
Java, Peer-to-Peer, and Accountability:
Building Blocks for Distributed Cycle

Sharing

Ali Raza Butt
Xing Fang

Y. Charlie Hu
Samuel Midkiff

2

The need for sharing compute-cycles
• Scientific applications

Complex, large data sets

• Dedicated resources
Expensive

• Modern workstation
Powerful resource
Available in large numbers
Underutilized

Harness idle-cycles of network of workstations

3

Current cycle-sharing schemes
• Examples: SETI@Home, Distributed.net, Entropia

• Use centralized application servers
Performance bottleneck
Single point of failure

• Applications are explicitly trusted
Introduce a plethora of security problems

• Users contribute compute-cycles
Individuals cannot utilize the shared cycles

4

Cycles-sharing for All!
• Goal: all participants can utilize the system

Challenges:
Resource discovery

and management

Portability
Safety
Security

Fairness

Our solution:
Exploit existing peer-to-peer

networking

Leverage Java Virtual Machine
Sandboxing

Add the ability to remotely monitor
Java program progress

Develop distributed credit based
accountability

5

Agenda
• Background
• Discovering resources
• Ensuring fairness
• Design & Implementation
• Evaluation
• Conclusions

6

Background: Overlay Networks

P2P networks are self-organizing overlay
networks without central control

ISP3

ISP1 ISP2

Site 1

Site 4

Site 3Site 2 N

N N

N

N

N N

7

Background: structured p2p overlays
• Overlays with imposed structure

Each node has a unique random nodeId
Each message has a key
The nodeId and key reside in the same name space

• Routing: Takes a message with a key and sends it to a
unique node

• Implements Distributed Hash Table (DHT) abstraction

• DHT abstraction is preserved in the presence of node
failure/departure

8

Properties of structured p2p networks
• Scalable
• Self-organizing
• Fault-tolerant
• Locality-aware
• Simple to deploy

• Many implementations available
E.g. Pastry, Tapestry, Chord, CAN…

9

Example: Pastry

• 128-bit circular identifier space

• Routing: A message is routed
reliably to a node with nodeId
numerically closest to the key

• Locality-aware
Routing table has O(log N) entries
matching increasingly long prefix
of local nodeId

Identifier
space

10

Agenda
• Background
• Discovering resources
• Ensuring fairness
• Design & Implementation
• Evaluation
• Conclusions

11

Resource availability information
• Announcements to nearby nodes

Contain resource characteristics and
availability information

Leverage locality-aware routing table

Soft state
Periodically refreshed

12

Resource announcements

are physically close to

13

Execution node selection
• Utilize local resource availability information

• Query nearby nodes for job execution
Proximity
Credit-worthiness

• Request remote execution

14

Agenda
• Background
• Discovering resources
• Ensuring fairness
• Design & Implementation
• Evaluation
• Conclusions

15

Fairness in cycle-sharing
• More complex than fairness in storage sharing

[Samsara: SOSP 2003]
Cycles are perishable resources

• Challenge
Mutual guarantees for submitting and contributing nodes

• Our Solution:
VM and compiler instrumented code for progress monitoring
DHT based feedback system to report unfair nodes
Assumption: nodes act in their own self-interest

16

Job progress monitoring
• System leverages existing Instrumentation Sampling

Framework

• A thread periodically retrieves contents of Method
Invocation Counters

• VM communicates progress (using beacons)
asynchronously to the Reporting Module

17

Monitoring setup
• Reporting module

Provides submitter
with job monitoring
capability

Decouples design of
beacons from that of
query

Provides asynchronous
job monitoring

Execution
node

Reporting
module

program
and

beacons

Submission
node

Progress
info

query
processing

probe
query

18

Distributed credit feedback system
• Ensure compensation for consumed cycles

• Tradable credit-reports
Digitally signed
Un-forgeable

• DHT based distributed credit tracking
Allows a node’s transactions to be checked by other nodes
Allows determination of a node’s credit-worthiness

• Credit-worthiness used to punish and reward nodes

19

Node
C

Job

Credit

job

Progress
report

signed
credit

check
credit

trade insert
credit

Node
Z

check
credit

trade

DHT

Node A Node B

20

Agenda
• Background
• Discovering resources
• Ensuring fairness
• Design & Implementation
• Evaluation
• Conclusions

21

Implementation
• Prototype implementation:

P2p functionality using FreePastry 1.3
DHT feedback built on PAST

• Augmented Jikes RVM
Added new VM thread to use adaptive compiler
information to monitor progress

22

p2p
network

Modified
JVM with

Probe support

Resource
Manager

P2p
communication

Remote job
probing

Code
instrumentation

engine

Credit generator

P2p
Storage

Software modules

23

Agenda
• Background
• Discovering resources
• Ensuring fairness
• Design & Implementation
• Evaluation
• Conclusions

24

Methodology
• Overhead measurement in a real implementation

Overhead of beacons
Overhead of reporting module

• Effectiveness of catching thieves in a large scale
simulation

25

Implementation Setup
• Hardware

Pentium 4, 2 GHz, 512MB RAM
Linux kernel 2.4.18
Connected via 100 Mb/s Ethernet

26

Overhead of beacons

27

Overhead of the reporting module

28

Simulations
• 1000 Nodes setup

• Georgia Tech-Internet Topology Models (GT-ITM)
Transit-stub model
100 transit domains
10 stub domains

• Sequence
100 (issue time: T, job length: L) pairs
Interval (Tn–Tn-1), L uniform distribution [1,17]
Random overload/idle periods

29

Jobs issued and completed: No cheaters

30

Jobs issued and completed: cheaters

31

Jobs issued and completed: cheaters caught

32

Evaluation conclusion
• The overhead of monitoring code is insignificant

• The accounting system effectively recognizes
cheating nodes and restricts them

33

Agenda
• Background
• Discovering resources
• Ensuring fairness
• Design & Implementation
• Evaluation
• Conclusions

34

Conclusions
• Building blocks for cycle-sharing

Peer-to-peer networks
Java based progress monitoring and security
Credit-based accountability mechanisms

• Ideal system for inter-organizational
networks of pooled resources

35

Questions?

