrix manipulation
approach to effectively scale-up each node in a scale-out data
parallel platform such as Apache Spark. Specifically, we enable
hardware acceleration for matrix multiplications in a distributed
Spark setup without user intervention. Our approach supports
both dense and sparse distributed matrices, and provides flexible
control of acceleration by matrix density. We demonstrate the
benefit of our approach for generalized matrix multiplication
operations over large matrices with up to four billion elements. To
connect the effectiveness of our approach with machine learning
applications, we performed Gramian matrix computation via
generalized matrix multiplications. Our experiments show that
our approach achieves more than 2× performance speed-up, and
up to 96.1% computation improvement, compared to a state of
the art Spark MLlib for dense matrices.

I. INTRODUCTION

Modern advances in data collection have led to the pro-
liferation of high-dimensional data in both science [9], [39]
and business [35]. Such high-dimensional data can be most
effectively represented as a matrix. This is mainly because ma-
trix representation makes the data amenable to linear algebraic
operations that form the basis of machine learning algorithms
such as Singular Value Decomposition (SVD) and Principal
Component Analysis (PCA) [16], [37]. The importance of
the targeted linear algebraic operations stems from the fact
that many popular data analysis methods can be constructed
through small core computations, so called as kernels [12].
closely related to matrix operations [12].

To perform scalable data analysis, it is desirable to have a
high kernel computing throughput, i.e., to be able to compute
the kernels for each of a large amount of data samples in a
fast and timely fashion. The extant practices largely fall into
two groups: (1) raising the throughput of matrix operations by
enabling scaling out on commodity hardware via the use of
data parallel computation software platforms such as Apache
Spark [14], [25], [41], Hadoop [22], and MPI [33]; and (2)
scaling up the computational power of individual machines for
data analysis [11], [13], as data analysis algorithms entail ma-
trix operations and optimization algorithms [12] that can ben-
efit from hardware accelerators, e.g., GPUs [15], ASICS [18],
FPGAs [36], and specialized instructions in CPUs [19] for
high-throughput matrix operations [23], [29], [30], [40].

While beneficial, both the scale-out and scale-up techniques
have some shortcomings. Scale-out options can suffer com-
munication networking overheads when the size of a cluster
becomes too large. Moreover, maintaining more machines
entails higher costs (energy, manpower, machine failure, etc.).
Scale-up options have a hard-wall of scalability, limited by the
resources available in a single machine. The challenge is how
to best combine and reconcile the two scaling approaches in
the service of scalable matrix operations?

Combining the scale-out and scale-up techniques is non-
trivial, given the fundamental design choices made under
each approach. Scale-out approaches, such as Spark, focus on
scalability, fault tolerance, cluster utilization, and workload
balancing, but give less attention to hardware acceleration at
single node scale. For example, the map-reduce model-based
Spark maps a job to a number of tasks that can later be run
on a number of nodes; utilization of hardware capabilities by
each task is not managed. On the other hand, scale-up solutions
focus on parallelism at a fine granularity, such as SIMD and
SIMT models. To better utilize the scale-up solutions, it is
important that the tasks are amenable to hardware acceleration.

However, most of the scale-out platforms like Spark do
not generate tasks in a way that can utilize specific local
accelerators. For instance, distributed matrices in Spark ML-
lib [27], a widely used machine learning library built on top
of Spark, are often considered sparse matrices, and operations
on sparse matrices are implemented with an ad-hoc Scala
implementation. Although matrix solutions are beginning to
be developed [43], they still face challenges of constructing
and manipulating distributed dense matrices efficiently. This
is because the general support for dense matrices could entail
refactoring a substantial portion of MLlib. Thus, the imple-
mentations of matrices in Spark focus on sparse matrices and
cannot utilize accelerators and other optimization available
for dense matrices. To enjoy the benefit brought by both
scale-out and scale-up capabilities of Spark, users have to
understand and implement system-level details. The overhead
of doing this is counter productive for domain scientists and
data analysts due to the system-level complexity of these
tasks. To address the above issues, we present an approach
to generate distributed tasks so as to better utilize scale-up
and scale-out methods with an emphasis on matrix operations
for data analysis applications.

To scale-up matrix operations on distributed data processing
platforms, we propose an approach that utilizes hardware



accelerators like GPUs and newer optimized instructions in
CPUs through highly optimized libraries, which, in turn,
accelerates the execution of data analysis tasks. Our approach
enables hardware acceleration for both dense and sparse
matrices. The major anticipated benefit from our approach is
that we can use a relatively smaller sized cluster to deliver
the same performance as that of a bigger (more expensive)
setup. As with [13] enabling large scale data processing using
a smaller system footprint democratizes large scale machine
learning capabilities to small–medium research groups.

Specifically, this paper makes the following contributions.
• We introduce the support for distributed dense matrix

manipulations in Spark for scale-out matrix operations.
In contrast, the current state of the art, e.g., MLlib [27],
considers only sparse matrices.

• We adopt scale-up hardware acceleration for BLAS-3
operations [31] of distributed matrices. Our approach of
enabling accelerator support inside Spark does not require
changes to the Spark applications on user side by leverage
existing libraries to support the target operations, which
are available for the accelerators.

• We design a flexible control of deciding when and
whether to use hardware accelerators based on the density
of matrices.

• Finally, we evaluate our approach with Gramian matrix
calculation, a typical example of matrix multiplication,
on a 2-node cluster each with 2 Intel Xeon CPUs
and 2 NVIDIA K80 GPUs attached as accelerators to
demonstrate the benefit of our scaling-up approach. Our
experiments show that hardware accelerators can achieve
more than 2× speed-up than the state-of-the art MLlib
implementation for end-to-end performance, improving
computation time by up to 96.1%.

II. RELATED WORK

The surge of high dimensional data sets generated by sci-
entific instruments, experiments, sensors, and supercomputer
simulations [9] has made scalable data analysis an essential
component of the scientific discovery process. A large number
of studies have employed scalable data analysis frameworks
for scientific discoveries. ADAM [32] shows a significant
performance speed-up and cost reduction by using Spark for
astronomy image processing. Thunder [17] is a library built
on Spark that provides scalable data analysis for neuroscience.
Kira [45] is yet another toolkit built on Spark for astron-
omy image processing, which achieves performance speed-
up for big data sets. These works show promising results
for utilizing big data processing frameworks such as Spark
for high-dimensional scientific data analysis in terms of both
performance and costs.

Together with scale-out data parallel frameworks, scaling up
individual machines also has been explored for enhancing the
throughput of matrix computations. For instance, numerous
works have focused on optimizing GEMM operations [23],
[29], [30], [40] and, in turn, machine learning algorithms [4],
[20], [26], through exploiting GPU’s capability in providing

high throughput of matrix operations. In addition, studies on
the optimal usage of multi-core CPUs or new hardware intro-
ductions attempted to fill the deficits of GPU-based approaches
such as inefficiency of GPUs for a small amount of data [21]
and overcoming challenges in processing large scale data over
the memory capacity of a single GPU is also studied [34]. The
use of both CPUs and GPUs for matrix operations has been
proposed as well [2], [11].

In light of the above developments, the Spark community
has initiated discussions regarding utilizing hardware acceler-
ations from within the Spark [6], [8] platform. To this end,
a preliminary study about using hardware optimized libraries
for both CPU and GPU on a single machine for matrix
multiplication in Scala has shown promising results [38].
Similarly, HeteroSpark [24] showed that RMI can be used to
reduce communication overheads between CPU and GPU in
Spark. SparkNet [28] provides a Spark interface to use Caffe
framework [20] for training large-scale deep neural networks,
where the instance of Caffe framework on each node can use
GPUs, and Spark maintains data on system memory, managed
by CPUs. Still, there are many challenges that remain. Some
of the above approaches may not be applicable to general
data analysis [28], and further, utilizing hardware optimized
libraries often requires an in-depth understanding of the hard-
ware characteristics for each computation in data analysis
pipeline, which tends to be cumbersome and impractical.
Consequently, efficient utilization of hardware acceleration in
a cluster is still not widely available in popular distributed
matrix computation packages such as ScaLaPACK [10], PLA-
PACK [5], and elemental [33].

Complementary to the aforementioned studies, our proposed
approach aims to reconcile the Spark philosophy of providing
general-purpose data analysis with benefits of using hardware
optimized libraries as one of the accelerators for extracting
higher performance.

III. DESIGN

In this section, we first present the factors that affect the
design of our approach. Then, we give an overview of our
architecture, followed by how we employ hardware accel-
eration for matrix multiplications in Spark. The key design
considerations for our approach are as follows:

User transparency: Spark has been widely adopted and has
a big user base with thousands of existing applications. To
ensure that our approach will not disrupt such applications,
we aim to provide hardware acceleration without requiring
application changes, and with minimal modifications to the
Spark framework.

Scalable matrix multiplication support: Existing BLAS
hardware accelerations are designed for single machines,
where the calculation of large matrices (input matrix and
intermediate data) cannot fit into the memory. We aim to
support big matrix multiplications at scale so as to handle
crucial data sets that cannot fit into a single-node’s memory.

Dense and sparse matrix support: We have experimentally
observed that it is not always beneficial to enable hardware
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acceleration for matrix operations. Hardware acceleration of
BLAS helps dense matrix operations. However, for highly
sparse matrices, the optimized algorithm provided by Spark
MLlib are comparable or faster than native BLAS libraries. We
aim to support both dense and sparse matrix multiplications
in our system.

A. System architecture

Figure 1 shows the overall architecture of our approach. We
start with a Spark cluster setup comprising multiple worker
nodes. Each node is equipped with one or more GPUs. We
design two new components, namely selector and BLAS
enabler, which both run in a Spark executor. Each worker
node runs one or more such executors.

Matrix multiplication can be handled by linear algebra
classes in Spark MLlib [27]. When a matrix multiplication
application is submitted, MLlib distributes the matrices on
each node as standard Spark resilient distributed datasets
(RDDs) [44]. Based on different matrix abstractions provided
by MLlib, Spark generates tasks to perform multiplications
of matrix partitions on worker nodes locally, i.e., each task
performs multiplication of sub-matrices in a single node. Cur-
rently, Spark adopts a self implemented algorithm, i.e., a Scala
implementation of matrix product, to compute local tasks.
To adopt native libraries to scale-up the task computation,
we design a BLAS enabler component to enable the use
of underlying native BLAS libraries through a JNI interface
(Netlib-Java [1]). In addition, to also support the original
implementation for sparse matrices, we design a selector to
decide whether to use the native BLAS libraries for hardware
acceleration or use the default implementation of MLlib.

B. Hardware acceleration in Spark

Spark supports four distributed matrix abstractions: RowMa-
trix, IndexedRowMatrix, CoordinateMatrix, and BlockMatrix.
Only BlockMatrix supports the multiplication of two dis-
tributed matrices [7], while others only support the multiplica-
tion of a distributed matrix and a local matrix, where a vector–
matrix multiplication (BLAS-2) is performed locally, i.e., the
distributed matrix is partitioned as row vectors, and each task
multiplies a vector and the local matrix on a single node.
When training a machine learning model, the multiplication
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Fig. 2: DAG of Gramian matrix calculation using BlockMatrix in
Spark MLlib.

of a distributed matrix and a local matrix can be useful if the
model fits into the local memory. The training data can then
be distributed in the cluster automatically by standard Spark
operations. However, it is becoming more and more common
to train a model that does not fit into a single machine’s
memory [13]. For training such a large model, a user would
need to use BlockMatrix to fully scale-out the operations.
Thus, we focus on BlockMatrix in this study.

A key challenge to scaling-up computation in Spark is the
dependency between internal components in MLlib. As a re-
sult, it is non-trivial for the current MLlib to utilize optimized
BLAS libraries. For example, BlockMatrix is designed to be
transformed only from CoordinatedMatrix, which represents
sparse matrices. With such a dependency, BlockMatrix is
considered a sparse matrix abstraction and calculation for
sparse matrices is performed by a self implemented algorithm,
which takes away the opportunity of using hardware optimized
BLAS libraries.

To address this problem, we first change BlockMatrix in
MLlib to also support dense matrices. We extend the original
toBlockMatrix() API by adding an argument for speci-
fying matrix density. When generating a BlockMatrix, we keep
the density information to differentiate dense BlockMatrix
from sparse BlockMatrix. When a computation is performed
in BlockMatrix, matrix density is sent to selector to decide
whether to use the ad-hoc Scala implementation or native
BLAS libraries.

Secondly, we design a BLAS enabler that leverages Netlib-
Java as a JNI interface to delegate BLAS routines to under-
lying native BLAS libraries. With this software stack, we are
able to use native libraries without user application changes.
The goal is to design a so-called drop-in BLAS solution for
Spark to optimally utilize underlying hardware. The main
benefit of a drop-in solution is that there is no need to re-build
Spark in order to utilize heterogeneous computing resources
in the cluster. However, it is not straight forward to use this
drop-in library solution for distributed matrix multiplication
in Spark. In our implementation, we use OpenBLAS [3] to
perform matrix multiplications on CPU, and NVBLAS [38]



TABLE I: Studied matrix sizes and density.

# of Rows (Columns) Density File Size (GB)
4873 1 0.34
14684 1 3.1
24495 1 8.4
66331 1 77
4873 0.05 0.104
24495 0.05 2.6
66331 0.05 19
97708 0.05 41

to perform matrix operations on GPU. NVBLAS is a BLAS-3
library provided by NVIDIA built on top of cuBLAS-XT [2],
which supports a multi-GPU capable host interface. However,
our design is flexible and we can use any library as needed in
our approach.

Following section shows that hardware accelerations may
not always perform better than the ad-hoc Scala implementa-
tion, depending on the sparcity of matrix. To support matrices
with varying sparcity, we accept a system configuration of a
density threshold with a default value of 0.5. Selector compare
the aforementioned density of BlockMatrix with this value to
decide whether or not to enable native libraries for the matrix.
The threshold is exposed as a user-configurable parameter to
suit different use cases.

IV. EVALUATION

This section evaluates our approach to use hardware accel-
eration in Spark for speeding up matrix multiplication. To this
end, we use large scale Gramian matrix (XXT) computation
kernel. This kernel is common among machine learning algo-
rithms such as SVD and PCA [12]. Gramian matrix also plays
critical role in popular data analysis techniques, e.g., all-pair
similarity [42]. We use Spark version 1.6.1, the latest version
at the time of this evaluation. We implemented Gramian matrix
calculation using MLlib APIs. We divided the calculation
into six jobs and 12 stages in Spark as shown in Figure 2.
First four jobs create a BlockMatrix type matrix from input
data files through intermediate data types (from RowMatrix to
IndexedRowMatrix and CoordinateMatrix). Matrix multiplica-
tion happens in job-4 and job-5. Job-4 calculates the blocks to
shuffle for the two input matrices. Job-5 groups input matrices
by block, performs multiplication, and finally writes the result
to output files. Each of the 12 stages represents a collection
of tasks generated by the job without data shuffle. The shuffle
occurs between the stages, in jobs 3, 4, and 5. Job-5 has 5
shuffle operations as it consists of four stages, while jobs 3
and 4 have only one shuffle operation each.

We compare Gramian matrix computation under three dif-
ferent settings: the current Spark MLlib implementation as
our baseline case; Spark with CPU acceleration using Open-
BLAS; and Spark with GPU acceleration using NVBLAS. We
disabled selector in our experiments to show the performance
impact of using hardware acceleration in sparse matrices. Note
that we use hand-compiled OpenBLAS library with hardware
acceleration instruction flags (e.g. AVX2, FMA3, etc.) set. For
NVBLAS, we use the NVBLAS library shipped with CUDA
toolkit 7.5. We generate random square matrices in various

TABLE II: System specification for the evaluation.

Parameter Value
System name Rhea GPU node
CPU model dual Intel Xeon E5-2695 @ 2.3 GHz
CPU cores 14× 2 (28× 2 HT)
CPU memory 1TB
GPU model dual NVIDIA K80
GPU (CUDA) cores 4992× 2
GPU memory 24× 2 GB
CUDA ver. 7.5
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Fig. 3: Overall performance on GPU (NVBLAS) and CPU (open-
BLAS) normalized to Spark (MLlib).

sizes and densities for our tests as shown in Table I. All
experiments are performed in 2 GPU nodes in Rhea cluster.
Table II shows the machine specifications. We configure Spark
with one master node and 2 worker nodes, where one worker
co-exists with the master node. Each worker node runs one
executor. We configure the executors to have 800 GB memory
and 56 cores. We repeat each experiment five times and
report the average results, except for the very-long running
experiments with 66331×66331 and 97708×97708 matrices,
where we report the average of two runs.

A. Overall performance

Figure 3 shows the end-to-end performance normalized to
the case of MLlib for dense matrices and sparse matrices, We
can see from the graph that, for dense matrices, both CPU
and GPU acceleration achieved the overall speed-up of up to
2.2× and 1.7×, respectively. For OpenBLAS, we observe that
the speed-up increases as the matrix size increases within the
tested range. However, for NVBLAS, the speed-up peaks at
24495×24495 matrix and diminishes after that. We investigate
this behavior further in later sections.

On the other hand, we observe that, for sparse matrices with
5% of non-zero terms, hardware acceleration may not increase
the performance much. Scala implementation of matrix mul-
tiplication in Spark is faster or comparable to OpenBLAS,
and much faster than NVBLAS, as reported in [43]. This is
mainly because NVBLAS pads zero terms into the matrix and
sends dense matrix blocks to the GPU, which causes extra data
transfer between GPU and CPU, as well as extra computation
in GPU and thus affects performance.

Discussion: The overall execution time results show that
hardware acceleration accelerates dense matrix multiplications
but degrades the performance for highly sparse matrices.

B. Performance breakdown

As shown in Figure 2, the overall performance includes
execution time of every job, while only job-4 and job-5 are
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Fig. 4: Performance breakdown by job.

related to matrix multiplication. Moreover, hardware accelera-
tion only takes place in stage 10, where two block matrices are
co-grouped to perform multiplication. To further investigate
the behavior of Spark when calculating multiplication on
distributed matrices, we study the breakdown of the end-to-
end times by jobs and tasks. First, we examined the overall
execution time per job. Figure 4 shows the percentage of run
time for each job. We see that jobs 4 and 5 take more than 40%,
and up to 84%, of total execution time. We also see that small
and sparse matrices spend less time in actual multiplication,
but spend more time on data transforming. This limits the
overall performance improvement by adopting acceleration on
computation for those matrices.

To further identify the impact of using hardware acceleration
for matrix multiplication, we collect task-level run time of
stage 10, and group them into 4 categories: garbage collection,
shuffle read/write, computation, and others (schedule delay,
serialization, etc.). We record the aggregated run time of
all tasks by category and then calculate the percentage of
time consumed under each category. Figure 5 shows the the
percentage of run time in each category. We observe that
both dense matrices with small sizes and sparse matrices have
a larger portion of computation times. However, it is not
against our previous observation about overall performance,
as even though computation is dominant in Stage 10, job-
5 has still smaller portion in end-to-end times. For dense
matrices, as matrix size grows, shuffle overhead increases and
becomes the dominant factor as shown in 66331 × 66331
matrix cases. Although the overall speed-up is less than 2.2×
(Figure 3), CPU and GPU accelerate the compute time by, on
average, 54.7% and 43.9%, respectively. For small matrices,
OpenBLAS performs similar to NVBLAS or better, as GPU-
CPU memory transfer is not involved. Also notice that for
case of 66331× 66331 of dense matrix, both CPU and GPU
significantly improve the computation time, i.e., by 92.9% and
96.1%, respectively. In this case, NVBLAS performs better
than hand-compiled OpenBLAS. However, this advantage fails
to lead the overall performance improvement due to shuffle
and other overheads, which gives computation time relatively
less contribution towards overall performance.

For sparse matrices, we see that computation accounts for
relatively big amount of time to other overheads, since the
amount of shuffle data is small due to the high sparsity.
We also continue to observe that native BLAS libraries take
more time to compute than MLlib implementation with an
average slowdown of 22% and 85.1% for CPU and GPU
(Figure 5(b)), respectively, which aligns with the observation
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Fig. 5: Performance breakdown of stage 10.

in Section IV-A.
Discussion: In Spark, the job of multiplication on dis-

tributed matrix is divided into a number of tasks, where each
task calculates the multiplication of small block matrices. The
default size of each block is 1024 × 1024. The number of
tasks generated by Spark increases as the matrix size increases.
As the number of tasks increases, data shuffle overhead
increases, diminishing advantages of leveraging the advan-
tage of hardware accelerators for performing high throughput
computations. However, even with this shuffle and framework
overhead, hardware acceleration can still speed-up overall
performance up to more than 2× as shown in Section IV-A.
On the flip side, we find that for matrix with small sizes,
OpenBLAS performs similar to or faster than NVBLAS, but
for the 66331× 66331 matrix, NVBLAS actually spends less
time on computation than OpenBLAS. Thus, we expect the
benefits from utilizing high-throughput accelerators such as
GPUs to grow with growing matrix sizes.

V. CONCLUSION

This paper shows an approach of applying scale-up ac-
celerations for linear algebraic operations in scale-out data
processing platforms. Specifically, we enable both CPU and
GPU accelerations via native BLAS libraries inside Spark, and
without requiring manual hacking or user-side intervention.
We also provide control over acceleration choices, which are
based on matrix density. Our initial experiments showed that
hardware acceleration can achieve an overall up to 96.1%.
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