
High Performance In-memory Caching through Flexible

Fine-grained Services

Yue Cheng†, Aayush Gupta‡, Anna Povzner‡, Ali R. Butt†

†Virginia Tech, ‡IBM Almaden Research Center

{yuec,butta}@cs.vt.edu, {guptaaa, apovzne}@us.ibm.com

1 Introduction and Motivation

In-memory object caches are extensively used in to-

day’s web installations [1, 6]. Most existing systems

adopt monolithic storage models and engineer optimiza-

tions on specific workload characteristics [3, 6] or opera-

tions [4, 5]. Such optimizations are insufficient as large-

scale cloud workloads typically exhibit both temporal

and spatial shifts - requirements vary within the same

deployment over time and different parts of the same

workload demonstrate different access patterns. To this

end, we propose a caching tier that supports differenti-

ated services in multiple dimensions. Since there is no

best “one-size-fits-all” solution for all workload require-

ments, we argue that a fine-grained modular design will

provide both high performance and flexibility in sup-

porting multiple services.

2 Design Overview

There are two possible ways of providing multiple ser-

vices from a caching tier - multi-instance approach (dif-

ferent instances provide different services) and fine-

grained control within a single instance (each instance

provides a variety of services). The former approach,

while simpler to implement, can result in inefficient uti-

lization of resources, e.g., duplication of data across in-

stances, and can be slow to adapt to workload shifts. The

latter method, which we propose, makes effective uti-

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.

ACM 978-1-4503-2428-1. http://dx.doi.org/10.1145/2523616.2525964

lization of available resources, provides great flexibility

and near-seamless resource re-allocation and load bal-

ancing support. Our system enables multiple services by

instantiating different data layouts within a single cache

instance. We abstract the basic management unit termed

cachelet. A cachelet is an independent entity for man-

aging the data objects and the metadata. Each cachelet

acts like a resource container encapsulating a fixed data

layout, e.g., hash table, sorted list, etc., and exposes con-

figurable interfaces (get, set, scan) to the applica-

tions. Cloud service users [1] can benefit from parti-

tioning their applications into cachelets and specifying

different data layouts and performance requirements for

each cachelet, thus meeting the application demands.

3 Case Studies

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 500 1000 1500 2000 2500 3000
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

C
lie

n
t
th

ro
u
g
h
p
u
t
(o

p
s
/s

e
c
)

C
a
c
h
e
 h

it
 r

a
ti
o
 (

%
)

Time (sec)

Throughput Overall hit ratio

Figure 1: YCSB benchmarking with 10 GB data and

caching tier enabled. Systems start up with 4 cache nodes.

At sec 340 and 1240, 4 new cache nodes are added in re-

spectively. While warming up, overall throughput reduces

up to 41% and performance recovery takes up to 10 min.

The scale-out nature of distributed caches like Mem-

cached [2] can cause intermittent performance degrada-

tion while the newly added nodes warm-up, as shown

in Fig. 1. Our system can enable selective migra-

tion of cachelets, e.g., migrate cachelets which have

low load/lower priority and use the resources of these

cachelets to serve the changed workloads, thus provid-

ing a near-seamless transition.

References

[1] Amazon web service elasticache. http://aws.

amazon.com/elasticache/. accessed on

Aug. 23, 2013.

[2] Memcached. http://memcached.org/. ac-

cessed on Sept. 15, 2013.

[3] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,

P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-

rni, H. Li, et al. Tao: Facebook’s distributed data

store for the social graph. InUSENIX ATC’13, 2013.

[4] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3:

Compact and concurrent memcache with dumber

caching and smarter hashing. In USENIX NSDI’13,

2013.

[5] Y. Mao, E. Kohler, and R. T. Morris. Cache crafti-

ness for fast multicore key-value storage. In ACM

EuroSys’12, 2012.

[6] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, et al. Scaling memcache at facebook. In

USENIX NSDI’13, 2013.

