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1 Introduction and Motivation

In-memory object caches are extensively used in to-

day’s web installations [1, 6]. Most existing systems

adopt monolithic storage models and engineer optimiza-

tions on specific workload characteristics [3, 6] or opera-

tions [4, 5]. Such optimizations are insufficient as large-

scale cloud workloads typically exhibit both temporal

and spatial shifts - requirements vary within the same

deployment over time and different parts of the same

workload demonstrate different access patterns. To this

end, we propose a caching tier that supports differenti-

ated services in multiple dimensions. Since there is no

best “one-size-fits-all” solution for all workload require-

ments, we argue that a fine-grained modular design will

provide both high performance and flexibility in sup-

porting multiple services.

2 Design Overview

There are two possible ways of providing multiple ser-

vices from a caching tier - multi-instance approach (dif-

ferent instances provide different services) and fine-

grained control within a single instance (each instance

provides a variety of services). The former approach,

while simpler to implement, can result in inefficient uti-

lization of resources, e.g., duplication of data across in-

stances, and can be slow to adapt to workload shifts. The

latter method, which we propose, makes effective uti-
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lization of available resources, provides great flexibility

and near-seamless resource re-allocation and load bal-

ancing support. Our system enables multiple services by

instantiating different data layouts within a single cache

instance. We abstract the basic management unit termed

cachelet. A cachelet is an independent entity for man-

aging the data objects and the metadata. Each cachelet

acts like a resource container encapsulating a fixed data

layout, e.g., hash table, sorted list, etc., and exposes con-

figurable interfaces (get, set, scan) to the applica-

tions. Cloud service users [1] can benefit from parti-

tioning their applications into cachelets and specifying

different data layouts and performance requirements for

each cachelet, thus meeting the application demands.

3 Case Studies
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Figure 1: YCSB benchmarking with 10 GB data and

caching tier enabled. Systems start up with 4 cache nodes.

At sec 340 and 1240, 4 new cache nodes are added in re-

spectively. While warming up, overall throughput reduces

up to 41% and performance recovery takes up to 10 min.

The scale-out nature of distributed caches like Mem-

cached [2] can cause intermittent performance degrada-

tion while the newly added nodes warm-up, as shown

in Fig. 1. Our system can enable selective migra-

tion of cachelets, e.g., migrate cachelets which have

low load/lower priority and use the resources of these

cachelets to serve the changed workloads, thus provid-

ing a near-seamless transition.
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