
A Self-Organizing Flock of Condors

Ali Raza Butt
Rongmei Zhang
Y. Charlie Hu

{butta,rongmei,ychu}@purdue.edu

2

The need for sharing compute-cycles
• Scientific applications

– Complex, large data sets

• Specialized hardware
– Expensive

• Modern workstation
– Powerful resource
– Available in large numbers
– Underutilized

Harness idle-cycles of network of workstations

3

Condor: High throughput computing

• Cost-effective idle-cycle sharing

• Job management facilities
– Scheduling, checkpointing, migration

• Resource management
– Policy specification/enforcement

• Solves real problems world-wide
– 1200+ machines Condor pools, 100+ researchers

@Purdue

4

flocking

Sharing across pools: Flocking

Pre-configured
resource sharing

Central manager

5

Flocking

• Static flocking requires
– Pre-configuration
– Apriori knowledge of all remote pools

• Does not support dynamic resources

6

Our contribution:
Peer-to-peer based dynamic flocking

• Automated remote Condor pool discovery

• Dynamic resource management
– Support dynamic membership
– Support changing local policies

7

Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions

8

Overlay Networks

P2P networks are self-organizing overlay
networks without central control

ISP3

ISP1 ISP2

Site 1

Site 4

Site 3Site 2 N

N N

N

N

N N

9

Advantages of structured p2p networks

• Scalable
• Self-organization
• Fault-tolerant
• Locality-aware
• Simple to deploy

• Many implementations available
– E.g. Pastry, Tapestry, Chord, CAN…

10

Pastry: locality-aware p2p substrate

• 128-bit circular identifier space
– Unique random nodeIds
– Message keys

• Routing: A message is routed
reliably to a node with nodeId
numerically closest to the key

• Routing in overlay < 2 * routing in IP

Identifier
space

11

Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions

12

Step 1:
P2p organization of Condor pools

• Participating central managers join an overlay
– Just need to know a single remote pool

• P2p provides self-organization
– Pools can reach each other through the overlay
– Pools can join/leave at anytime

13Central managers Resources

P2p organized central managers

14

Step 2:
Disseminating resource information

• Announcements to nearby pools
– Contain pool status information
– Leverage locality-aware routing table

• Routing table has O(log N) entries matching
increasingly long prefix of local nodeId

– Soft state
• Periodically refreshed

15

Resource announcements

are physically close to

16

Step 3:
Enable dynamic flocking

• Central managers flock with nearby pools
– Use knowledge gained from resource announcements
– Implement local policies
– Support dynamic reconfiguration

17Central managers Resources

Interactions between central managers

Locality-aware
flocking

18

Matchmaking

• Orthogonal to flocking
• Condor matchmaking within a pool

• P2p approach affects the flocking
decisions only

19

Are we discovering enough pools?

• Only subset of nearby
pools reached using the
Pastry routing table

• Multi-hop TTL based
announcement forwarding

20

Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions

21

Software

• Implemented as a daemon: poolD
– Leverages FreePastry 1.3 from Rice
– Runs on central managers
– Manages self-organized Condor pools

• Condor version 6.4.7

• Interfaced to Condor configuration control

22

Software architecture
p2p

network

Co
nd

or
p2

p
ex

te
ns

io
n

Query services Configuration

p2p module

Announcement
Manager

Condor module

Policy Manager

Flocking
Manager

23

Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions

24

Evaluation

• Measured results
– Effect of flocking on job throughput

• Time spent in queue

– Four pools, three compute machines each
– Synthetic job trace

25

Job trace

• Sequence
– 100 (issue time: T, job length: L) pairs
– Interval (Tn–Tn-1), L uniform distribution [1,17]
– Designed to keep a single machine busy
– Random overload/idle periods

• Trace
– One or more job sequences merged together

26

B

PlanetLab experimental setup

U.C. Berkeley

Dynamic flocking

D
C

A

A

B

C

D

Interxion, Germany
Rice
Columbia

27

Time spent in queue

72.100.0330.30557.550.03131.2012overall
58.380.1028.37557.550.25284.915D
64.480.1038.6897.170.0346.583C
63.700.1332.6819.850.083.302B
72.100.0320.1514.320.031.762A

maxminmeanmaxminmean

With flockingWithout flockingNo.of
sequences in

traceh
Pool

28

Simulations

• 1000 Condor pools

• GT-ITM transit-stub model
– 50 transit domains
– 1000 stub domains

• Size of pool: uniform distribution [25,225]

• Number of sequences in trace:
uniform distribution [25,225]

29

Cumulative distribution of locality

30

Total job completion time:
without flocking

31

Total job completion time:
with flocking

32

Agenda

• Background: peer-to-peer networks
• Proposed scheme
• Implementation
• Evaluation
• Conclusions

33

Conclusions
• Design and implementation of a self-

organizing flock of Condors
– Scalability
– Fault-tolerance
– Locality-awareness which yields flocking with

nearby resources
– Local sharing policy enforced

• P2p mechanisms provide an effective substrate
for discovery and management of dynamic
resources over the wide-area network

34

Questions?

35

What about security?
• Authenticated pools / users

– Enforced by policy manager
– Accountability

• Restricted access
– Limited privileges e.g. UNIX user nobody
– Condor libraries

• Controlled execution environment
– Sandboxing
– Process cleanups on job completion

• Intrusion detection

