
Java, Peer-to-Peer, and Accountability: Building Blocks for

Distributed Cycle Sharing

Ali Raza Butt, Xing Fang, Y. Charlie Hu, and Samuel Midkiff

Purdue University

West Lafayette, IN 47907

{butta, xfang, ychu, smidkiff}@purdue.edu

Abstract

The increased popularity of grid systems and cy-
cle sharing across organizations leads to the need
for scalable systems that provide facilities to lo-
cate resources, to be fair in the use of those re-
sources, and to allow untrusted applications to be
safely executed using those resources. This paper
describes a prototype of such a system, where a
peer-to-peer (p2p) network is used to locate and al-
locate resources; a Java Virtual Machine is used to
allow applications to be safely hosted, and for their
progress to be monitored by the submitter; and a
novel distributed credit system supports account-
ability among providers and consumers of resources
to use the system fairly. We provide experimen-
tal data showing that cheaters are quickly identified
and purged from the system, and that the overhead
of monitoring jobs is effectively zero.

1 Introduction

This paper describes a prototype of a complete sys-
tem that allows the sharing of cycles across network
connected machines. For any such system to be suc-
cessful, certain core functionality must be provided
to both applications and hosts: (i) the ability for an
application to discover a machine (or cluster of ma-
chines) capable of hosting it (resource management
and discovery); (ii) the ability for an application to
run on a wide variety of machines without change
(portability); (iii) the ability of a host machine to
accept an application from an untrusted source,
and execute it without being damaged (safety); and
(iv) a mechanism for maintaining information about
resources provided and consumed, and for ensur-
ing fairness in the use of resources (accountability).

These four functions must be accomplished in a dis-
tributed, scalable manner to enable large networks
of machines and resources.

Resources that are available but that are not eas-
ily discovered are useless. Peer-to-peer (p2p) net-
works have achieved widespread use as a content
discovery mechanism. We propose using these same
mechanisms for resource discovery and job assign-
ment for our cycle sharing framework. Moreover,
because p2p networks are self-organizing, it is easy
for nodes to join, and leave, without the necessity
of a central administrative organization and human
intervention.

The use of Java is extremely convenient, if not es-
sential, for the second and third of these functions
(portability and safety) and it makes the account-
ing significantly easier. Because overspecifying a
host machine’s characteristics reduces the number
of viable execution targets for an application, the
portability across execution environments provided
by Java is essential. Moreover, Java’s built-in sand-
boxing technology, and rich security infrastructure,
allow applications of varying degrees of trust to be
hosted without each host providing additional se-
curity mechanisms. Both of these attributes signif-
icantly lower the cost and risk for producers and
consumers of cycles to join a network of shared re-
sources. And research [25, 26] shows that there are
no inherent reasons for not using Java for high per-
formance computing.

Finally, a community of pooled resources will sur-
vive only as long as members are treated with a high
(but not necessarily perfect) degree of fairness. In
the physical world, money is used as a conveyor of
information about one’s contribution to the econ-
omy. Credit reports allow providers of services to
judge the likelihood that they will be paid for those
services and to hold consumers accountable for their

debts. Incremental payment schemes are used in
many large activities to bound the amount of risk
for both providers and consumers of resources to
the size of the incremental payment. In this paper
we outline a low-overhead Java based mechanism to
allow users to monitor the progress of their appli-
cations, and to determine if they are comfortable
making partial payments for the progress of a job.
Our credit mechanism provides a distributed, scal-
able system for making and accepting these (possi-
bly partial and incremental) payments (credits, in
the language of this paper.) Moreover, our system
supports two other important functions: we allow
both users and resource providers to determine, us-
ing their own criteria, the credit worthiness of oth-
ers; and we allow credits held by one entity (user)
to be traded to another, and used by that other
entity to acquire resources or reduce its volume
of outstanding credit. Just as the larger economy
can function well with a certain amount of fraud
and noise in transactions and accounting, so should
economies involved in sharing of computational re-
sources. Thus our goal is not to produce perfectly
secure system, but instead sufficiently good systems
to enable wide scale sharing of computational re-
sources.

This paper makes the following contributions:

• A novel method for monitoring the progress of a
Java application with low overhead that lever-
ages important features of Java Virtual Ma-
chines (JVM);

• A novel method for issuing credits that is scal-
able and checkable by all participating nodes in
a system;

• A system that allows the sharing of computa-
tional resources that builds on the Java proper-
ties of portability and safety, the credit system
described in this paper, and scalable p2p net-
works;

• Experimental data showing the practicality of
these techniques.

The rest of paper is organized as follows. Section 2
presents our proposed scheme for enforcing fairness
in p2p cycle sharing systems. Section 3 discusses the
details of our prototype implementation, and Sec-
tion 4 measures the overhead and the effectiveness
of our proposed scheme. Finally, Section 5 presents
some related work, and Section 6 provides conclud-
ing remarks.

p2p
Network

Submission
node

credit
generator

progress probe
support

JVM with
modified

resource info.
annoucements

Execution
node

node
Matchmaking

Neighbor
set

maintenance

job/machine
matchmaking

remote job
probing

Instrumented
code

resource info.

resource
info.

Figure 1: Overall design of the proposed scheme.
Each node can be a submission node, or an execu-
tion node for submitted jobs.

2 System Design

This section first gives an overview of the system
design, and then describes in detail how each of the
building blocks implements the properties necessary
for a usable cycle sharing system.

2.1 Overview

In order to obtain a cycle sharing system that pre-
vents disproportionate consumption of resources,
the system has to simultaneously provide the con-
sumer with assurances that jobs are making progress
on remote machines, and the resource provider with
assurances that resource usage will be compensated.
Figure 1 shows the design of our system. It uses
a p2p substrate for two purposes: to organize all
the participating nodes, and to locate remote nodes
with available compute cycles. In the following we
assume a remote node with free cycles has already
been selected for remote execution.

Every participating node can be a resource con-
sumer (submission node) or a provider (execution
node). A node can fill both roles simultaneously as
well, e.g., its jobs can be running on some remote
nodes while jobs from other remote nodes are run-
ning on it. As a consumer, a node implements the
following functions: (i) it implements a probing sys-
tem that allows it to query a reporting module (a job
that listens for, and accumulates information sent
by the beacons which monitors the progress of an
application) for progress reports on remote jobs; (ii)
it has access to a special compiler that processes the

information sent by beacons and check it for valid-
ity. In our current implementation all information
sent by beacons is considered valid, and no infor-
mation is extracted, but our design allows for more
sophisticated reports (see Section 2.4.1 for details);
(iii) it implements an accounting system to record
the fact that it has consumed cycles on other nodes,
and to issue digitally signed credits to the hosting
machine when necessary. These reports are stored
in the p2p network, and can be viewed by all nodes
in the network.

As a resource provider, the execution node supports
a trusted JVM whose dynamic compiler inserts bea-
cons that send information about the progress of
the application to the reporting module, mentioned
above. The reporting module issues progress reports
using this information.

Remote cycle sharing works as follows. First, the
submission node creates a job to be run on remote
resources. The p2p network is queried for a possi-
ble host node, the credit information for the node
is checked, and if acceptable the job is submitted
to the node. The VM and its dynamic compiler on
the host node insert instrumentation and beacons
into the program, which begins execution. The sub-
mitting node then periodically queries the reporting
module (which can run on any node that can com-
municate with the job on the host node and with
the submitting node). If the submitting node finds
the job to be making progress, it issues a credit to
the execution node. Credits are not issued if the job
is not making satisfactory progress. If the submis-
sion node tries to cheat and not issue a credit to the
host node, the host node can evict the job. There-
fore, self interest motivates the submitting node to
issue credits, and the host node to run the program.

2.2 Scalable resource management
through p2p networks

To enable fault-tolerant, load-balanced sharing of
compute cycles among the participating nodes, we
use a structured p2p overlay network to organize
the participating nodes and locate available com-
pute cycles on remote nodes for remote execution.

2.2.1 Distributed Hash Tables

We briefly review current p2p overlay networks
which previously have been used for supporting
data-centric applications. Structured p2p overlay
networks such as CAN[30], Chord[35], Pastry[32],
and Tapestry[40] effectively implement scalable and
fault-tolerant distributed hash tables (DHTs). Each
node in the network has a unique nodeId and each
data item stored in the network has a unique key.
The nodeIds and keys live in the same namespace,
and each key is mapped to a unique node in the net-
work. Thus DHTs allow data to be inserted with-
out knowing where it will be stored and requests for
data to be routed without requiring any knowledge
of where the corresponding data items are stored. In
the following, we give a brief description of one con-
crete structured overlay network, Pastry, on which
our prototype is built. Detailed information can be
found in [32, 7].

Pastry provides efficient and fault-tolerant content-
addressable routing in a self-organizing overlay net-
work. Each node in the Pastry network has a unique
nodeId. When presented with a message with a key,
Pastry nodes efficiently route the message to the
node whose nodeId is numerically closest to the key,
among all currently live Pastry nodes. Both nodeIds
and keys are chosen from a large Id space with ran-
dom uniform probability. The assignment of nodeId
can be application specific; typically by hashing an
application specified value using SHA-1 [14]. The
message keys are also application specific. For ex-
ample, when inserting the credit of a node into the
DHT (Section 2.4) the message key could be some
identifier that uniquely identifies that node.

The Pastry overlay network is self-organizing, and
each node maintains only a small routing table of
O(log N) entries, where N is the number of nodes
in the overlay. Each entry maps a nodeId to an IP
address. Specifically, a Pastry node’s routing table
is organized into dlog

2b Ne rows with (2b−1) entries
each. Each of the (2b − 1) entries at row n of the
routing table refers to a node whose nodeId shares
the first n digits with the present node’s nodeId, but
whose (n+1)th digit has one of the (2b−1) possible
values other than the (n + 1)th digit in the present
node’s nodeId. Each node also maintains a leafset,
which keeps track of its l immediate neighbors in
the nodeId space. The leafset can be used to deal
with new node arrivals, node failures, and node re-
coveries as explained below. Messages are routed by

Pastry to the destination node in O(log N) hops in
the overlay network.

2.2.2 Discovering free cycles

While p2p overlay networks have been mainly used
for data-centric applications, our system exploits
p2p overlays for compute cycle sharing. Specifi-
cally, it organizes all the participating nodes into
an overlay network, and uses the overlay to discover
available compute cycles on remote nodes.

To discover nearby nodes that have free cycles,
our system exploits the locality-awareness property
of Pastry [7] to maintain and locate nearby avail-
able resources to dispatch jobs for remote execu-
tion. This property means that each entry in a
Pastry node n’s routing tables contains the node
nc that is close to n among all the nodes in the
system whose nodeIds share the appropriate prefix
that would place them in that entry of n.

Periodically, each node propagates its resource avail-
ability and characteristics to its neighbors in the
proximity space. This is achieved by propagating
the resource information to the nodes n′ in each
node n’s Pastry routing table rows. Node n′ also for-
wards the resource information according to a Time-
to-Live (TTL) value associated with every message.
The TTL is the maximum number of hops in the
overlay between n and the nodes that receive its
resource information. Hence, the resource informa-
tion is propagated to neighboring nodes within TTL
hops in the overlay. Since Pastry routing tables con-
tain only nearby nodes, this “controlled flooding”
will cause resource information to be spread among
nearby nodes in the proximity space. Each node
that receives such an announcement caches the in-
formation in the announcement for its local match-
making between jobs and available resources.

To locate a remote node for job execution, a node
queries nearby nodes with available resources as ac-
cumulated in its local knowledge, taking proximity
and credit-worthiness into account. The actual re-
mote execution of the program and subsequent I/O
activities are performed with the remote node di-
rectly, and do not go through the overlay.

Our p2p-based cycle sharing system tolerates
node/network failures as follows. When the node
for remote execution fails, the submitting node dis-

covers an alternative node for re-execution. The
fault handling can be implemented in the runtime
system and made transparent to the user program.
This is an important advantage over the traditional
client/server model, where failure of a server im-
plies explicit reselection by the client. For reasons
of failure resiliency (or malicious node detection) via
comparison of results from multiple nodes, a node
may create multiple identical computations for re-
mote execution.

2.3 Safety and portability through Java
VMs

One of the goals of this project is to allow cycle shar-
ing with a minimum of human-based administrative
overhead. This requires that jobs be accepted from
users who have not been vouched for by some ac-
crediting organization. This, in turn, requires that
submitted applications not be able to damage the
hosting machine. Java’s sandboxing abilities fit in
well with this model. If submitters have undergone
some additional verification (i.e. they are a trusted
user), digital signature based security mechanisms
can be used to allow potentially more harmful code
to be executed, for example code that accesses the
host’s file system.

Java portability across different software and hard-
ware environments significantly lowers the barriers
to machines joining the pool of users and resources
available on the network. Java’s portability is in
part because byte-code is well defined. Another
reason for its portability is that much of the func-
tionality that is provided by system libraries, and
is not part of languages like C++ and Fortran (e.g.
thread libraries and sockets), is provided by well
specified standard Java libraries. As a consequence,
in practice Java’s interfaces to system services, e.g.,
sockets, appear to be more portable than with C++
implementations.

These attributes allow submitting nodes to have a
larger number of potential hosts to choose from, and
increases the probability that a program will execute
correctly on a remote host.

communciation
synchronous

communciation
asynchronous

program progress
information

execution node

reporting
module

target code
(beacons)

submission node

probe query

status
request

reply

query
processing

instrumented

Figure 2: Compiler instrumentation for monitoring
job progress. The communication between the in-
strumented beacons and the reporting module is
asynchronous, whereas it is synchronous between
the querying node and reporting module.

2.4 Accountability through Java, p2p
networks, and credit-worthiness

Accountability in our system is achieved through
a system of credits. The storage and retrieval of
these credits is accomplished through the p2p net-
work, and the monitoring of long-running jobs to
determine if credits should be issued is done using
a JVM.

2.4.1 Compiler support for progress moni-

toring

The basic idea behind the compiler assisted moni-
toring of the program execution is that the compiler
will instrument the program with beacons which will
periodically emit some indication of the program’s
progress. Because Java is a dynamically compiled
language, commercial and research JVMs typically
monitor the “hotness” of executing methods by ei-
ther inserting sampling code that is periodically ex-
ecuted or executed on method entry, or by observing
currently active methods. These techniques develop
an approximation of the time spent in a method.
Our system exploits this information to monitor the
progress of the program and sends this information
asynchronously to a separate program called the re-
porting module. The reporting module then buffers
this information so that it can reply to queries from
the program owner.

When a program owner queries the reporting mod-
ule, the reporting module creates a progress report
from the data it has so far collected, and replies
to the program owner immediately. The owner can
then process this report and determine whether its
program is making progress. Figure 2 shows this

setup. The advantage of having the reporting mod-
ule is two-fold: (i) the application program does not
have to suspend itself while waiting to be probed by
the job owner, instead the data is buffered in the re-
porting module, and (ii) the design of the beacons
is decoupled from the design of the queries. More-
over, the reporting module can run on the execu-
tion node, the submission node, or any other node
that can communicate with both the execution and
the submission node. For this reason, the reporting
module is implemented as a separate process.

On a truly malicious, as opposed to overloaded or
otherwise defective system, this simple beacon can
be spoofed by the malicious system replaying old
beacons. In the worst case, determining that a pro-
gram on a remote system has run to completion and
without tampering is as hard as actually running
the program. It is our assumption in this project
that we are not executing on truly malicious ma-
chines, rather we are running on machines that may
be overcommitted, or that may be “fraudulently”
selling cycles that don’t exist in order to gain credits
to purchase real cycles. Our goal is to uncover fraud
and overcommitted nodes before the system is ex-
ploited “too heavily” by fraudulent or over-extended
machines, not to prevent all fraud. Thus our system
does not need to detect all fraudulent or overcom-
mitted systems, but rather must allow fraudulent
and overcommitted systems to be detected “soon
enough”. This is analogous to the goal of credit
rating services in “real world” commerce, which is
not to prevent any extension of credit to unworthy
recipients, but rather to bound the extent to which
they can receive credit to an amount that can be
absorbed by the system. We stress that system is
general enough to support either decentralized or
centralized credit reporting mechanisms, depending
on any legal requirements or requirements of the
member nodes.

We are developing audit methods for better, albeit
still not perfect, credit reporting. Figure 3(a) show
a graphical representation of a program – it can
be either a control flow graph or a calling graph.
This graph can be treated as a transducer1, or as
a finite state automata (FSA) that accepts the lan-
guage defined by the strings emitted by the trans-
ducer. In this model, the execution of the pro-
gram corresponds to the transducer, with the re-
porting module implementing the recognizing FSA.
The compiler will insert beacons to implement the

1A transducer is a finite state automata that emits infor-

mation on state transitions.

D

A

B C

E

Τ(β)

Τ(χ)

Τ(φ)

Τ(γ)

Τ(δ)

Τ(α)

χ,λ

D

A

B C

E

γ,λ

φ,λ

α,λ β,λ

δ,λ

(a) A flow or
calling graph as
a transducer

(b) The FSA
corresponding to
this transducer

Figure 3: A flow graph as a transducer and recog-
nizing Finite State Machine.

transducer within the executing application and will
also create the associated FSA.

Output emitted by the transducer can be simple,
such as method names, or more complicated, such
as method names, ranges of induction variables and
the values of the induction variables themselves.
However, this system may still not be secure since
either another program understanding tool or a hu-
man could reverse-engineer the transducer in the ap-
plication program and use that information to spoof
the reporting module.

2.4.2 Issuing credits and assessing credit-

worthiness

To ensure the compensation of consumed cycles on
node B by node A, we propose a distributed credit-
based mechanism. There are two building blocks
of our approach: (i) credit-reports which are enti-
ties that can be “traded” in exchange for resources,
and (ii) a distributed feedback system which pro-
vides the resource contributors with the capability
to check the credit history of a node, as well as to
submit feedback about the behavior of a node. For
simplicity, we assume that all jobs are equivalent in
terms of the amount of resources they consume.

The distributed feedback database is built on top
of the Distributed Hash Table (DHT) supported by
the underlying structured p2p overlay. It maintains
the feedback for each node regarding its behavior
towards honoring credits. Any node in the system
can access this information and decide whether to
allow an exchange with a requesting node, or con-

���
���
���

�
�
�

Node A

Node B

job

credit

Node C

Node Z

DHT

1

2

3

4

5

6

7

8

Figure 4: Various steps to ensure proper compensa-
tion of a contributed resource.

sider it a rogue node and avoid any dealings with it.
In this way, a node can individually decide to punish
a node whose consumption of shared resources has
exceeded its contribution to other nodes by some
threshold determined by the deciding node.

Figure 4 shows the various steps involved in ensur-
ing that B is adequately compensated for its con-
tribution. When A runs a job on B (1 in Figure
4), A will issue a (digitally signed) credit to B (2
in the Figure) (This credit is similar to the claim
in Samsara [8]; it can be “traded” with other nodes
for exchange of equivalent resources). A will give
the credit a unique sequence number – unique in
that A will issue no other credits with that num-
ber. B will digitally sign the credit and hash it into
a repository in the p2p network (3 in the Figure).
The credit hash is generated by hashing a function
of A and the sequence number.

If B gives the credit to C (4 in the Figure), B will
digitally sign the credit before giving it to C. C will
digitally sign it, compute the hash based on (A,
unique number) and store it (5 in the Figure). The
storing node will replace the existing copy of the
credit with the new copy. It knows it can do this
since the end of the signing sequence is “B, B, C”,
i.e. the last-1 and last-2 signatures match, showing
that the last-1 signer is the previous owner and is
allowed to transfer the certificate.

If the certificate goes to Z (6 and 7 in the Figure)
and returns to A (8 in the Figure), A destroys it.
Since the end of the signing sequence is “Z, Z, A”,
the system knows that the transfer to A is valid
and A is the owner, and therefore A can choose to
have the credit destroyed. Note that this also al-
lows credits to be destroyed by any owner (i.e. C
above could have asked that the credit be destroyed,

not saved) perhaps because of monetary payments,
lawsuits, bankruptcy of the root signer, etc.

Because a credit hashes to a fixed location, attempts
to forge credits (for example in a replay attack) will
leave multiple copies of the credit (identified by its
unique sequence number) in the same DHT loca-
tion, and the second forged credit will not be saved.
Thus if B tries to give the same credit d to both C
and Z, one would be rejected (say Z’s) and Z could
then refuse to run B’s job. Should a malicious node
save both credits, a node checking on the credit wor-
thiness of the issuing node can determine that there
are two credits with the same number, and either
ignore or factor this into its evaluation of both the
issuing node and node B.

The feedback information is used to enforce contri-
bution from selfish nodes as follows. In Figure 4,
before node B executes a job on behalf of node A, it
retrieves all the feedback for A from the DHT, veri-
fies the signatures to ensure validity, and can decide
to punish A by refusing its job if A’s number of fail-
ures to honor credits has exceeded some threshold
determined by B. We note that this system allows
independent credit rating services to be developed
that a submitting node can rely on for evaluating
the credit-worthiness of a host.

2.4.3 Potential threats and vulnerabilities

It is our assumption in this project that we are not
executing on truly malicious machines, rather we are
running on machines that may be overcommitted, or
that may be “fraudulently” selling cycles that don’t
exist in order to gain credits to purchase real cycles.
Thus we limit out discussion of potential threats to
be from such misbehaving nodes in the following.

The first scenario deals with the timing between the
issuing of credits and the running of submitted jobs.
In particular, a running node may refuse to spend
further cycles upon receiving credits from job sub-
mitting nodes, and conversely, the submitting node
may refuse to issue credits upon hearing the com-
pletion of its remote job execution. To provide mu-
tual assurance, we propose the use of incremental
credit issuing. Consider the case when A is sub-
mitting a job to run on B. Under the incremental
credit issuing scheme, A gives incremental credits
when it sees progress of its job on B. A might also
choose to checkpoint its job when issuing an incre-

mental credit to eliminate the chance of losing work
that has been paid for. Secondly, A can also issue
a negative feedback for B if it misbehaves. This is
done as follows. A monitors its job on B at prede-
fined intervals. On each interval that A finds its job
stalled, it calculates a probability q, which increases
exponentially with increasing number of consecutive
failures of B to allow the job to progress. A then
issues a negative feedback for B with the probability
q. This scheme allows B to have transient failures,
but punishes it for chronically cheating. Conversely,
the case where A refuses to honor its issued credit is
already addressed by the distributed feedback mech-
anism.

The next scenario results from the fact that if
each feedback is inserted in the DHT only once,
even though DHT replicates the credit among nodes
nearby in the nodeId space, if the node storing the
main replica acts maliciously, the credit informa-
tion may not be retrieved correctly. To overcome
this, we purpose inserting each credit into the DHT
multiple times by making use of a predetermined
sequence of salts known to all the participants. For
each known salt, a credit hash is generated by hash-
ing the concatenated function of the issuer’s nodeId,
the sequence number, and the salt. The signed
credit is then inserted into the DHT. In this way,
each credit will be available at multiple mutually-
unaware nodes. When a participant intends to ver-
ify the integrity of another participant, it can choose
to retrieve multiple copies of the credit instead of
one. The number it attempts to retrieve can vary
between one and the maximum copies that are al-
lowed to be inserted into the system. Once these
copies are retrieved, the node can compare them
for trustworthiness. In case of mismatch, a ma-
jority vote can be adopted and the version of the
credit that has the highest number of occurrence
is assumed to be the trusted one. This potentially
increases the amount of data that is inserted and
retrieved from the DHT. However, the size of credit
is usually small, and the additional benefits of hav-
ing multiple insertions outweigh the increase in the
message overhead.

Another problem may arise where the credits are
never “traded” back to the issuing node. This does
not indicate misbehavior, but can result in a large
number of un-utilized credits accumulated in the
system. Therefore, where possible, a node tries to
“trade” a remote credit it holds, rather than issue
its own credit. Moreover, each credit-report has
a timestamp, and nodes can determine how old a

Module name Functionality

announceC Creates resource information
announcements and sends
them to the neighboring
nodes.

dbaseC Manages the local knowledge
base on a node.

matchmakerC Finds suitable nodes for re-
quested job runs from avail-
able remote nodes.

execC Sets up the execution en-
vironment for a job on a
matched node and initiates
the execution.

Table 1: Modules in the prototype implementation
and their functions.

credit is. In case the age of a credit-report orig-
inated from A increases more than a system-wide
threshold, the credit holding node will try to ex-
change it with A first, before trying to locate some
other resources in the network. This will help in
reducing the number of credit-reports in the sys-
tem. Intra-organizational networks can clear the
system periodically using internal budgeting proce-
dures. We note that the load imposed on the system
by large amounts of circulating credit is much less
than in systems like Samsara, where credit takes the
form of physical disk space held hostage, and con-
sequently reduces the amount of system resources
available for other purposes.

3 Implementation

We have built a prototype of our proposed scheme
for p2p based resource discovery and accountabil-
ity using Java 1.4.2 API specification. We uti-
lize the Pastry [32] API for p2p functionality, and
PAST [31] for storing the distributed feedback in
a fault-tolerant and distributed manner. The im-
plementation is done on nodes with Pentium IV 2
GHz processors, 512 MB RAM, running Linux ker-
nel 2.4.18, connected via 100 Mb/s Ethernet. The
prototype can be divided into various software mod-
ules as listed in Table 1.

An interesting observation in the implementation
process was the duplicated reception of the same
node’s resource announcements at a node because a
node may be on the routing tables of multiple re-

mote nodes. To prevent duplicate messages from
flooding the system, each node assigns a 32-bit se-
quence number to its announcements. The number
is chosen at random at the start of a node, and in-
creases monotonically for the life of the node. When
an announcement is received, its sequence is first
compared with the sequence number of the last mes-
sage received from the originator. A sequence num-
ber with a value equal to or less than the last seen
message implies that the message is a duplicate and
can be discarded.

Our execution node uses an augmented version of
the Jikes RVM [1], running on adaptive configura-
tion. In the adaptive system, there exists an instru-
mentation framework that increments method invo-
cation counters as the application proceeds. The
counters are then stored in a database whose con-
tents are examined by the controller thread to help
make recompilation decisions. Since the applica-
tion progress reports that we require can be inferred
from this database, we do not have to add inline
code into the application to determine it. Instead,
we augment the system with a progress monitor-
ing thread. In other words, the beacon is imple-
mented as a thread that periodically looks into the
database and sends the method invocation counter
values to the reporting module, together with the
timestamp. This information serves as an indicator
for job progress. The interval between successive re-
ports is a parameter that is specified when remote
jobs are submitted. We will examine the effect of
this interval on the execution overhead in our ex-
perimentation.

In our implementation the reporting module is lo-
cated on the same host as the execution node. This
enables the reporting module to record and report
the system load information on the execution node
as well, which provides further grounds for the prob-
ing module on the submission node to determine
whether the remote host is cheating. (If the host
is heavily loaded, we might assume the host is not
cheating even though the progress is reasonably
small). Also, hosting the reporting module on the
same node incurs additional overhead, and we are
able to study its effects through experimentation.

Communications between the execution node and
the reporting module, and between the reporting
module and the probing module, are implemented
through UDP packets. We choose to use socket-
based communication because it enables us to move
the reporting module off the execution node if

����������

����
����
����
����
���

����
����
����
����
���

������������
������������
������������
������������

������������
������������
������������
������������

����
����
����
����

����
����
����
����

				
				
				
				

������������
������������
������������
������������
������������
������������
���������

����
����
����
����
����
����
���

����
����
����
����
����
����
����
�

����
����
����

����
����
����

������������
������������
������������
������������
������������

����
����
����
����
����

����������

������������
������������
���
����
����
�

����
����
��

����
����
��

����
����
����
����

������������
������������
���
����
����
�

����
����
����
����
��

����
����
����
����
��

����
����
����

!�!!�!!�!!�!
!�!
"�""�""�""�"
"�"

####
####
##

$$$$
$$$$
$$

%�%�%%�%�%&�&�&&�&�&

''''
''''
((((
((((

))))
)))

*** +�++�++�++�+

+�++�++�++�+
,�,,�,,�,,�,
,�,,�,,�,,�,

....
...

////
////
////
////
/

0000
0000
0000
0000
0

1�11�11�11�1
1�11�11�11�1
2222
2222

3333
3
4444
4

5555
5555
6666
6666

7�7�78�8�8

99
99
::
::

;�;;�;
;�;;�;
<<
<< ==

=
>>
>

??
?
@@
@

A�AA�A
A�AA�A
A�AA�A
A�AA�A

B�BB�B
B�BB�B
B�BB�B
B�BB�B

CCD
D

EE
E
FF
F G�GG�G

G�G
HH
H

I�I�IJ�J�J

KK
KK
LL
LL

M�MM�M
M�M
NN
N OOPP QQ

QQ
RR
RR

S�SS�S
S�SS�S
TT
TT

UU
U
VV
V WWX

X
Y�YY�Y
Y�Y
Z�ZZ�Z
Z�Z

[�[�[[�[�[\�\�\\�\�\

]�]]�]]�]]�]
^�^^�^^�^^�^

````

aaaa
bbbb

c�cc�cc�cc�c
d�dd�dd�dd�d

eeee
ffff

gggg
hhhh

i�ii�ii�ii�i
jjjj

kkkk
llll 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

_2
01

_C
om

pr
es

s

_2
02

_J
es

s

_2
09

_D
b

_2
13

_J
av

ac

_2
22

_M
ep

ga
ud

io

_2
27

_M
tr

t

_2
28

_J
ac

k

A
ve

ra
ge

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Benchmarks

10ms
20ms
50ms

100ms
200ms
500ms

No Beacon

Figure 5: Overhead of beacons with a remote re-
porting module.

needed, and UDP is preferred because it has a lower
overhead. As we are only interested in getting an in-
dicator of application progress, losing some packets
occasionally is not a big problem.

4 Evaluation

This section gives experimental results gathered by
executing a modified version of the Jikes RVM on
hardware, and by simulation studies of a p2p overlay
network.

4.1 Instrumentation overhead

In this section, we determine the effect of progress
monitoring on application performance by studying
the overheads of the beacons and the reporting mod-
ule.

To study the overhead of beacons alone, we first
run the reporting module on a different node than
the execution node. Figure 5 shows the overhead
of adding the beacon thread in the virtual machine.
Experiments were run with the SpecJvm98 bench-
mark suite on data sizes of 100. Instrumentation re-
sults were reported to the remote reporting module
at time intervals of 10, 20, 50, 100, 200 and 500 mil-
liseconds, respectively. We observe that on average,
when the time interval between successive reports
is 500ms, the performance impact is less than 1%.
For an actual system, reporting intervals would be
in minutes or seconds, so the overhead on the pro-
gram performance would be effectively zero. Notice
that this is the overhead of monitoring the program
progress only. The cost of instrumentation in the
Jikes RVM system, which we are leveraging for our

m�m�mn�n�n

o�oo�oo�oo�o
o�oo�oo�oo�o
o�oo�oo�oo�o
o�oo�oo�oo�o
o�oo�oo�oo�o
o�oo�oo�oo�o
o�oo�oo�oo�o
o�o

pppp
pppp
pppp
pppp
pppp
pppp
pppp
p

qqqq
qqqq
qqqq
qqqq
qqq

rrrr
rrrr
rrrr
rrrr
rrr

ssss
ssss
ssss

tttt
tttt
tttt

u�uu�uu�uu�u
u�uu�uu�uu�u
u�uu�uu�uu�u
u�uu�uu�uu�u
u�uu�uu�uu�u
u�uu�uu�uu�u
u�u

vvvv
vvvv
vvvv
vvvv
vvvv
vvvv
v

w�ww�ww�ww�w
w�ww�ww�ww�w
w�ww�ww�ww�w
w�ww�ww�ww�w

xxxx
xxxx
xxxx
xxxx

y�yy�yy�yy�y
y�yy�yy�yy�y
y�yy�yy�yy�y
y�yy�yy�yy�y
y�yy�yy�yy�y
y�yy�yy�yy�y
y�yy�yy�yy�y
y�yy�y

zzzz
zzzz
zzzz
zzzz
zzzz
zzzz
zzzz
zz

{{{{
{{{{
{{{{
{{{{
{{{{
{{{

||||
||||
||||
||||
||||
|||

}}}}
}}}}
}}}}
}}}}
}}}}
}}

~~~~
~~~~
~~~~
~~~~
~~~~
~~

����������

������������
������������
���������

����
����
���

����
����
����
���� ������������

������������
������

������������
������������
������

����
����
����
��

����
����
����
��

������������
������������
������������
������������
������������
���

����
����
����
����
����
�

������������
������������
���
����
����
�

����
����
����
����
����
���

����
����
����
����
����
���

������������
������������
������������
���

������������
������������
������������
���

����������

������������
������������
������������
���

������������
������������
������������
���

����
����
�
����
����
�

������������
������������
������

����
����
��

����
����
��

����
����
��

����
����
����
���

����
����
����
���

������������
������������
������������
������������

������������
������������
������������
������������

����
����
����
���

    
    
    
   

¡�¡¡�¡¡�¡¡�¡
¡�¡¡�¡¡�¡¡�¡
¡�¡¡�¡¡�¡¡�¡

¢¢¢¢
¢¢¢¢
¢¢¢¢

£�£�£¤�¤�¤

¥�¥¥�¥
¥�¥¥�¥
¥�¥
¦¦
¦¦
¦

§§
§§
§§

¨¨
¨¨
¨¨

©�©©�©
©�©©�©
©�©
ª�ªª�ª
ª�ªª�ª
ª�ª

««
««
«
¬¬
¬¬
¬



®®
®

¯¯
¯¯
¯¯
¯¯
¯¯

°°
°°
°°
°°
°°

±�±±�±
±�±±�±
±�±±�±
±�±±�±

²�²²�²
²�²²�²
²�²²�²
²�²²�²

³�³³�³
³�³³�³
³�³
´�´´�´
´�´´�´
´�´

µ�µ�µ¶�¶�¶

··
··
··

¸¸
¸¸
¸¸

¹�¹¹�¹
¹�¹¹�¹
¹�¹¹�¹

º�ºº�º
º�ºº�º
º�ºº�º

»�»»�»
»�»»�»
»�»»�»

¼¼
¼¼
¼¼

½½¾
¾ ¿�¿¿�¿

¿�¿¿�¿
¿�¿¿�¿

À�ÀÀ�À
À�ÀÀ�À
À�ÀÀ�À

ÁÁ
Á
ÂÂ
Â

ÃÃ
ÃÃ
ÃÃ
ÃÃ

ÄÄ
ÄÄ
ÄÄ
ÄÄ

Å�ÅÅ�Å
Å�ÅÅ�Å
Å�Å
ÆÆ
ÆÆ
Æ

Ç�Ç�ÇÈ�È�È
ÉÉÉÉÉÉÉÉ

ÊÊÊÊÊÊÊÊ
Ë�ËË�ËË�ËË�Ë
ÌÌÌÌ

Í�ÍÍ�ÍÍ�ÍÍ�ÍÍ�Í
ÎÎÎÎÎ

ÏÏÏÏÏ
ÐÐÐÐÐ Ñ�ÑÑ�Ñ

Ò�ÒÒ�Ò
ÓÓÓ
ÔÔÔ

Õ�ÕÕ�ÕÕ�ÕÕ�ÕÕ�Õ
ÖÖÖÖÖ

×�××�××�××�×
Ø�ØØ�ØØ�ØØ�Ø

 0

 1

 2

 3

 4

 5

 6

_2
01

_C
om

pr
es

s

_2
02

_J
es

s

_2
09

_D
b

_2
13

_J
av

ac

_2
22

_M
ep

ga
ud

io

_2
27

_M
tr

t

_2
28

_J
ac

k

A
ve

ra
ge

Sl
ow

do
w

n 
(P

er
ce

nt
ag

e)

Benchmarks

10ms
20ms
50ms

100ms
200ms
500ms

No Beacon

Figure 6: Overhead of hosting the reporting module
on the execution node.

technique, is about 6.3% [3], and can be lowered
with larger instrumentation intervals.

Next we determine the overhead of hosting the re-
porting module on the execution node. We com-
pare the performance of this setup with one that
uses a remote reporting module (as in the previ-
ous case). Figure 6 shows the results. There are
three sources for the overhead: network traffic to
and from the reporting module, cost of periodically
collecting host system load information, and over-
head of maintaining the application progress and
system load database. Application execution on the
host slows down as a result of competition for CPU
cycles. The first and last kinds of the overhead will
grow linearly with the number of remotely execut-
ing jobs and they also grow as instrumentation and
probing frequencies increase. The cost of system
load information is proportional to the interval of
load probing. In our experiment we assume one run-
ning VM, one probing node, and a load test interval
of 200ms. We get the overhead for the job running
on the VM. We did not do tests with multiple VMs
on the same execution node because in that case
the overhead is difficult to express in terms of the
slowdown, and multiple working VMs compete for
CPU cycles among themselves. The presence of the
reporting module, without beacons, causes a slow-
down of 1.4%. Increased reporting density incurs
additional slowdowns, but again with realistic re-
porting frequencies, we can assume that part of the
overhead to be zero.

4.2 Simulation results

In this section, we evaluate the effectiveness of our
p2p scheme on discovering appropriate resources for
execution of jobs and on enforcing fairness in cycle



0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r 

of
 d

is
co

ve
re

d 
re

so
ur

ce
s

Nodes

 TTL 5
 TTL 4
 TTL 3
 TTL 2
 TTL 1

Figure 7: The number of resources available at each
node with increasing TTL. The nodes are sorted in
increasing order of discovered resources.

sharing by simulating a network of 1000 nodes. We
developed a simulator of our proposed system on top
of Pastry running with the direct communication
driver, which allows the creation of multiple Pastry
nodes on a single machine. We used the transit-stub
Internet model [39] to generate an IP network with
10 stub domain routers, 100 transit domain routers,
and attach 1000 nodes randomly to the 100 stub
domain routers.

In the first set of simulations, we measure the effec-
tiveness of our protocol for disseminating resource
announcements. We assume each node has some re-
source to announce to the network, and uses the de-
fined protocol to send the announcements. We run
the simulation five times with TTL varying from 1
to 5. For each simulation, we measure the num-
ber of remote nodes whose announcements reach
any given node. Figure 7 shows how the number
of “discovered” nodes by each node increases with
the TTL value. Increasing TTL results in more re-
sources being discovered, but it also implies that
resources may be far away in the network proximity
space.

To measure the effectiveness of our credit-based
scheme for enforcing fairness, we simulate cycle
sharing among the 1000 nodes, with 500 nodes ac-
tively submitting jobs, while the rest of the nodes
only contribute cycles. The TTL is fixed at three for
this set of observations. Each of the 500 submitting
nodes is fed with a randomly generated sequence of
100 jobs of equal length, each running for nine time
units. The interarrival time between the jobs fol-
lows a uniform distribution between 1 and 17 time
units. We compare the job throughput of three sce-
narios: (1) all 500 submitting nodes are honest; (2)
250 submitting nodes are honest and 250 submitting

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200

N
um

be
r 

of
 jo

bs

Time

Jobs issued
Jobs completed

Figure 8: The number of jobs issued, and completed
over the period of our trace. Every node contributes
resources to the system and is fair.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200 1400

N
um

be
r 

of
 jo

bs

Time

Jobs issued
Jobs completed

Figure 9: The number of jobs issued, and completed
over the period of our trace for the non-cheating
nodes. The feedback system is disabled.

nodes cheat by only submitting jobs and never ac-
cepting remote jobs, and the fairness mechanism is
not turned on; and (3) same as (2) but with the fair-
ness mechanism turned on. For case (3), the thresh-
old for detecting cheating nodes is set to three, i.e.,
a cheating node can run up to three jobs without
compensating the system, but when it attempts to
run more jobs, other nodes ignore its requests for re-
sources. The job throughput under these scenarios
are shown in Figures 8, 9, and 10, respectively.

Figure 8 shows the number of jobs issued and the
number of jobs completed against our simulated
time when all 500 nodes are honest. It is observed
that the jobs do not have to wait if free resources
are available. The number of completed jobs closely
follow the number of issued jobs. The slight in-
crease in the difference over time is due to the fact
the more jobs were requested than the available re-
sources. However, all jobs completed at about the
1150th time unit, only 150 time units after all the
jobs were issued.



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 200 400 600 800 1000 1200 1400

N
um

be
r 

of
 jo

bs

Time

Jobs issued
Jobs completed

Figure 10: The number of jobs issued, and com-
pleted over the period of our trace for the non-
cheating nodes. The feedback system is enabled.

Figure 9 shows when 250 submitting nodes cheat
and the credit-based mechanism is not turned on,
the non-cheating nodes experience a larger delay in
their job completion. There is a delay of 345 time
units for all the jobs to complete. This is signifi-
cant considering that the job lengths are only 9 time
units.

Finally, Figure 10 shows the credit-based mech-
anism effectively isolates the cheating nodes and
the jobs from the non-cheating nodes made more
progress compared to the case without the credit-
based mechanism. Note that the job delay in this
case is less than that in Figure 8, because here 250
non-cheating nodes were sharing cycles of a total
of 750 nodes, where as in the latter case 500 nodes
shared cycles of 1000 nodes. This simulation shows
that the credit-based mechanism quickly prohibits
cheating nodes from consuming other nodes’ cycles.

5 Related work

We discuss related work on cycle sharing over the
Internet, on compiler instrumentations, and on fair-
ness in p2p storage sharing systems.

Cycle sharing over the Internet The idea
of cycle sharing among a large number of ad-
ministratively independent, geographically dis-
persed, off-the-shelf desktops is popularized by
the SETI@home [34] project. Similar approaches
for solving large scale scientific problems are also
adopted in systems such as Distributed.NET [10],
Entropia [12], Genome@home [18] , and Nile [28]
. These systems implement a central manager that
is responsible for the distribution of the problem

set, and the collection and analysis of the results.
Users typically download the client programs man-
ually and then execute them on their resources. The
client programs are specially developed applications
that the resource owners have to explicitly trust [6].
The clients periodically contact the central man-
agers to provide results and to receive further data
for processing. The clients are pure volunteers in
nature, i.e., they do not receive any resource contri-
bution for their own tasks. The aim of our project
is to provide all nodes in the system with the ca-
pability to utilize shared resources. This provides
an incentive for more resource owners to contribute
resources to the system, hence increasing the instan-
taneous compute capacity of the system.

Various grid platforms also share the same goal of
distributed sharing resources. Condor [24] provides
a mechanism for sharing resources in a single ad-
ministrative domain by harnessing the idle-cycles on
desktop machines. Globus [15] and Legion [20] al-
low users to share resources across administrative
domains. However, the resource management is hi-
erarchical, and the users have to obtain accounts
on all the resources that they intend to use [6].
PUNCH [23] decouples the shared resource users
from the underlying operating system users on each
resource, hence eliminating the need for accounts
on all the shared resources. Sun Grid Engine [37] is
another system that harnesses the compute powers
of distributed resources to solve large scale scien-
tific problems. However, all of these systems rely
on some forms of centralized resource management
and therefore are susceptible to performance bottle-
necks, single-point of failures, and unfairness issues
that our system avoids by using p2p mechanisms.

Fair peer-to-peer storage sharing The idea of
enforcing fairness has been extensively studied in
peer-to-peer storage systems, motivated by the us-
age studies [11, 33] which show that many users con-
sume resources but do not compensate by contribut-
ing. CFS [9] allows only a specified storage quota for
use by other nodes without any consideration for the
space contributed to the system by the consumer.
PAST [31] employs a scheme where a trusted third
party holds usage certificates that can be used in de-
termining quotas for remote consumers. The quotas
can be adjusted according to the contribution of a
node. Samsara [8] enforces fairness in p2p storage
without requiring trusted third parties, symmetric
storage relationships, monetary payment, or certi-
fied identities. It utilizes an extensive claim manage-



ment which leverages selfish behavior of each node
to achieve an overall fair system. The fairness in
our cycle sharing system was motivated by Samsara.
However, fairness in cycle sharing is more complex
than in data sharing as once a computation is com-
pleted, the execution node has no direct means of
punishing a cheating consumer. SHARP [17] pro-
vides a mechanism for resource peering based on the
exchange of tickets and leases, which can be traded
among peering nodes for resource reservation and
committed consumption. Credits in our system are
similar to tickets in SHARP. However, our system
uses the credit reports to enforce fairness of sharing,
and not as a mean for advance resource reservations.

There have also been efforts to design a general
framework for trading resources in p2p systems.
Data trading [5] is proposed to allow a consumer
and a resource provider exchange an equal amount
of data, and cheaters can be punished by with-
holding the data. The approach requires symmet-
ric relationships and do not apply well to p2p sys-
tems where there is very little symmetry in resource
sharing relationships. The use of micropayments
as incentives for fair sharing is proposed in [19].
Fileteller [22] suggests the use of such micropay-
ments to account for resource consumption and con-
tribution. In [38], a distributed accounting frame-
work is described, where each node maintains a
signed record of every data object it stores directly
on itself or on other nodes on its behalf, and each
node periodically audits random other nodes by
comparing multiple copies of the same records. The
system requires certified entities to prevent against
malicious accusations, and the auditor has to work
for other nodes, without any direct benefit. Our
system implements a distributed accounting system
as well, where a node verifies credit reports of a re-
mote node only when it has to do an exchange with
it, which is a direct benefit.

Compiler instrumentation and proof carry-

ing code The concept of compiler generated in-
strumentation and monitoring of program execution
within a JVM is not new. The Sun Hotspot [29]
compiler, compilers for the IBM JDK [36], and com-
pilers for the Jikes RVM [1] all use either compiler
generated program instrumentation or an examina-
tion of the active routines on the stack to deter-
mine hot methods. This in turn is similar to profil-
ing [2, 4, 13] for collecting information about where
time is spent during a program’s execution. These
efforts are orthogonal to our work, and could com-

plement our work by providing a mechanism for col-
lecting information about total program run time.
Our novelty is in bootstrapping off the already exist-
ing monitoring of program executions supported by
JVMs as part of their optimization strategy to allow
the progress of a program to be remotely tracked.
Other projects (e.g. [21]) have used instrumenta-
tion to collect data for performance purposes, and
allows on-the-fly instrumentation of statically com-
piled programs.

The GRAM component of the Globus project [16]
also monitors program execution, and uses this in-
formation to change the resource requirements of
the application to give better quality of service.
Our work differs in our motivation – we are using
the monitoring to determine if we are getting a re-
source as promised; and in our implementation –
the monitoring measures program performance via
automatic instrumentation by a JVM and not by
external measures or by programmer inserted call-
outs from the program. This allows us to not require
individual programs to be adapted to our system in
order to use it.

The ultimate goal of our work is related to proof
carrying code [27]. We differ from that work in that
the ultimate goal here is to have a program certify
to the submitter, rather than the host, facts about
its execution, with these facts bound to the program
form itself.

6 Conclusion

We have described the design of a system, and
our implemented prototype, that exploits the safety,
portability and internal profiling capabilities of Java
and Java Virtual Machines. This system allows a
decentralized p2p network to be used to advertise
and allocate resources, and contains a credit sys-
tem that allows decentralized sharing of resources
and evaluation of credit-worthiness. Our experi-
mental results show that our fairness mechanisms
work well to punish cheating nodes, and our moni-
toring of program progress has effectively zero over-
head. Because of its decentralized nature, leading
to low costs for entry and exit from the network,
our system is ideal for constructing ad-hoc intra-
organizational networks of pooled resources, and for
constructing pools of resources for small business
and educational purposes.



Acknowledgment

We thank the anonymous reviewers for their help-
ful comments. This work was supported in part by
NSF CAREER award grant ACI-0238379 and NSF
grants CCR-0313026 and CCR-0313033.

References

[1] B. Alpern and al. et. The Jalapeo Virtual Ma-
chine. IBM System Journal, 39(1), February
2000.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghe-
mawat, M. R. Henzinger, S.-T. A. Leung, R. L.
Sites, M. T. Vandevoorde, C. A. Waldspurger,
and W. E. Weihl. Continuous profiling: Where
have all the cycles gone? In Proc. Sixteenth
ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 1–14, 1997.

[3] M. Arnold. Online Profiling and Feedback-
Directed Optimization of Java. PhD thesis,
Rutgers, The State University of New Jersey,
October 2002.

[4] T. Ball and J. R. Laurus. Efficient path profil-
ing. In Proc. 29th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages
46–57, 1996.

[5] B.F. Cooper and H. Garcia-Molina. Peer-to-
peer resource trading in a reliable distributed
system. In Proc. First International Workshop
on Peer-to-Peer Systems, Cambridge, MA,
2002.

[6] A. R. Butt, S. Adabala, N. H. Kapadia,
R. J. Figueiredo, and J. A. B. Fortes. Grid-
computing portals and security issues. Journal
of Parallel and Distributed Computing: Special
issue on Scalable Web Services and Architec-
ture, 63(10):1006–1014, October 2003.

[7] M. Castro, P. Druschel, Y. C. Hu, and A. Row-
stron. Exploiting network proximity in peer-
to-peer overlay networks. Technical report,
Technical report MSR-TR-2002-82, 2002, 2002.
〈 http://research.microsoft.com/˜antr/PAST/
localtion.ps 〉 (17 Oct 2003).

[8] L. P. Cox and B. D. Noble. Samsara: Honor
among thieves in peer-to-peer storage. In Proc.
19th ACM Symposium on Operating Systems
Principles, October 2003.

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Mor-
ris, and I. Stoica. Wide-area cooperative stor-
age with CFS. In Proc. SOSP, October 2001.

[10] distributed.net. distributed.net
projects (11 April 2003).
〈 http://www.distributed.net/projects.php 〉
(28 September 2003).

[11] E. Adar and B.A. Huberman. Free riding on
Gnutella. First Monday, 5(10), October 2000.

[12] Entropia, Inc. Entropia: Pc
grid computing (16 June 2003).
〈 http://www.entropia.com/index.asp 〉
(28 September 2003).

[13] J. Fenlason and R. Stallman.
GNU gprof manual (Nov 7, 1998).
〈 http://www.gnu.org/manual/
gprof-2.9.1/gprof.html 〉 (Oct 14, 2003).

[14] FIPS 180-1. Secure Hash Standard. Techni-
cal Report Publication 180-1, Federal Informa-
tion Processing Standard (FIPS), NIST, US
Department of Commerce, Washington D.C.,
April 1995.

[15] I. Foster and C. Kesselmann. Globus: A
Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputing Applica-
tions, 11(2):115–128, Jan. 1997.

[16] I. Foster, A. Roy, and V. Sander. A qual-
ity of service architecture that combines re-
source reservation and application adaptation.
In Proc. 8th International Workshop on Qual-
ity of Service, 2000.

[17] Y. Fu, J. Chase, B. Chun, S. Schwab, and
A. Vahdat. SHARP: An architecture for secure
resource peering. In Proc. 19th ACM Sympo-
sium on Operating Systems Principles, October
2003.

[18] Genome@home. Genome at
home(26 September 2003).
〈 http://www.stanford.edu/group/pandegroup/
genome/index.html 〉 (29 September 2003).

[19] P. Golle, K. Leyton-Brown, and I. Mironov. In-
centives for sharing in peer-to-peer networks.
In Proc. Third ACM Conference on Electroni
Commerce, Tampa, FL, 2001.

[20] A. S. Grimshaw and W. A. Wulf. Legion – A
View from 50,000 feet. In Proc. 5th IEEE Inter-
national Symposium on High Performance Dis-
tributed Computing(HPDC’96), Syracuse, NY,
1996.



[21] J. K. Hollingsworth, B. P. Miller, M. J. R.
Goncalves, O. Naim, Z. Xu, and L. Zheng.
MDL: A language and compiler for dynamic
program instrumentation. In Proc. IEEE
PACT, pages 201–, 1997.

[22] J. Ioannidis, A. Keromytis, and V. Prevelakis.
Fileteller: Paying and getting paid for file stor-
age. In Proc. Sixth Annual Conference on Fi-
nancial Cryptography, Bermuda, 2002.

[23] N. H. Kapadia and J. A. B. Fortes. PUNCH:
An architecture for Web-enabled wide-area
network-computing. Cluster Computing: The
Journal of Networks, Software Tools and Ap-
plications, 2(2):153–164, Sep. 1999.

[24] M. J. M. J. Litzkow, M. Livny, and M. W.
Mutka. Condor - A hunter of idle worksta-
tions. In Proc. 8th International Conference on
Distributed Computing Systems (ICDCS 1988),
pages 104–111, San Jose, CA, 1988.

[25] J. Moreira, S. Midkiff, M. Gupta, P. Arti-
gas, P. Wu, and G. Almasi. The NINJA
project: Making Java work for high perfor-
mance computing. Communications of the
ACM, 44(10):102–109, October 2001.

[26] J. E. Moreira, S. P. Midkiff, and M. Gupta.
From flop to megaflops: Java for technical com-
puting. ACM Transactions on Programming
Languages and Systems, 22(2):265–295, March
2000. IBM Research Report RC 21166.

[27] G. Necula. Proof carrying code. 1997.

[28] Nile. Scalable solution for distributed pro-
cessing of independant data (18 June 1999).
〈 http://www.nile.cornell.edu/index.html 〉 (29
September 2003).

[29] M. Paleczny, C. Click, and C. Vick. The
Java HotSpot server compiler. In Proc. 2001
USENIX Java Virtual Machine Symposium,
2001.

[30] S. Ratnasamy, P. Francis, M. Handley,
R. Karp, and S. Schenker. A Scalable
Content-Addressable Network. In Proc. ACM
SIGCOMM 2001 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM’01),
pages 161–172, San Diego, CA, 2001.

[31] A. Rowstron and P. Druschel. PAST: A large-
scale, persistent peer-to-peer storage utility. In
Proc. 18th ACM Symposium on Operating Sys-
tems Principles, October 2001.

[32] A. Rowstron and P. Druschel. Pastry: Scal-
able, distributed object location and rout-
ing for large-scale peer-to-peer systems. In
Proc. IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware),
pages 329–350, November 2001.

[33] S. Saroiu, G. Krishna, and S. Gribble. A mea-
surement study of peer-to-peer file sharing sys-
tems. In Proc. SPIE Conference on Multime-
dia Computing and Networking, San Jose, CA,
2002.

[34] SETI@home. Search for extraterrestrial
intelligence at home (29 September 2003).
〈 http://setiathome.ssl.berkeley.edu/index.html 〉
(29 September 2003).

[35] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Inter-
net Applications. In Proc. ACM SIGCOMM
2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer
Communication (SIGCOMM’01), pages 149–
160, San Diego, CA, 2001.

[36] T. Suganuma, T. Yasue, M. Kawahito, H. Ko-
matsu, and T. Nakatani. A dynamic optimiza-
tion framework for a Java just-in-time com-
piler. In Proc. ACM Conference on Object-
Oriented Programming Systems, Languages,
and Applications (OOPSLA), pages 180–195,
2001.

[37] Sun(TM) Microsystems. Sun ONE
Grid Engine Software (26 June 2003).
〈 http://wwws.sun.com/software/gridware/
sge.html 〉 (29 September 2003).

[38] T-W.J. Ngan and D.S. Wallach and P. Dr-
uschel. Enforcing fair sharing of peer-to-peer
resources. In Proc. Second International Work-
shop on Peer-to-Peer Systems, Berkeley, CA,
2003.

[39] E. Zegura, K. Calvert, and S. Bhattacharjee.
How to Model an Internetwork. In Proc. IEEE
INFOCOM, March 1996.

[40] B. Y. Zhao, J. D. Kubiatowicz, and A. D.
Joseph. Tapestry: An Infrastructure for Fault-
Resilient Wide-area Location and Routing.
Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.


