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The need for sharing compute-cycles

o Scientific applications
= Complex, large data sets

e Dedicated resources
= Expensive

e Modern workstation

= Powerful resource
= Avallable in large numbers
= Underutilized

=>»Harness idle-cycles of network of workstations
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Current cycle-sharing schemes

Examples. SETI@Home, Distributed.net, Entropia

Use centralized application servers

= Performance bottleneck
= Single point of failure

Applications are explicitly trusted

= |Introduce a plethora of security problems

Users contribute compute-cycles
= |ndividuals cannot utilize the shared cycles
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Cycles-sharing for All!

e Goal: all participants can utilize the system

Challenges: Our solution:
= Resource discovery = Exploit existing peer-to-peer
and management networking

Portability = | everage Java Virtual Machine
Safety Sandboxing

Security = Add the ability to remotely monitor
Java program progress

Fairness = Develop distributed credit based
accountability
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Background: Overlay Networks

P2P networks are self-organizing overlay
networks without cengral control PURDUE




Background: structured p2p overlays

Overlays with imposed structure
= Each node has a unique random nodeId

= Each message has a key
* ThenodeId and key reside in the same name space

Routing: Takes a message with akey and sendsit to a
unigue node

mplements Distributed Hash Table (DHT) abstraction

DHT abstraction is preserved in the presence of node
fallure/departure
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Properties of structured p2p networks

Scalable
Self-organizing
Fault-tolerant

L ocality-aware
Simple to deploy

Many implementations available
» E.g. Pastry, Tapestry, Chord, CAN...
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128-bit circular identifier space

Routing: A message Is routed
reliably to a node with nodeId

numerically closest to the key

L ocality-aware

= Routing table has O(log N) entries
matching increasingly long prefix
of local nodeId

Example: Pastry
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e Background
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Resour ce availability information

e Announcements to nearby nodes

= Contan resource characteristics and
availability information

= | everage locality-aware routing table

= Soft state
= Periodically refreshed
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Resour ce announcements

@ 2ephysicaly closeto ()
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Execution node salection

« Utilizelocal resource availability information

e Query nearby nodes for job execution
= Proximity
= Credit-worthiness

e Request remote execution
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* Discovering resources
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Fairness in cycle-sharing

* More complex than fairness in storage sharing
[Samsara: SOSP 2003]

= Cycles are perishable resources

e Challenge
= Mutual guarantees for submitting and contributing nodes

e Our Solution:
= VM and compiler instrumented code for progress monitoring
= DHT based feedback system to report unfair nodes
= Assumption: nodes act in their own self-interest
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Job progress monitoring

o System leverages existing Instrumentation Sampling
Framework

A thread periodically retrieves contents of Method
Invocation Counters

VM communicates progress (using beacons)
asynchronously to the Reporting Module
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Monitoring setup

Execution Submission

* Reporting module node A

* Provides submitter

with job monitoring Reporting
capability module

= Decouples design of
beacons from that of Progress
query info

. uer
= Provides asynchronous program proqcesging

job monitoring and
beacons
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Distributed credit feedback system

Ensure compensation for consumed cycles

Tradable credit-reports
= Digitally signed
= Un-forgeable

DHT based distributed credit tracking
= Allows anode’stransactions to be checked by other nodes
= Allows determination of a node’s credit-worthiness

Credit-worthiness used to punish and reward nodes
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e Ensuring fairness

PURDUE




| mplementation

* Prototype implementation:

= P2p functionality using FreePastry 1.3
= DHT feedback built on PAST

* Augmented JikesRVM

= Added new VM thread to use adaptive compiler
Information to monitor progress
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Software modules

communication

Credit generator

Resource
Manager

Remote job
probing

P2p
Storage

Code
instrumentation
engine

Modified
JVM with
Probe support
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 Design & Implementation
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Methodol ogy

e Overhead measurement in areal implementation
= Overhead of beacons
= Overhead of reporting module

» Effectiveness of catching thievesin alarge scale
simulation
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| mplementation Setup

e Hardware
= Pentium 4, 2 GHz, 512MB RAM
= Linux kernel 2.4.18
= Connected via 100 Mb/s Ethernet
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S mulations

e 1000 Nodes setup

e Georgia Tech-Internet Topology Models (GT-ITM)
= Trangt-stub model
= 100 transit domains
= 10 stub domains

e Seguence
= 100 (issuetime: T, job length: L) pairs
= Interval (T—T,,), L uniform distribution [1,17]
= Random overload/idle periods
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Jobs issued and completed: No cheaters
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Jobs issued and completed: cheaters
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Jobs issued and completed:. cheaters caught
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Eval uation conclusion

* The overhead of monitoring code is insignificant

* The accounting system effectively recognizes
cheating nodes and restricts them
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e Evaluation

PURDUE




Conclusions

* Building blocks for cycle-sharing
* Peer-to-peer networks
= Java based progress monitoring and security
= Credit-based accountability mechanisms

 |deal system for inter-organizational
networks of pooled resources
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Questions?




