Kosha:
A Peer-to-Peer Enhancement for
the Network File System

All R. Butt

Troy A. Johnson
Yili Zheng
Y.Charlie Hu

PURDUE

The need for sharing resources

® Scientific applications

O Complex computations
O Large data sets

® Dedicated resources
O Expensive

® Modern workstations
O Powerful resource
O Available in large numbers
O Underutilized (CPU cycle, storage)

Disk space survey

® 500 instructional machines
O 90% local disk space unused
O 75%+ space used on central NFS servers
O Expensive maintenance
(quotas, regular addition, explicit backups)

Network File System (NFS)

® Widely-used in academic and corporate setups
® Provides remote access to shared files
® Supports local file system abstraction

® Server explicitly exports directories
® Client explicitly mounts directories

Our contribution: Kosha
NFS enhancement via peer-to-peer

® Aggregates unused disk space on nodes to

provide a single shared file system abstraction
O Fault tolerance
O Load balancing

® Implemented as an NFS enhancement

O Preserves NFS semantics
O Entails no changes to the OS
O More likely to see actual deployment

® Achieves acceptable performance by distributing
directories

Agenda

® Background: DHTs

® Proposed scheme

® |[mplementation and evaluation
® Conclusions

Distributed Hash Table (DHT)

® Peer-to-peer overlays with imposed structure
O Each node has a unique random nodeld

O Each message has a key
O The nodeld and key reside in the same name space

® DHT: routes a message with a key to a unique
node

® DHT abstraction is preserved in the presence of
node failure/departure

Pastry

® 128-bit circular identifier space

® DHT: A message Is routed to a
node with node ld numerically

closest to the key

O O(log N) routing state per node
O Log,xN overlay hops

® Each node maintains
iInformation about K neighbors

....

ldentifier
space

Agenda

® Background: DHTs

® Proposed scheme

® Implementation and evaluation
® Conclusions

Kosha tasks

® Distribution of files to nodes
® Leveraging NFS

® Granularity control of distribution

10

File distribution

F

How to uniquely map files to nodes in a decentralized manner?

b -
kosha DHT /o T---"
/\ ‘ Sentif ~T TN
a b) ldentifier . \
e Space /lkosha_store?
// | / ‘|
X / \ ' a !
y 1/kosha_store \ K
I \ \ /
1 \\ Vi
\‘ a - y’,/
\ / / ’ N -
. x) ! I[kosha_store
\\ // \ / /,
==-- \ /
\\ a ’/

- -

/kosha/a = DHT(hash(a)):./kosha_store/a

12

Virtual directory abstraction

Node 1 Node 2

/tmp
/home

ftmp
/home

/kosha_store /kosha_store

13

Fault tolerance

® Employ lazy replication
O Periodical update using rcp

® Data since the last
replication is lost

|dentifier

space

14

Kosha tasks

® Distribution of files to nodes
® Leveraging NFS

® Granularity control of distribution

15

Leveraging NFS

® Participating nodes run standard NFS servers
® Nodes also run Kosha server

® |/O to /kosha sent to the local Kosha server
O Leverage loopback server

® Kosha maps requests to appropriate remote nodes

16

Loopback server

® A modified NFS server that executes on the
same node as the client

® Essentially send I/O requests made to /kosha to

the local Kosha server

O Conceptually equivalent to:
mount localhost:koshaPort /kosha

® Leverages opaque file handles

O Unique identifier per handle can be substituted for server-
Issued handles

17

Kosha operation

Application/
user

Kernel-space

Kosha tasks

® Distribution of files to nodes
® Leveraging NFS

® Granularity control of distribution

19

Drawbacks of distributing files

® Distribution of individual file can be costly
O Requires DHT operation on access to each file

® Observation: users typically access many files in
the same sub-directory together

20

Solution: Distribute sub-directories

® All files in a directory are stored on the same node

/kosha/a/myfile = DHT(hash(a)):/kosha_store/a/myfile

/kosha

21

Load balance

® Disk spaces contributed by nodes are not uniform
® Sizes of sub-directories vary

=» Capacity limit can prevent a file to be stored on
the node determined by DHT

® Solution: Redirect such files to different nodes

22

Agenda

® Background: DHTs

® Proposed scheme

® Implementation and evaluation
® Conclusions

23

Software

® Implemented as a daemon: koshaD

O Leverages FreePastry 1.3 API
O Runs on participating nodes
O Manages self-organization of nodes

® Leverages Secure File System (SFS) toolkit

® Runs on FreeBSD 4.6

24

Evaluation: Setup

® Eight nodes
O 2.0 GHz P4, 512MB RAM
O 40GB 7200 RPM Barracuda Seagate hard disk
O Connected via 100Mb/s Ethernet

25

Distribution level

® Number of levels of sub-directories distributed
individually

Distribution level: 2

26

Measured results:
Running time for a modified Andrew Benchmark

® For 8 nodes, distribution level 1, only 5.6%
overhead added to unmodified NFS

® For 8 nodes, distribution level 4, additional
overhead less than 10%

® Overhead scales logarithmically with network size
Overhead = 1+(H*hc)*(N-1)
N

N number of nodes in the network

I interposition overhead

H number of hops a message travels in the overlay (log(N))
hc average latency of each hop

27

Simulation

® File system trace from Purdue ECE servers

O 221k Files of 130 users
O 17.9 GB data

® Machine availabllity trace from Microsoft Corp.
O 51k+ nodes
O 35 days
O Status of machines recorded hourly

28

Load balance

E O 9(}}‘0 T -I- T T T T T T T T
€8 8% | T i
= T T T - - < -
S 7% | .
e B e S e e S
QO =
So 5% I 1 i i
o @
C = 4% L 1 + A
TS | Number of files —e—
= 3% 1 1 1 1 | L I I I

1 2 3 4 5 6 T 8 9 10

distribution level
o
EJ_\l% Q#‘fﬂ -I- -I- -I- T T T T T T T
w o 8% | T - T _]
Q@ =
85 7% | i
E S 6% Y T t i b q L o 2 ®
= =
8o 5% ! ! | i
O L

3T eI Size of fil i
E©° 304 1 1 1 1 1 1 I T = IZE}ID Lot .l_a_| .I

1 2 3 4 5 6 7 8] 10
distribution level

Distribution level 4 or better achieves acceptable load balance

29

Fault tolerance

® 99.99% or better
file availability

Percentage of files available

Avallable files over time

Conclusions

® Kosha blends strengths of NFS and DHTs

O Aggregates unused disk space and exports a single shared
file system abstraction

O Implemented as an NFS enhancement
O Imposes low overhead by distributing directories

® Kosha is more likely to see actual use than
schemes that require changing NFS

31

Questions?

