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The need for sharing compute-cycles
• Scientific applications 

– Complex, large data sets

• Specialized hardware
– Expensive

• Modern workstation
– Powerful resource
– Available in large numbers
– Underutilized

Harness idle-cycles of network of workstations
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Condor: High throughput computing 

• Cost-effective idle-cycle sharing

• Job management facilities
– Scheduling, checkpointing, migration

• Resource management
– Policy specification/enforcement   

• Solves real problems world-wide 
– 1200+ machines Condor pools, 100+ researchers 

@Purdue



4

flocking

Sharing across pools: Flocking

Pre-configured
resource sharing

Central manager
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Flocking

• Static flocking requires
– Pre-configuration
– Apriori knowledge of all remote pools

• Does not support dynamic resources  



6

Our contribution:
Peer-to-peer based dynamic flocking

• Automated remote Condor pool discovery

• Dynamic resource management
– Support dynamic membership
– Support changing local policies
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Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions
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Overlay Networks

P2P networks are self-organizing overlay 
networks without central control
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Advantages of structured p2p networks

• Scalable
• Self-organization
• Fault-tolerant
• Locality-aware
• Simple to deploy

• Many implementations available
– E.g. Pastry, Tapestry, Chord, CAN…
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Pastry: locality-aware p2p substrate

• 128-bit circular identifier space
– Unique random nodeIds
– Message keys

• Routing: A message  is routed 
reliably to a node with nodeId
numerically closest to the key

• Routing in overlay < 2 * routing in IP

Identifier
space
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Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions
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Step 1:
P2p organization of Condor pools

• Participating central managers join an overlay
– Just need to know a single remote pool

• P2p provides self-organization
– Pools can reach each other through the overlay
– Pools can join/leave at anytime



13Central managers Resources

P2p organized central managers
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Step 2:
Disseminating resource information

• Announcements to nearby pools
– Contain pool status information
– Leverage locality-aware routing table

• Routing table has O(log N) entries matching 
increasingly long prefix of local nodeId

– Soft state
• Periodically refreshed
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Resource announcements

are physically close to 



16

Step 3:
Enable dynamic flocking

• Central managers flock with nearby pools
– Use knowledge gained from resource announcements
– Implement local policies
– Support dynamic reconfiguration



17Central managers Resources

Interactions between central managers

Locality-aware
flocking
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Matchmaking

• Orthogonal to flocking
• Condor matchmaking within a pool

• P2p approach affects the flocking 
decisions only
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Are we discovering enough pools?

• Only subset of nearby 
pools reached using the 
Pastry routing table

• Multi-hop TTL based 
announcement forwarding
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Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions
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Software

• Implemented as a daemon: poolD
– Leverages FreePastry 1.3 from Rice 
– Runs on central managers
– Manages self-organized Condor pools

• Condor version 6.4.7

• Interfaced to Condor configuration control
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Software architecture
p2p

network
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Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions
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Evaluation

• Measured results
– Effect of flocking on job throughput

• Time spent in queue

– Four pools, three compute machines each
– Synthetic job trace
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Job trace

• Sequence
– 100 (issue time: T, job length: L) pairs
– Interval (Tn–Tn-1), L uniform distribution [1,17]
– Designed to keep a single machine busy
– Random overload/idle periods

• Trace
– One or more job sequences merged together
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PlanetLab experimental setup
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Time spent in queue
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Simulations

• 1000 Condor pools

• GT-ITM transit-stub model
– 50 transit domains
– 1000 stub domains

• Size of pool: uniform distribution [25,225]

• Number of sequences in trace:
uniform distribution [25,225]
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Cumulative distribution of locality
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Total job completion time:
without flocking
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Total job completion time:
with flocking
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Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions



33

Conclusions
• Design and implementation of a self-

organizing flock of Condors
– Scalability
– Fault-tolerance
– Locality-awareness which yields flocking with 

nearby resources
– Local sharing policy enforced

• P2p mechanisms provide an effective substrate 
for discovery and management of dynamic 
resources over the wide-area network
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Questions?



35

What about security?
• Authenticated pools / users

– Enforced by policy manager
– Accountability

• Restricted access
– Limited privileges e.g. UNIX user nobody
– Condor libraries 

• Controlled execution environment
– Sandboxing 
– Process cleanups on job completion

• Intrusion detection


