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ABSTRACT
Condor provides high throughput computing by leveraging idle-
cycles on off-the-shelf desktop machines. It also supports flocking,
a mechanism for sharing resources among Condor pools. Since
Condor pools distributed over a wide area can have dynamically
changing availability and sharing preferences, the current flocking
mechanism based on static configurations can limit the potential
of sharing resources across Condor pools. This paper presents a
technique for resource discovery in distributed Condor pools using
peer-to-peer mechanisms that are self-organizing, fault-tolerant, scal-
able, and locality-aware. Locality-awareness guarantees that ap-
plications are not shipped across long distances when nearby re-
sources are available. Measurements using a synthetic job trace
show that self-organized flocking reduces the maximum job wait
time in queue for a heavily loaded pool by a factor of 10 compared
to without flocking. Simulations of 1000 Condor pools are also
presented and the results confirm that our technique discovers and
utilizes nearby resources in the physical network.

1. INTRODUCTION
The complexity of today’s scientific applications and their expo-
nentially growing data sets necessitate utilizing all available re-
sources. The economic constraints of deploying specialized hard-
ware entail leveraging off-the-shelf equipment to satisfy the grow-
ing need for computing power. Sharing of these resources poses
design challenges especially in resource management and discov-
ery [2]. The computational grid [11], popularized by systems such
as Globus [13, 9] and Condor [21], provides ways for applica-
tions to be spread across multiple administrative domains. Issues
of access control, resource management, job scheduling, and user
management are addressed at great length in these systems. On
the other hand, the peer-to-peer (p2p) overlay networks, motivated
by file-sharing systems such as Napster [22], Gnutella [12], and
Kazaa [28], and formalized by systems such as CAN [25], Chord [29],
Pastry [26], and Tapestry [32], have demonstrated the ability to
serve as a robust, fault-tolerant, and scalable substrate for a variety
of applications. Examples of p2p applications include distributed
storage facilities [27, 6], application-level multicast [4, 33, 31], and
routing in mobile ad-hoc networks [16]. In this work, we present
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a p2p scheme to facilitate the discovery of remote resources. Al-
though the results in this work are achieved via an innovative mar-
riage of the flocking facility [7] in Condor and the proximity-aware
p2p routing substrate offered by Pastry [3], the scheme is applicable
to other platforms.

Condor [21] provides a mechanism for sharing resources by har-
nessing the idle-cycles on desktop machines. It enables high through-
put computing using off-the-shelf cost-effective components. A
Condor pool is statically configured to use a selected machine as
the central manager. The task of the manager is to schedule jobs
to various idle resources in the pool, and provide job migration and
other features. Under normal conditions, a job waits in a queue un-
til the central manager can find an appropriate resource in the pool
to run it on.

There are two constraints that can limit Condor’s potential of shar-
ing available resources. First, the central manager is a single point
of failure, and in case such a failure occurs, the whole pool be-
comes unusable. Second, the size of individual pools is limited by
the resources available to an organization. There is an ever growing
need to collaborate and share resources with other organizations to
support higher throughput.

Condor addresses the issue of sharing resources among multiple
pools by a mechanism referred to as flocking [7]. This mecha-
nism is static and requires manual configuration. In the dynamic
situations of real world where the availabilities and sharing prefer-
ences of individual pools vary, a self-organizing, scalable, and ro-
bust mechanism is needed to fully exploit the potential of resource
sharing across multiple administrative domains.

The p2p overlay networks can help in automating the discovery
of appropriate resource pools across administrative domains. Al-
though other means for discovering resources such as those in [9]
can also be used, p2p systems have the added advantage that they
are robust, scalable, and relatively simple to deploy. The p2p over-
lays are ideal for situations where nodes often come and leave, jus-
tifying our choice of using them in this scenario. Moreover, Pastry,
– our choice of p2p overlay – is locality-aware, implying that a re-
source location service based on it can locate a resource close to
the requesting node among all available resources in the physical
network. This proximity leads to saved bandwidth in data transfer,
and faster job issuing and completion. Besides resource discov-
ery, p2p overlays provide fault-tolerance that can be leveraged to
provide automatic central manager replacement within a pool.

The main contributions of this work are as follows:



• We describe a p2p-based flocking scheme that allows dis-
tributed Condor pools to self-organize into a p2p overlay
and locate nearby resource pools in the physical network for
flocking.

• We present a prototype implementation of the proposed scheme
which shows that the scheme can be easily incorporated into
an existing platform.

• We evaluate the proposed scheme via measurements on our
prototype implementation running on several small Condor
pools, as well as through large-scale simulations involving
1000 Condor pools.

The rest of the paper is organized as follows. Section 2 gives an
overview of Condor and structured p2p overlay networks. Section 3
presents our proposed p2p scheme for creating a self-organized
flock of Condor pools. Section 4 presents the architecture of the
developed software. Section 5 presents an evaluation and analy-
sis of the proposed scheme. Section 6 presents some related work.
Finally, Section 7 provides concluding remarks.

2. BACKGROUND
The proposed work leverages the idle-cycle sharing facilities of
Condor [21].

2.1 Condor
Condor provides a way for users to solve scientific problems us-
ing the resources available to them rather than expensive special-
purpose hardware. A Condor pool is created by running the Condor
software on all the resources where compute cycles are available,
for instance instructional laboratory machines in an academic set-
ting. The software monitors the state of each resource and deter-
mines whether it is idle or not. If the resource is idle, Condor can
harness its computing power by running computations on it. In this
way, resources that would otherwise be unused form a computing
cluster. Each pool has a central manager – a machine in the pool
chosen for collecting job requests and scheduling jobs to run on the
idle machines in the pool. When a user submits a job to the man-
ager, it is placed on a queue. The central manager then searches
for an appropriate resource in the pool to run the job on. The job
waits in the queue until some matching resource becomes available.
Condor uses an extensive resource description language/matching
technique ClassAds [23, 24] to make this match. It allows users to
specify the nature of resources their jobs would require, and then
finds a match accordingly. In addition, Condor provides check-
pointing facilities [20, 19], which, when coupled with the migra-
tion facility, allows a job to be transferred to a different resource in
case the one on which the job was already executing is no longer
free.

2.2 Manually configured flock of Condors
To allow multiple Condor pools to share resources by sending jobs
to each other, Condor employs a flocking mechanism[7]. A Con-
dor pool can be statically configured to allow job requests from a
known remote pool to be forwarded to it. Flocking works in the
following manner. If a pool A wants to allow jobs from machines
in another pool B to be run on its resources, the central manager
of A is configured to allow this sharing, and the central manager of
B is also explicitly configured to use resources available in A. The
manager of B will only send jobs to A if the local resources are un-
available or in use. The job scheduling negotiations occur between

the two managers, and the negotiated job is executed on the remote
resource. It should be observed that this mechanism is static, and
requires both pool A and pool B to be pre-configured for resource
sharing.

2.3 Structured p2p overlay networks
Structured p2p overlay networks such as CAN[25], Chord[29], Pas-
try[26], and Tapestry[32] effectively implement scalable and fault-
tolerant distributed hash tables (DHTs), where each node in the
network has a unique node identifier (nodeId) and each data item
stored in the network has a unique key. The nodeIds and keys
live in the same namespace, and each key is mapped to a unique
node in the network. Thus DHTs allow data to be inserted without
knowing where it will be stored, and requests for data to be routed
without requiring any knowledge of where the corresponding data
items are stored.

The key aspects of these structured P2P overlays are self-organization,
decentralization, redundancy, and routing efficiency. Self-organization
promises to eliminate much of the cost, difficulty, and time required
to deploy, configure and maintain large-scale distributed systems.
The process of securely integrating a node into an existing sys-
tem, maintaining its integrity invariants as nodes fail and recover,
and scaling the number of nodes over many orders of magnitude is
fully automated. The heavy reliance on randomization (from hash-
ing) in the nodeId and key generation provides good load bal-
ancing, diversity, redundancy and robustness without requiring any
global coordination or centralized components, which could com-
promise scalability. In an overlay with N nodes, messages can be
routed with O(logN) overlay hops and each node only maintains
O(logN) neighbors.

The functionalities provided by DHTs allow for selecting pools in
the presence of dynamic joining and departure of Condor pools.
While any of the structured DHTs can be used, we use Pastry as an
example in this paper. In the following, we briefly explain the DHT
mapping in Pastry.

Pastry Pastry [26, 3] is a scalable, fault resilient and self-organizing
p2p substrate. Each Pastry node has a unique, uniform, randomly
assigned nodeId in a circular 128-bit identifier space. Given a
message and an associated 128-bit key, Pastry reliably routes the
message to the live node whose nodeId is numerically closest to
the key.

In Pastry, each node maintains a routing table that consists of rows
of other nodes’ nodeIds which share different prefixes with the
current node’s nodeId. In addition, each node also maintains a
leaf set, which consists of l nodes with nodeIds that are numer-
ically closest to the present node’s nodeId, with l/2 larger and
l/2 smaller nodeIds than the current node’s nodeId. The leaf
set ensures reliable message delivery and is used to store replicas of
application objects. Pastry routing is prefix-based. At each routing
step, a node seeks to forward the message to a node whose nodeId
shares with the key a prefix that is at least one digit longer than the
current node’s shared prefix. The leaf set helps to determine the
numerically-closest node once the message has reached the vicin-
ity of that node. A more detailed description of Pastry can be found
in [26, 3].

Pastry takes network proximity into account in building routing ta-
bles. It selects routing table entries to refer to nearby nodes, based
on a proximity metric, subject to the prefix-matching constraints



imposed on the corresponding entries. As a result of the proximity-
awareness, a message is normally forwarded in each routing step
to a nearby node that is chosen, according to the proximity met-
ric, from all the candidate nodes for that hop. Moreover, the ex-
pected distance traveled in each consecutive routing step increases
exponentially, because the density of nodes decreases exponentially
with the length of the prefix match. and the expected distance of
the last routing step tends to dominate the total distance traveled
by a message. As a result, the average total distance traveled by a
message exceeds the distance between source and destination node
only by a small constant value [3].

3. DESIGN
We describe a p2p-based flocking technique that allows a Condor
pool to locate one or more dynamically changing remote pools to
utilize their resources, and to provide fault-tolerance within a pool
against central-manager failures.

3.1 Self-organizing Condor pools
The original flocking scheme has the drawback that knowledge
about all the remote pools with which resources can be shared
is required prior to starting Condor, and this information remains
static. To overcome this limitation, and to provide self-organization
of Condor pools with minimal initial knowledge, we organize the
Condor pools using the Pastry p2p overlay network as described
in Section 2.3. Pastry arranges the pools on a logical ring – the
p2p overlay’s node identifier name space – and allows a Condor
pool to join the ring using only the knowledge about a single boot-
strap pool that is already in the ring. Once a pool joins the ring,
it can reach any other pool on the ring via Pastry overlay routing.
The ability to automatically reach all other pools without any ini-
tial knowledge about them is enabled by the p2p self-organization
of Condor pools.

Another advantage of using Pastry is the automatic creation of the
proximity-aware routing table that can be used to sort available re-
mote pools in order of the network proximity. This allows a Con-
dor pool to announce its available resources to various pools in a
proximity-aware fashion.

Figure 1 shows the overall layout of the proposed approach. The
enlarged node on the left shows the typical configuration of a Con-
dor pool. The central manager manages the various resources in
the pool. These resources can be compute-machines that provide
computing power, or they can be submit-only machines that act as
access points to the combined computing power. The Condor pools
that are interested in sharing resources with other pools form a p2p
overlay network, and each pool is issued a random node identifier
(nodeId) in the ring. The nodeId is randomly assigned, and the
nodes that are adjacent in the node identifier space may be far apart
in the physical network and vice versa. For instance, the grayed
nodes in Figure 1 are physically close, but are not adjacent in the
identifier space. It should be noted that only the central manager
needs to be part of this logical ring. Other resources in a pool are
not aware of the p2p organization of the pool managers, and con-
tinue to interact with the central manager.

3.2 Proximity-aware remote pool discovery
Once the pools are self-organized into a p2p overlay, various meth-
ods can be adopted to determine which remote pools are most suit-
able to send jobs to. Without loss of generality, we will refer the
pool that is making this determination as the local pool in the fol-
lowing discussion.

CM

Figure 1: Interactions among Condor central managers of dif-
ferent pools. The big circle on the right represents the man-
agers arranged in a p2p ring (i.e. the circular node identifier
space). Each circle on the ring represents a Condor pool. An
enlarged version of a pool is shown on the left. The resources in
the pool are only aware of the central manager (CM), and send
job requests to it. The CM uses the locality-aware p2p mecha-
nism to determine nearby Condor pools and sends jobs to them
if necessary. In the figure, the gray circles indicate the potential
remote Condor pools where jobs of the pool on the left can be
forwarded.

One method is that the local pool broadcasts a query for available
resources to all remote pools in the p2p overlay, and chooses to
flock to a pool that replies with a willingness to share its resources
and is nearby. However, broadcast generates unnecessary traffic if
most of the time available resources can be found from a subset of
the pools in the overlay.

A more efficient method is to leverage the p2p overlay for the se-
lection of remote pools. The advantage of the p2p layer is that it
can help to efficiently locate remote Condor pools. Moreover, uti-
lizing the locality-aware p2p routing guarantees that jobs will not
be shipped across long distances in the network proximity space
if free and willing Condor pools are available nearby. To achieve
these goals, the locality-aware routing table of Pastry as discussed
in Section 2.3 is exploited. We discuss the p2p based method for
the selection of remote pools in the following.

3.2.1 Basic design
Each pool that has resources available sends a message announcing
the available resources to all the pools specified in its routing ta-
ble, starting from the first row and going downwards. Thus a pool
always contact nearby pools first. On receiving such a message, a
pool becomes aware of the nearby free resources, which it can then
select for flocking. Such selection of nearby pools translates to
saved bandwidth in terms of data transfer that may happen between
a job submission machine and the job execution machine, and thus
a higher overall job throughput. For instance, Figure 1 shows the
local pool utilizing resources from various grayed nodes, which are
chosen as the Condor pools that are nearby the local pool.

The dynamic resource pool discovery is achieved via a software
layer. The software runs on each central manager M and uses the
resource announcements from other managers MR to decide which
resource pools to flock to. An announcement from MR contains in-



formation about the available resources in its pool, and its desire to
share the resources with M . An expiration time is also contained
in the announcement to inform M of the duration the information
contained in the announcement is valid for. From this information,
M can create a list of resource pools that are available to it, or-
dered with respect to the network proximity. This list is referred
to as willing list. It is an array of sublists, with the ith sub-
list containing MRs from the ith row of the routing table. Hence,
because of the proximity-awareness of Pastry’s routing table, the
resources in the first sublist of the willing list are exponen-
tially nearer compared to the resources in the second sublist, and
so on. Announcements from pools that are unwilling to share their
resources are excluded from the willing list. If several re-
source pools in a sublist share the same proximity metric, the order
of these pools is randomized before configuring Condor to use them
for flocking. Doing so ensures that if many nearby pools discover
the same set of free resources simultaneously, any particular free
resource is not overloaded. Also, this increases the chance of the
needy pools to fairly share the free resources among themselves,
making it unlikely to have the first needy pool to reach an available
pool taking up all the resources in that pool.

3.2.2 Optimization
One potential drawback of the above approach is that the Pastry
routing table of a given central manager may only contain infor-
mation about a subset of all available and nearby pools, i.e., those
whose nodeIds match the nodeId of the central manager in the
respective prefixes. This can limit the scope of p2p-based flocking:
when all the pools known to the routing table are unavailable due
to either lack of free resources or absence of access permissions, a
Condor pool will not be able to flock to other resources that do not
appear in the Pastry routing table.

To address this problem, the p2p-based flocking can be extended
as follows. Instead of propagating the availability information to
only the nodes in the routing table, a time-to-live (TTL) field is
introduced in the announcement message, so that the message can
be propagated to pools several hops away in the overlay network.
The TTL is a system-wide parameter, and can be adjusted dynam-
ically to support various load conditions of the whole system. On
receiving a message, a pool decrements the TTL, and if the TTL
is greater than zero, forwards it to the pools specified in its corre-
sponding routing table row. In this way, the TTL controls how far
the resource availability announcement will be propagated. The re-
ceiving node creates a list of all the remote pools that are willing to
share resources with it. It then contacts them to determine how far
they are, and use this information to generate the willing list
that is sorted with respect to proximity. Each sublist in this will-
ing list contains nodes which may be several hops away, but
due to the nature of how the announcements are forwarded, succes-
sive sublists contains nodes that are increasingly farther apart.

3.2.3 Discussion
The selection of a remote pool for flocking requires discovering
available remote pools with free resources, and knowing the pool’s
willingness and policy for sharing the free resources. While the
p2p-based technique automates locating available remote pools, it
retains each individual pool’s control of access to its resources.
This provides separation of the resource discovery mechanisms from
the sharing policies of individual pools, hence, giving pool owners
full control of how their resources are utilized. In order words, the
p2p-based flocking scheme focuses on resource discovery, and the
policy specification is left to the individual central managers.

Same as in the original flocking mechanism, our proposed p2p-
based flocking mechanism also decouples the flocking of jobs across
different Condor pools from the matchmaking process for schedul-
ing jobs within each pool [23, 24]. Matchmaking provides a mech-
anism for a job to be sent to a suitable resource. Flocking, on the
other hand, locates remote pools to which such requests can be for-
warded. Matchmaking is locally employed in the remote pool to
select a suitable resource. Our proposed scheme periodically com-
pares metrics such as queue lengths, average pool utilization, and
the number of resources available, and based on these comparisons
sorts the available pools in order from most suitable to least suit-
able. This dynamically ordered list is then utilized by Condor to
select a pool to flock to. This is in contrast to the original flocking
scheme where the order and number of pools to flock to are static
and configured manually. The direct matchmaking techniques can
also be extended to support matching of local jobs from one pool
to resources in remote pools. We plan to study these extensions in
our future research.

3.3 A fault-tolerant Condor pool
The existing design of Condor provides fault-tolerance against fail-
ure of resources in a Condor pool, but remains susceptible to the
failure of the central manager. The dependence of the whole pool
on one central manager can be mitigated by utilizing fault-tolerance
of p2p overlay routing. All the resources in a condor pool can be
arranged on a logical ring, with the nodeId of the central manger
known to every resource. This ring is local to a pool and does not
interact with the logical ring for on-demand flocking. The central
manager is the only node that is on both the rings. The central man-
ager periodically informs everyone in the pool of its aliveness. In
addition, replicas of the pool configuration and other management
information of the central manager are maintained on the K imme-
diate neighbors of the central manager in the node identifier space.
In case the central manager fails, the clients detect its absence and
send messages with the central manager’s nodeId as the message
key in the p2p overlay. These messages are guaranteed by the p2p
routing to arrive at one and only one of the K neighbors of the failed
manager, which then takes on the role of the central manager. As a
result, the client machines can continue to submit jobs and human
intervention is not required, except for correcting the problems with
the failed central manager.

3.4 Security
Sharing resources pose security challenges which if not addressed
can lead to the compromise of the shared resources. Condor em-
ploys authentication of users as well as resources and provides for
security policy specification [5]. In a single pool, Condor can be set
up to run jobs only from the users who have standard accounts on
the resources. Anonymous users and users from remote pools can
be executed as user nobody, hence curtailing the capabilities of
malicious users. In case of self-organized flocking, the jobs from
remote pools can also be sandboxed using either the Java Virtual
Machine [15] or system-call tracing as proposed in [14, 2], giving
a resource fine-grained control over the actions of the job. To pro-
tect against a malicious remote condor pool, the proposed approach
uses a policy file, which controls a pool’s interactions. For exam-
ple, interactions can be limited to with only those remote pools that
have been pre-approved by the pool manager. An authentication
layer can also be added on top of this to ensure that a malicious
remote pool does not pose as a pre-approved pool. The additional
security features of systems such as Globus [9, 10, 8, 1] can also be
leveraged in the proposed design to ensure more secure operations.
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the remote poolD (shown on the right).

4. IMPLEMENTATION
We implemented the proposed scheme by adding a software layer
on top of Condor. The software is designed using the Pastry API [26]
(available in Java), and utilizes the flexible configuration control of
Condor to dynamically modify the flocking behavior of Condor.

The main software is divided into two components: poolD which
runs only on the central managers to maintain the self-organized
flock and to discover remote Condor pools, and faultD which runs
on all the resources in a Condor pool to provide resilience to central
manager failures.

4.1 poolD
Figure 2 shows the various modules of poolD, and how it interacts
with Condor to control the flocking behavior. It runs on the central
manager of each pool where utilizing of remote Condor resources
is desired. The peer-to-peer Module takes care of the p2p
routing, the proximity aware routing table, and other bookkeeping
tasks related to maintaining up-to-date information about the over-
lay network. The Condor Module provides an interface to the
Condor software running on the node. It uses the Condor querying
and configuration facilities to obtain runtime information about the
local pool, and to dynamically configure its behavior.

The periodic update of the willing list is performed as fol-
lows. For this discussion Condor central managers that have joined
the p2p ring are referred to as nodes. The node on which the will-
ing list is being constructed is called the local node L, and the
nodes which provide information are called the remote nodes.

The Information Gatherer handles the resource availabil-
ity announcements to inform nearby nodes, and also updates the
local willing list on receiving such announcements. Con-
sider a remote node R. Whenever resources become available on

R, an announcement is created as follows. The Information
Gatherer on R contacts its Condor Module to obtain the sta-
tus of the pool. Next, the Information Gatherer consults
its Policy Manager – a module for implementing pool sharing
preferences – to determine what resources can be shared with re-
mote pools. The Policy Manager utilizes a policy file for this
purpose. The policy file itself is a list of machines from which jobs
are either permitted or denied. This can be captured by either using
explicit machine/domain names, and/or use of wild cards. After
policy verification, the next step is the selection of a TTL and a
suitable expiration interval for the availability announcement. Fi-
nally, the Information Gatherer sends the pool status infor-
mation along with other bookkeeping information to all the nodes
in the Pastry routing table.

This information is received at L, and passed to its Informa-
tion Gatherer which first consults the local Policy Man-
ager. The use of the Policy Manager, on both L and R, en-
sures that individual pools have control over the resources on which
their jobs are run and vice versa, without affecting all the pools
on the ring. If the Policy Manager on L permits information
exchange with R, the Information Gatherer on L updates
L’s willing list. Otherwise, there is no update to L’s will-
ing list. In either case, the announcement is forwarded in ac-
cordance with the TTL. The willing list is sorted with respect
to proximity. This is done by pinging the nodes on the list and de-
termining their distances from L.

Independent of the update process, the Flocking Manager on
L periodically queries the local Condor Module to determine if
the load on the pool is exceeding the available resources, hence
requiring flocking in order to increase throughput. If flocking is re-
quired, the Flocking Manager examines the willing list
and creates a sorted list of Condor pools with resources that can be
leveraged. In creating this list, the number of free resources avail-
able on them as well as the proximity information are taken into
consideration. The Flocking Manager then uses the Condor
Module to inform the local Condor central manager of the ma-
chines with whom to flock. Similarly, if flocking is enabled, and
the Flocking Manager determines that local pool is underuti-
lized, it disables flocking. In this way, the various modules interact
to maintain a self-organized flock of Condor pools.

4.2 faultD
Figure 3 depicts the architecture of faultD. It runs on each resource
that is part of a Condor pool, and ensures that the central manager
or one of its replicas is always reachable. faultD creates another
p2p ring comprising of all the resources in the pool. It has dual
roles: on the submit and/or compute machines it acts as a passive
Listener, whereas on the central manager it acts as an active Man-
ager. Figure 4 shows the protocol followed for switching between
the two roles. Whether a faultD is running on the original central
manager is determined from a command line configuration param-
eter. For the original central manager it is specified as true, and
for every other resource it is either specified as false or not spec-
ified. The same software starts on all the resources and the central
manager as a Listener. The respective roles on various resources
are then adopted according to the protocol.

The Communication Module is responsible for all the com-
munication between the nodes. It utilizes the Pastry API [26] to
route messages between the nodes.
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As a Manager, faultD uses the Replication Module to main-
tain replicas of necessary files on its immediate neighbors in the
node identifier space. The Replication Module periodically
pushes the up-to-date information to the neighboring nodes to en-
sure that a backup node with the necessary information is available
in case of failure of the central manager. Another task of faultD
is to periodically broadcast an alive message to all the resources
in the pool. The message also contains some bookkeeping infor-
mation that the resources can use to detect a failure at the central
manager. When the original central manager is brought online in
the presence of an active replacement central manager, the orig-
inal manager sends a preempt replacement message to the
replacement manager. On receiving this message, the replacement
manager transfers the up-to-date pool configuration to the original
manager, forfeits its role as the central manager, and becomes a
Listener.

As a Listener, faultD passively listens to the alivemessages from
the central manager. Each message is processed to determine whether
it is coming from the known central manager or not. In case it does,
no further action is required. However, if the message is from a
new node, the Condor Module is used to update the local Con-
dor to use the new node as the central manager. If the messages
stop, the node sends a manager missing message to the pre-
viously known nodeId of the central manager. The p2p routing
guarantees that this message will be delivered to either the central
manager (if it is alive) or one of its immediate neighbors whose
nodeId is closest to the central manager’s nodeId in the node
identifier space (if the central manager is no longer available). The
detecting node then goes back to the listening state.



If a Manager receives a manager missingmessage, suggesting
its alive message to a specific node was lost, it simply ignores
this message and continues to send the alivemessages. The node
that could not receive the message previously will receive this mes-
sage and will continue to operate normally as described above.

If a Listener receives a manager missing message, it implies
that the central manager has failed, and that the receiving node is
the nearest node to the failed manager. Consequently, the receiving
node is the replacement manager. In this event, faultD takes on the
role of the Manager. It already has the replicated pool configura-
tions, and can assume the role of central manager right away.

5. EVALUATION
We have extended Condor Version 6.4.7 with the self-organization
capability described in this paper. In the following, we report both
the experimental results of our extended Condor system as well as
the results from simulating a large number of Condor pools over
the Internet.

5.1 Measured performance results
The purpose of the measurements is to determine:

• The effect of flocking on job throughput compared to without
flocking.

• The job throughput achieved by flocking among several pools
compared to an integrated pool containing the same number
of compute machines as in the distributed pools. The perfor-
mance of the integrated pool gives an upper bound on the job
throughput of a fixed set of machines.

5.1.1 Methodology
In order to make these measurements, four condor pools were used
with three machines each available for computations. The config-
urations are shown in Figure 5. To observe the effect of various
configurations on the scheduling of jobs and the resulting through-
put, we first created a synthetic job that would consume resources
for any specified amount of time. We then created a sequence of
100 submissions of the synthetic job, each with a random duration
between 1 to 17 minutes, issued with a random interval between 1
to 17 minutes, with an average of 9 minutes. We created 12 such
job sequences, enough to keep 12 machines busy all the time. For
the case of a four separate Candor pools, the 12 job sequences are
merged into four different job queues, one for each pool. A job
queue with n job sequences merged together implies that it on av-
erage has n job requests issued simultaneously. The number of
sequences in the drive queues were 2, 2, 3, 5 for pool A, B, C, and
D, respectively. For the case of a single integrated pool, we merged
all 12 sequences into a single queue.

In order to use the generated job queues, we implemented a job
driver which takes as input the job queues, and submits the speci-
fied length synthetic jobs to the respective Condor pools at speci-
fied times. The pools were set up so that jobs would never run on
the central managers, and would always run on the compute ma-
chines. The compute machines were dedicated to these jobs, hence,
effects of checkpointing because of an owner returning to the desk-
top were avoided. The TTL parameter and the expiration inter-
val in availability announcement messages were set to one and 1
minute, respectively. The interval at which the Flocking Man-
ager queries the local Condor Module in poolD was also set
to 1 minute.

on−demand
flocking

A

BC

D

A B DC

Configuration 2

Configuration 1

Configuration 3

Figure 5: The various configurations of Condor pools used for
making performance measurements. Each ring represents a
p2p overlay network of nodes. The grayed nodes are the central
managers and the white nodes are the compute-machines.

5.1.2 Results
Table 1 shows the wait times of jobs in the queue for the configu-
rations in Figure 5. In Configuration 1, we fed the queues to indi-
vidual pools without flocking. The number of sequences in the job
queues varied from 2 to 5, whereas the number of computing ma-
chines in each pool was fixed at 3. It was observed that jobs have
to wait in queue for as long as 279.48 minutes on average in pool
D, during which time machines in pool A were idle. Also note that
at least one job in pool D was in queue for a huge 554.82 minutes.

Next, we determine how the wait times of jobs will change if all
the machines were available in a single pool. For this purpose, we
merged the machines into a single pool with 12 compute machines
(Configuration 2), and loaded the pool with a queue with all 12 se-
quences. In this configuration, the average amount of time the jobs
had to wait in the Condor wait queue before being scheduled was
only 13.02 minutes. This shows the efficiency of a combined large
pool in scheduling jobs. However, merging the machines across ad-
ministrative domains is not a desirable approach to improving the
throughput, since such merging requires administrative privileges
across organizational boundaries [7].

Next, we measured how on-demand flocking can utilize the multi-



No. of sequences Without flocking (Conf. 1) With flocking (Conf. 3)Pool
in job queue mean min max stdev mean min max stdev

A 2 1.01 0.03 14.12 2.32 15.87 0.03 73.12 18.59
B 2 1.86 0.03 18.12 3.19 16.95 0.03 55.70 16.99
C 3 19.18 0.03 63.08 15.86 16.55 0.03 57.78 16.41
D 5 279.48 0.05 554.82 180.15 14.20 0.03 58.92 14.58

Overall 12 121.72 0.03 554.82 177.23 15.52 0.03 73.12 16.19

No. of sequences
in job queue

mean min max stdev

Single Pool (Conf. 2) 12 13.02 0.02 34.70 10.57
Conf. 3 (all load at A) 12 13.06 0.03 34.90 10.63

Table 1: Wait times for jobs in queue. All numbers are in minutes. One job sequence contains 100 jobs of random length of 1 to 17
minutes, issued at random intervals between 1 and 17 minutes.

pool resources with Configuration 3. Here we used the same indi-
vidual pools of Configuration 1, but ran the p2p flocking software
on each central manager to facilitate self-organized flocking. The
pools were driven with respective job traces as in Configuration 1.
It was observed that compared to 279.48 minutes in Configuration
1, the average wait time for pool D was reduced to 14.20 minutes.
In addition, the maximum wait time with flocking is reduced to
10.62% of that without flocking. Pool C has similar performance
to that in Configuration 1. The reason for this is that pool C has 3
machines and is driven by a job queue with average issue of 3 jobs
at a time. Therefore, pool C does not provide its resources to other
pools. The small improvement in average job wait time of pool C is
due to the fact that at peak loads, it was able to utilize the machines
in other pools. The effect on pool A and pool B is an increase in
average queue wait times. This is because pool A and pool B are
now sharing resources with heavily loaded pools, such as pool D.
At times, Pool A would be idle and jobs from pool D would start
running on it. Then if a job is issued at pool A, it may have to
wait for the job from pool D to either finish or be suspended and
moved. In these experiments, pool A would wait for remote jobs to
finish. This is a matter of policy, and the local pool can set up its
own preferences. Note, however, that compared to Configuration
1, the overall mean time is reduced by 106.2 minutes, whereas in
pools A and B, it is increased by only 14.86 and 15.09 minutes,
respectively.

To determine how flocking affects the wait times of jobs when com-
pared to the single integrated pool, we loaded Configuration 3 at
one of the pools (A) with the same job queue with 12 sequences as
used to load the single pool of Configuration 2. The results show
that the wait times in the two scenarios are almost the same. The
few seconds difference is due to the fact that in case of flocking,
the various Condor managers have to negotiate the available job
resources, whereas in single pool, one manager can make the deci-
sion.

We further measure the impact of concurrent job loading at multi-
ple pools versus job loading at a single pool on job wait times with
flocking (Configuration 3). Table 1 shows that the difference is in-
significant. The 2.46 minute difference in the mean times can be
explained by the observation that when individual pools are loaded,
preference is given to local jobs. Moreover, in individually loaded
pools, four jobs may be processed simultaneously (one each by
each Condor manager) compared to just a single job processed by
the single Condor manager. This potentially lengthens the negotia-

tion process.

In summary, these results show that without requiring resource merg-
ing, the self-organizing flocking mechanisms presented in this pa-
per can not only achieve a significant improvement in job through-
put over without flocking, they can also achieve a comparable per-
formance to that of a single integrated pool, which is not practical
because of issues involved with crossing multiple administrative
domains.

5.2 Simulation results
This section presents results of simulating a large number of dis-
tributed Condor pools that implement the proposed p2p-based flock-
ing scheme.

5.2.1 Methodology
For the purpose of these simulations, a router network was gen-
erated by GT-ITM using the transit-stub model [30]. The size of
the IP network is 1050 routers, 50 of which are used in transit do-
mains and the rest of the 1000 in stub domains. The routing policy
weights generated by the GT-ITM generator are used to calculate
the shortest path between any two nodes. The length of this path
allows us to determine the physical “closeness” of the two nodes.

We assume that there is one Condor pool in each stub domain, giv-
ing us a total of 1000 pools. The Condor central manager in each
pool is attached to the domain router by a LAN connection. The
sizes of simulated Condor pools are uniformly distributed between
25 and 225 machines. Following the proposed flocking scheme,
the 1000 central managers from these simulated pools form a p2p
overlay network using Pastry.

As in the case of actual measurements, a synthetic job trace is cre-
ated to drive the simulations. As before, a single request sequence
consists of 100 jobs, issued at random intervals. The delay between
any two consecutive job requests follows a uniform distribution be-
tween 1 and 17, giving an average delay of 9 time units. The length
of each job follows the same uniform distribution between 1 and
17 time units. At each Condor pool, one job queue is created to
drive the simulations by merging a random number of such single
sequences. The number of single sequences follows a uniform dis-
tribution between 25 and 225.

A Condor manager attempts to schedule a job request to the ma-
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Figure 6: Cumulative distribution of locality for scheduled jobs
when flocking is enabled. The x-axis stands for the ratio be-
tween the network distance from the job submission pool to
the actual execution pool and the diameter of the underlying
IP network. Locality zero means that the jobs are scheduled
inside local Condor pools.

chines in the local pool and invokes the flocking mechanism only
if all the local machines are busy. Job requests are queued if they
cannot be scheduled immediately and each queue is maintained as
a FIFO. The simulations are considered complete when all the job
requests have been successfully scheduled and the queue at every
central manager is emptied. As in the prototype measurements, the
TTL parameter and the expiration interval in availability announce-
ment messages were set to one and 1 time unit, respectively, and
the interval at which the Flocking Manager queries the local
Condor Module in poolD was also set to 1 time unit.

5.2.2 Results
Three sets of simulation results are presented. First, we measured
the effectiveness of locality-aware p2p routing in discovering nearby
resources to execute jobs. Figure 6 shows the cumulative distribu-
tion of the locality for the jobs scheduled by self-organized flock-
ing. The distance measured by the network routing delay between
the pool where the job is submitted and the pool where the job is
scheduled to execute, represents the locality of a scheduling. This
distance is further normalized by the diameter of the underlying IP
network (from the GT-ITM generator). The simulations show that
more than 70% jobs are scheduled inside local Condor pools and
the rest of the jobs are flocked to pools that are close in terms of
network proximity. For instance, over 80% jobs are scheduled to
pools that are within 20% of the network diameter, over 95% are
scheduled to pools that are within 35% of the network diameter,
and no jobs travel more than a distance of 70% of the diameter of
the underlying network.

In the second set of results, we measured the effects of flocking on
the total completion time for all the jobs. We measured the total
time units used to complete executing all the jobs. Figure 7 shows
the total time that it takes to complete all the jobs without flock-
ing, observed at each Condor pool. Similarly, Figure 8 shows the
total completion time when self-organizing flocking is enabled. As
the figures show, flocking can evenly distribute workloads among
all the available resources, hence executing jobs at each Condor
pool takes about the same amount of time and all the job queues
are emptied almost simultaneously. On the other hand, in the ab-
sence of flocking, the time required to complete executing jobs at
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Figure 7: Total completion time at each Condor pool without
flocking.
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Figure 8: Total completion time at each Condor pool when
flocking is enabled.

individual Condor pools may vary significantly, and some Condor
pools need much more time than others.

In the third set of results, we determine the effects of flocking on
the average wait time of a job in the request queue. The wait time
in the job queue is the duration between the time unit that a job
is submitted and the time unit that the job is dispatched from the
queue. Here we measured the average wait time for jobs in all
1000 queues. Figure 9 shows the total time in queue without flock-
ing, and Figure 10 shows the same when self-organized flocking is
utilized. The simulation shows that flocking can reduce the aver-
age wait time of a job request in the job queue. Without flocking,
jobs in heavily loaded pools have to wait in the queue for a long
period, while at the same time machines are idle in lightly loaded
pools. This wait time is as high as 3500 time units. When flocking
is employed, the maximum wait time remains under 500 time units.

6. RELATED WORK
The related work can be divided into two categories: p2p routing
facilities, and resource discovery across multiple administrative do-
mains.

Work on p2p mechanisms was initially driven by file sharing pro-
grams such as Napster [22], Gnutella [12] and Kazaa [28]. The
simple routing protocols of these first generation p2p systems were
extended to provide for efficient, scalable and robust routing mech-
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Figure 9: Average wait time in the job queue at each Condor
pool without flocking.
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Figure 10: Average wait time in the job queue at each Condor
pool when flocking is enabled.

anisms by imposing some form of structure on the overlay net-
work. Examples of structured p2p systems include Pastry [26],
CAN [25], Tapestry [32], and Chord [29]. These approaches have
many applications ranging from distributed storage facilities [27],
scalable group communication systems [4], decentralized p2p web
caching [17], as well as enhancing the scalability of multi-hop rout-
ing protocols for mobile ad-hoc networks [16]. The focus of this
work is to utilize structured p2p systems for resource discovery.

In the area of resource discovery, the approaches adopted in the
Grid [11] can be used for sharing resources across administrative
domains. Systems such as Globus [9] and PUNCH [18] use a hier-
archical system to discover resources, and are centralized in nature.
The goal of this work is to develop a simple, robust, and decentral-
ized technique for sharing resources using the p2p technology. It
can be extended into the Grid platforms for scalable, distributed
resource discovery.

7. CONCLUSION
We have presented a locality-aware p2p approach to remote Con-
dor pool discovery, which yields a self-organizing flock of Condor
pools. The static flocking mechanisms that are available in Con-
dor provides a means for sharing resources across pools, but are
not suitable in a dynamic and large-scale scenario where different
pools have different sharing and utilization preferences. The p2p
technology provides a suitable substrate for resource discovery, as

it is well suited to a dynamic environment. Moreover, p2p mech-
anisms are scalable, robust, and fault-tolerant. The locality-aware
routing used in the proposed scheme has an added advantage that
resources nearby in the physical network are utilized. This trans-
lates to saved bandwidth by avoiding data transfer to far away lo-
cations, and thus yields a higher job throughput. Measurements of
the approach using four Condors pools with a total of 12 comput-
ing machines, driven by a synthetic job trace shows that for heavily
loaded pools, the self-organizing flocking can reduce the maximum
job wait time in the queue by a factor of 10 compared to without
flocking. In the future work, we plan to conduct measurements
utilizing real job traces, and we anticipate similar results. Simula-
tions using 1000 Condor pools show that locality-aware routing in-
deed provides bandwidth savings and improve the overall through-
put. These results show that p2p technology offers a promising ap-
proach to dynamic resource discovery essential to high throughput
computing.
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