
Kosha:
A Peer-to-Peer Enhancement for

the Network File System
Ali R. Butt

Troy A. Johnson
Yili Zheng

Y.Charlie Hu

2

The need for sharing resources

Scientific applications
Complex computations
Large data sets

Dedicated resources
Expensive

Modern workstations
Powerful resource
Available in large numbers
Underutilized (CPU cycle, storage)

3

Disk space survey

500 instructional machines
90% local disk space unused
75%+ space used on central NFS servers
Expensive maintenance

(quotas, regular addition, explicit backups)

4

Network File System (NFS)

Widely-used in academic and corporate setups
Provides remote access to shared files
Supports local file system abstraction

Server explicitly exports directories
Client explicitly mounts directories

5

Our contribution: Kosha
NFS enhancement via peer-to-peer

Aggregates unused disk space on nodes to
provide a single shared file system abstraction

Fault tolerance
Load balancing

Implemented as an NFS enhancement
Preserves NFS semantics
Entails no changes to the OS
More likely to see actual deployment

Achieves acceptable performance by distributing
directories

6

Agenda

Background: DHTs
Proposed scheme
Implementation and evaluation
Conclusions

7

Distributed Hash Table (DHT)

Peer-to-peer overlays with imposed structure
Each node has a unique random nodeId
Each message has a key
The nodeId and key reside in the same name space

DHT: routes a message with a key to a unique
node

DHT abstraction is preserved in the presence of
node failure/departure

8

Pastry

128-bit circular identifier space

DHT: A message is routed to a
node with nodeId numerically
closest to the key

O(log N) routing state per node
Log16N overlay hops

Each node maintains
information about K neighbors

Identifier
space

02128-1

9

Agenda

Background: DHTs
Proposed scheme
Implementation and evaluation
Conclusions

10

Kosha tasks

Distribution of files to nodes

Leveraging NFS

Granularity control of distribution

11

File distribution

A

B

C

D

E
F

How to uniquely map files to nodes in a decentralized manner?

/kosha

a b

x y

12

Mapping files to nodes

Identifier
space

A
/kosha

a b

x y

B

C

D

E

F

DHT
b

/kosha_store

/kosha_store

a

a

y

/kosha_store

a

x

/kosha_store

/kosha/a DHT(hash(a)):/kosha_store/a

13

Node 1

/tmp
/home

/kosha_store

/

Node 2

/kosha

(union)

/tmp
/home

/kosha_store

/

Virtual directory abstraction

14

Fault tolerance

Employ lazy replication
Periodical update using rcp

Data since the last
replication is lost Identifier

space
N

15

Kosha tasks

Distribution of files to nodes

Leveraging NFS

Granularity control of distribution

16

Leveraging NFS

Participating nodes run standard NFS servers

Nodes also run Kosha server

I/O to /kosha sent to the local Kosha server
Leverage loopback server

Kosha maps requests to appropriate remote nodes

17

Loopback server

A modified NFS server that executes on the
same node as the client

Essentially send I/O requests made to /kosha to
the local Kosha server

Conceptually equivalent to:
mount localhost:koshaPort /kosha

Leverages opaque file handles
Unique identifier per handle can be substituted for server-
issued handles

18

Kosha operation

Application/
user

p2p node

loopback
server

NFS proto.
manager

K
er

ne
l-s

pa
ce

U
se

r-
sp

ac
e

R
em

ot
e

nfsd

1 p2p comm.
module

replication
manager

file redir.
manager

sub-dir.
distribution
manager

2

3

4

7

5

910

DHT

6

8

nfsd nfsd

OS NFS Client

19

Kosha tasks

Distribution of files to nodes

Leveraging NFS

Granularity control of distribution

20

Drawbacks of distributing files

Distribution of individual file can be costly
Requires DHT operation on access to each file

Observation: users typically access many files in
the same sub-directory together

21

Solution: Distribute sub-directories

All files in a directory are stored on the same node

/kosha/a/myfile DHT(hash(a)):/kosha_store/a/myfile

/kosha

a b

myfile y

a b

myfile y

22

Load balance

Disk spaces contributed by nodes are not uniform
Sizes of sub-directories vary

Capacity limit can prevent a file to be stored on
the node determined by DHT

Solution: Redirect such files to different nodes

23

Agenda

Background: DHTs
Proposed scheme
Implementation and evaluation
Conclusions

24

Software

Implemented as a daemon: koshaD
Leverages FreePastry 1.3 API
Runs on participating nodes
Manages self-organization of nodes

Leverages Secure File System (SFS) toolkit

Runs on FreeBSD 4.6

25

Evaluation: Setup

Eight nodes
2.0 GHz P4, 512MB RAM
40GB 7200 RPM Barracuda Seagate hard disk
Connected via 100Mb/s Ethernet

26

Distribution level

Number of levels of sub-directories distributed
individually

/kosha

a b

x y

Distribution level: 12 a b

x y

27

Measured results:
Running time for a modified Andrew Benchmark

For 8 nodes, distribution level 1, only 5.6%
overhead added to unmodified NFS
For 8 nodes, distribution level 4, additional
overhead less than 10%
Overhead scales logarithmically with network size
Overhead = I+(H*hc)*(N-1)

N
N number of nodes in the network
I interposition overhead
H number of hops a message travels in the overlay (log(N))
hc average latency of each hop

28

Simulation

File system trace from Purdue ECE servers
221k Files of 130 users
17.9 GB data

Machine availability trace from Microsoft Corp.
51k+ nodes
35 days
Status of machines recorded hourly

29

Load balance

Distribution level 4 or better achieves acceptable load balance

30

88

90

92

94

96

98

100

0 100 200 300 400 500 600 700 800

P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

Number of hours

Hoard 0

95

96

97

98

99

100

0 100 200 300 400 500 600 700 800P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

Number of hours

Hoard 1

95

96

97

98

99

100

0 100 200 300 400 500 600 700 800P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

Number of hours

Hoard 3
99.99% or better
file availability

Available files over time

Fault tolerance

P
er

ce
nt

ag
e

of
 fi

le
s

av
ai

la
bl

e

no replicas

1 replica

3 replicas

31

Conclusions

Kosha blends strengths of NFS and DHTs
Aggregates unused disk space and exports a single shared
file system abstraction
Implemented as an NFS enhancement
Imposes low overhead by distributing directories

Kosha is more likely to see actual use than
schemes that require changing NFS

Questions?

