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Abstract—Performance variability in advanced computing sys-
tems, such as those supporting the cloud computing paradigm,
is growing intractably and leads to inefficiency and resource
wastage. A key requirement in large-scale virtualized infras-
tructure, e.g., Amazon EC2, Microsoft Azure, etc., is to provide
a guaranteed quality of service to cloud tenants, especially in
today’s multi-tenant cloud environments. This generally involves
using past information and prediction of the probability dis-
tribution of requests to match resources that meet service-level
agreements. The variability in systems performance hinders the
cloud service providers’ ability to effectively guarantee SLAs,
and thus efficiently meet user demands.

In this paper, we propose innovative methodologies for re-
source management, which leverages the understanding of per-
formance variability in high performance computing systems to
exploit new opportunities for tradeoffs between system stability
and performance in the cloud. This would help cloud providers
better provision and design their infrastructure, as well as ensure
meeting provider-tenant SLAs. Moreover, the approach also leads
to improved cloud service costs, as tighter bounds on variability
could be codified in cost structures bundled in operations or
directly offered to cloud tenants.

I. INTRODUCTION

The cloud computing model has emerged as the de facto

paradigm for efficiently providing infrastructure, platform, and

application services. Performance variability in cloud based

systems is growing intractably and leads to inefficiency and

resource wastage. Such variability has also been cited as a

significant barrier to exascale computing [40]. However, the

impact of variability on cloud systems has not been explored

thus far. Unfortunately, variability is both ubiquitous and

elusive as its causes pervade and obscure performance across

the systems stack from hardware to middleware to applications

to large-scale systems.

Cloud computing environments comprise a complex array

of compute, storage, networking, and I/O components. That

coupled with the on-demand nature of cloud services instanti-

ation may result in unpredictable performance when utilizing

cloud-based services. Recent studies [15], [39] have shown

that performance unpredictability acts as one of the major

obstacles for cloud computing. Cloud users expect consistent

performance for their applications at any time, independent

of the current workload of the cloud; this is quite important

for research community as well, as the repeatability of results

is highly desirable. As more and more users build their

customer-facing services using cloud-based backend compo-

nents, the performance consistency requirements are becoming

paramount. Variability in performance does not only affect

cloud tenants but also the cloud service providers. For ex-

ample, to meet a certain Service Level Agreement (SLA),

cloud providers are expected to make Quality of Service

(QoS) guarantees. Variability in performance hinders cloud

Cloud service provider Memory Across Within

bandwidth instances instances

Rackspace [6] 6.7 GB/s +/− 10% +/− 7%

Digital Ocean [3] 6.3 GB/s +/− 10% +/− 8%

HP Cloud [4] 5.9 GB/s +/− 7% +/− 4%

Amazon m1.medium [1] 5.2 GB/s +/− 25% +/− 4%

Windows Azure [8] 3.6 GB/s +/− 5% +/− 6%

TABLE I: Memory performance variability of different cloud service
providers. Across instances: performance measured from multiple
instances of the same type; Within instances: performance measured
from a single instance.

Fig. 1: Variation in runtime of a MapReduce job when executed in
a cloud based setup vs. a local setup. A total of 25 measurements
were collected.

providers’ ability to effectively guarantee SLAs based on

performance features.

To illustrate the impact of variability on system perfor-

mance, Table I [7] shows the memory bandwidth variation

(measured using the Cloudlook benchmark [5]) across virtual

machine (VM) instances and within single VM instances of

several well-known cloud service providers. While the average

memory performance ranges from 6.7 GB/s to 3.6 GB/s, we

observe non-trivial performance variation both across VM

instances and within VM instances. Consider the example of

m1.medium type VM in Amazon EC2. Here, the variability

was observed to be highest and the standard variation exceeded

around 50% (+/− 25%) of the average. Similarly, variability

was observed to be relatively low within the VM instances,

but can still be as high as 16% (+/− 8%) for Digital Ocean.

To further demonstrate the impact of variability in virtual-

ized infrastructure, a sample set of measurement on a data-

intensive batch application (MapReduce [22]) were collected

at different times within a single day on a 20-node cluster,

both on a cloud environment (Amazon EC2) and a local

cluster setup. Figure 1 shows the results. We see that the

performance on the cloud based setup varies considerably.

A series of factors contribute to the significant variability

of the multi-tenant cloud based performance, e.g., memory

bandwidth variability, CPU sharing, and network contention.

For the local cluster test, among various reasons for the
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relatively smaller performance inconsistency, contention for

non-virtualized resources (e.g. network bandwidth) is perhaps

the major reason.

The hypothesis of this paper is that with a deeper under-

standing of the relationship between system configurations,

e.g., VM instance, network contention, and the resulting per-

formance variability, e.g., expressed as a probability density

function (PDF), we can better manage as well as mitigate the

effects of variability on cloud systems.

II. BACKGROUND AND MOTIVATION

Variability challenges in traditional advanced computing

systems, such as High Performance Computing (HPC), per-

vade every aspect of the systems stack and require a holistic

solution. In the Cloud era, the scale, complexity, and hetero-

geneity of large-scale virtualized infrastructure systems require

fundamental new solutions that are applicable to a broad class

of systems and applications. This requires innovative adaption

of existing techniques that have been traditionally applied to

HPC to the cloud environment.

Variability in HPC Systems. HPC systems have been ex-

plored for variability and its effects. Hoefler et al. [24] recently

summarized the state of the practice for benchmarking in HPC

and suggested ways to ensure repeatable results. Similarly,

HPC researchers have been examining variance for a long

time, e.g., in the 1990s IBM observed variance in uniproces-

sors [35], and Kramer et al. [29] explored variation in large

distributed memory systems more than a decade ago. Such

well-cited studies establish the existence of variability, and

the need for mitigating its impact in HPC.

Reproducibility and Repeatability. Studies aimed at improv-

ing the ability to verify experimental results can directly or

indirectly address variability. For example, recent studies have

shown that minor aspects of experimental setups can have a

significant impact on system performance. The high degree of

sensitivity to experimental design can potentially invalidate

conclusions. This is further complicated by lack of repro-

ducibility, corroboration and repeatability, thereby, propagating

invalid conclusions in academia [44]. Such complications de-

lay the adoption of academic results, e.g., in industrial systems.

To this end, there is a growing need to perform deep analyses

to identify the root causes of observed results. Similarly, in-

troducing determinism to achieve reproducibility also needs to

be explored using environment categorization [37], statistical

modeling [42], or variance-aware algorithm design [16].

Variability in Real Time Operating Systems. Runtime

predictability is a key concern in Real-time Operating System

(RTOS) design, where mission critical application deadlines

have to be met with high accuracy. Hence, RTOSs sacrifice

throughput/performance for predictability [38]. Furthermore,

RTOS approach can not be simply used in cloud applications

because: (i) In RTOSs, only a limited number of tasks can

run at the same time, hence limiting the achievable level of

multitasking [34]. Cloud systems of scale routinely handle

hundreds of thousands to millions of threads. (ii) By limiting

the supported set of real-time threads and applications, such

systems tend to have a higher ratio of resources to demands in

order to meet deadlines, i.e., cores, memory and networking

bandwidth are scaled to meet real-time design requirements.

Applying these same principles to the cloud, would likely be

prohibitively expensive. (iii) The algorithms and scheduling

techniques at the heart of a RTOS are primarily designed to

meet deadlines. Many general purpose applications common in

cloud computing environments, do not benefit from the same

types of optimizations. (iv) RTOS systems are hard to develop

and many cloud/web frameworks do not run just out of the box

on them.

Variability in Computer Architecture. Computer architec-

ture research has explored variability in studying and realizing

new hardware, arising mainly from heterogeneity in the chip-

level architecture. These works are mainly focused on the con-

sequences of the chips having a limited amount of power [17],

[11]. The resulting issues such as leakage current, cross-

wire-signaling, and real-estate budgeting, result in expected

performance to vary significantly. If these techniques affect

software performance variability (e.g., VMs controlled by

hypervisors for providing cloud services), then they can be

captured and are orthogonal to our proposed work. Otherwise,

such variations are likely to be small relative to the variations

observed much higher in the systems software stack.

Variability in the Cloud. Moving from HPC to the cloud

imposes new challenges in solving the variability issues. The

use of virtualized infrastructure in the cloud is likely to

demonstrate higher load imbalance and performance fluctu-

ations [19] due to the factors such as resource sharing across

multiple tenants, compute/memory resource over-subscription,

etc. This is challenging task for cloud service providers as

tenants’ behaviors can be treated as a large set of unpre-

dictable variables, and a weak model may end up with cloud

providers lose their tenants and thus profit [10], [20]. A

line of research [41], [27], [31] attempts to provide effective

performance isolation in multi-tenant datacenters to minimize

the performance unpredictability and variability. Researchers

have focused on providing a robust framework [9] in cloud

datacenter for effectively handling variability caused by multi-

tenancy and resource contentions, which are beyond a cloud

tenant’s control.

III. MITIGATING VARIABILITY IN CLOUD SYSTEMS

We aim to manage and mitigate the variability in cloud

systems. Our approach is rooted in experimentally studying

the said variability, and developing models to utilize the

information in designing variability-aware resource managers

for the cloud.

A. Measuring Variability in Computing Environments

Both the current load on a cloud as well as the underlying

architecture used for launching a cloud instance play an

important role in defining the performance of a cloud instance

launched on that setup, e.g., [39] shows that MapReduce

jobs perform better on EC2 when using a larger percentage

of Xeon-based systems than Opteron-based systems. Simi-

larly [28] identifies the problem of performance variability

in their study, however solutions to address the problem or

measure the variability have not been developed.
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The unique facets of the performance variability in the

cloud are the multi-tenant use of the shared resources, and

that different cloud service providers utilize different resource

scheduling and allocation mechanisms. Thus, the impact on the

performance of different workloads is different for different

cloud providers. For example, in a multi-tenant environment,

priority based scheduling [32], [33] chooses to offer more

resources for workloads with higher priority, which may affect

the performance of a certain workload. On the other hand,

an environment equipped with load-balancing scheduling [25],

[23], [43] may affect the same workload differently, e.g., loss

of data locality. Such different scheduling choices and their

impact on performance variability needs to be studied in detail

to quantify the impact.

Similarly, cloud storage offers customers the key benefits

of on-demand elastic scalability and usage-based pricing [21],

[30]. However, variation in the performance of cloud stor-

age services can lead to cloud applications violating their

SLAs [46]. The main source of variability in cloud storage

performance has been identified to be interference from co-

located tenants. As the logical partitioning between different

tenants’ data does not map to separate physical partitions,

applications from different tenants could contend for the same

disk resources, which result in lower overall IOPS for both

of the co-located tenants [41], [26]. In addition, even if cloud

storage services achieve even distribution of data across their

deployed hardware, the skew in the demand of individual

data objects will result in unfairness in the usage of storage

devices [41].

B. Leveraging Variability for Cloud-based Service Design

The cloud providers need to comply with their customers

SLAs by scaling up their setup according to the load on

the systems [14], [12]. Accurate measurements of variability

provide information that can be useful for the cloud providers

to offer tighter performance-based SLA guarantees to users,

and hence scale their setup in a more cost-aware manner [13].

A recent study [18] shows a clear trade-off between latency

and cluster utilization for MapReduce applications in cloud

environments. Such trade-off is caused by different and some-

times conflicting optimization goals of the application devel-

opers and cloud service providers. Different cloud environment

variability yields new conflicts that might influence application

performance in different ways. On the other hand, the diversity

of MapReduce usage scenarios makes it hard to develop a

single solution for all applications and environments. With the

knowledge of variability measurement, an application could

choose the cloud based on its characteristics. For example,

end-user services that are susceptible to performance variabil-

ity, such as video streaming services, high-speed trading, etc.,

would choose more stable environments. At the same time,

users on a tighter budget can make a more informed decision

about whether to employ cheap services such as spot cloud

instances, if the variability characteristics of such instances

are known (or can be readily determined).

Similarly, to mitigate the impact of variability on cloud

storage performance, tenants resort to employing redundant

resources via replication and additional layers of load dis-

tribution to minimize the effect of this variability on the

IOPS achieved by the applications [45]. For such tenants, the

ability to measure the variability in IOPS as envisioned by

the proposed work will provide for a powerful paradigm that

users can leverage to determine the amount of redundancy

in resources required to achieve a prespecified quality of

service (QoS) for their applications. This, in turn will lead to

better resource planning and stronger SLA guarantees. Good

measures of variation can also help cloud providers with

implementing better isolation and fairness mechanisms [41]

as well.

C. Variability-proofing Cloud-based Services

The variability in a cloud caused by differences in underly-

ing architecture can be minimized by allowing cloud tenants

to choose the underlying physical hardware configuration, e.g.,

network locality, processor, memory type, storage device, etc.

To help reduce the variability in multi-tenant or shared cloud

environments, it is important to accurately predict the future

resource usage by understanding the usage pattern of a cloud

setup. Also, different tracking mechanism can be used to keep

tabs on performance variability so that performance variability

can be studied and made more predictable.

A number of research projects explore how to optimize

MapReduce based on underlying cloud environments from

variability perspectives [48], [47]. One of such optimizations

can be adopted for a specific underlying environment to help

reduce the performance variability if we know the dominant

causes of the variability. For example, if the variability is

mainly caused by heterogeneity, we might consider applying

Longest Approximate Time to End (LATE) [48]; if the vari-

ability is mainly caused by data locality, more advanced data

placement schemes [47], [30], [36] are worth consideration.

Such techniques can be used to build variability-proof

applications atop cloud services. The motivation for such

services is the Chaos Monkey toolkit [2] used by Netflix

Inc. to shield their services against vagaries of a cloud. At

a high level, we propose to identify the variability in the

system, and then introduce sufficient redundancy within the

instantiated services so as to mitigate the expected loss in

availability and performance. For instance, a compute instance

can be enhanced with additional resources, a storage layer

can be given added copies, and I/O can be over-provisioned

accordingly.

IV. CONCLUSION

The cloud environment comprises a plethora of resources,

each with its own performance characteristics and stability,

which leads to a high degree of variability in the overall

system. The cloud service provides need means to mitigate

and manage such variability if they are to support guaranteed

quality of service for the users. Studying and quantifying such

variability serves as the first step in this direction. We have

identified the problem of variability and how it impacts overall

performance, as well as discussed ways in which the informa-

tion can be used to design better and efficient cloud services.

In our future work, we aim to exploit such information in

designing cloud resource management solutions.
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