A Self-Organizing Flock of Condors

All Raza Butt
Rongmel Zhang

Y. Charlie Hu
{butta,rongmel,ychu}@purdue.edu

PURDUE

UNIVERSITY

The need for sharing compute-cycles

 Scientific applications
— Complex, large data sets

» Specialized hardware
— EXxpensive

e Modern workstation

— Powerful resource
— Available in large numbers
— Underutilized

=» Harness idle-cycles of network of workstations
PURDUE 2

Condor: High throughput computing

» Cost-effective idle-cycle sharing

 Job management facilities
— Scheduling, checkpointing, migration

e Resource management
— Policy specification/enforcement

 Solves real problems world-wide

— 1200+ machines Condor pools, 100+ researchers
@Purdue

PURDUE

Sharing across pools: Flocking

() Central manager

PURDUE

Flocking

o Static flocking requires

— Pre-configuration

— Apriori knowledge of all remote pools
* Does not support dynamic resources

PURDUE

Our contribution:
Peer-to-peer based dynamic flocking

o Automated remote Condor pool discovery

* Dynamic resource management
— Support dynamic membership
— Support changing local policies

PURDUE

Agenda

Background: peer-to-peer networks
Proposed scheme

Implementation

Evaluation

Conclusions

PURDUE

Overlay Networks

P2P networks are self-organizing overlay
PURDUE networks without central control

Advantages of structured p2p networks

e Scalable
 Self-organization
 Fault-tolerant
 Locality-aware

o Simple to deploy

 Many implementations available
— E.g. Pastry, Tapestry, Chord, CAN...

PURDUE

Pastry: locality-aware p2p substrate

 128-bit circular identifier space
— Unique random node I ds
— Message keys

Identifier

* Routing: A message Is routed space

reliably to a node with nodeld
numerically closest to the key

e Routing in overlay <2 * routing in IP

PURDUE

Agenda

Background: peer-to-peer networks

PURDUE

Step 1.
P2p organization of Condor pools

 Participating central managers join an overlay
— Just need to know a single remote pool

e P2p provides self-organization

— Pools can reach each other through the overlay
— Pools can join/leave at anytime

PURDUE

P2p organized central managers

PURDUE (O)) Central managers @ Resources

Step 2.
Disseminating resource information

e Announcements to nearby pools

— Contain pool status information

— Leverage locality-aware routing table

 Routing table has O(log N) entries matching
Increasingly long prefix of local nodeld

— Soft state
 Periodically refreshed

PURDUE

Resource announcements

@ 2are physically close to ()

PURDUE

Step 3.
Enable dynamic flocking

 Central managers flock with nearby pools

— Use knowledge gained from resource announcements
— Implement local policies
— Support dynamic reconfiguration

PURDUE

Interactions between central managers

PURDUE (O) O @ Central managers @ Resources

Matchmaking

 Orthogonal to flocking
e Condor matchmaking within a pool

» P2p approach affects the flocking
decisions only

PURDUE

Are we discovering enough pools?

e Only subset of nearby
pools reached using the
Pastry routing table

e Multi-hop TTL based
announcement forwarding

PURDUE

Proposed scheme

PURDUE

Software

* Implemented as a daemon: poolD
— Leverages FreePastry 1.3 from Rice
— Runs on central managers
— Manages self-organized Condor pools

e Condor version 6.4.7

e |Interfaced to Condor configuration control

PURDUE 21

Software architecture

/ p2p module \

Announcement Flocking
Manager Manager

N\ |/

Policy Manager

p2p extension

Condor module

N

Query services Configuration

PURDUE

UNIVERSITY

Implementation

PURDUE

Evaluation

e Measured results

— Effect of flocking on job throughput
e Time spent in queue

— Four pools, three compute machines each
— Synthetic job trace

PURDUE

Job trace

e Sequence
— 100 (issue time: T, job length: L) pairs
— Interval (T —T,_,), L uniform distribution [1,17]
— Designed to keep a single machine busy
— Random overload/idle periods

e Trace
— One or more job sequences merged together

PURDUE

PlanetLab experimental setup

@ Interxion, Germany © Columbia
U.C. Berkeley ® Rice

Time spent In queue

No.of Without flocking

sequences In
traceh mean | min| max

2 1.76 [0.03| 14.32
2 3.30 [0.08| 19.85
3 46.58 |0.03| 97.17
D 5 284.91 10.25| 557.55

overall 131.20 | 0.03| 557.55

A
B
C

PURDUE

Simulations

« 1000 Condor pools
e GT-ITM transit-stub model

— 50 transit domains
— 1000 stub domains

 Size of pool: uniform distribution [25,225]

 Number of sequences In trace:
uniform distribution [25,225]

PURDUE 28

Cumulative distribution of locality

—

o
o

o1}

=
2 w
o h

©
o
g
c 07
i
O
=
il
o

o
o))

0.2 0.4 06 0.8

Normalized network distance

PURDUE

Total job completion time:
without flocking

o
@
N
-
QL
£

=

©

s
Q

-

PURDUE

Total job completion time:
with flocking

o
i
W
-
i
£

=

©

ol
Q

-

PURDUE

Evaluation

PURDUE

Conclusions

* Design and implementation of a self-
organizing flock of Condors
— Scalability
— Fault-tolerance

— Locality-awareness which yields flocking with
nearby resources

— Local sharing policy enforced

e P2p mechanisms provide an effective substrate
for discovery and management of dynamic
resources over the wide-area network

PURDUE

Questions?

What about security?

Authenticated pools / users
— Enforced by policy manager
— Accountability

Restricted access
— Limited privileges e.g. UNIX user nobody

— Condor libraries

Controlled execution environment
— Sandboxing
— Process cleanups on job completion

e Intrusion detection

PURDUE

