Java, Peer-to-Peer, and Accountability:
Building Blocks for Distributed Cycle
Sharing

All Raza Butt
Xing Fang
Y. Charlie Hu
Samuel Midkiff




The need for sharing compute-cycles

o Scientific applications
= Complex, large data sets

e Dedicated resources
= Expensive

e Modern workstation

= Powerful resource
= Avallable in large numbers
= Underutilized

=>»Harness idle-cycles of network of workstations

2 PURDUE




Current cycle-sharing schemes

Examples. SETI@Home, Distributed.net, Entropia

Use centralized application servers

= Performance bottleneck
= Single point of failure

Applications are explicitly trusted

= |Introduce a plethora of security problems

Users contribute compute-cycles
= |ndividuals cannot utilize the shared cycles

; PURDUE




Cycles-sharing for All!

e Goal: all participants can utilize the system

Challenges: Our solution:
= Resource discovery = Exploit existing peer-to-peer
and management networking

Portability = | everage Java Virtual Machine
Safety Sandboxing

Security = Add the ability to remotely monitor
Java program progress

Fairness = Develop distributed credit based
accountability

PURDUE




Background
Discovering resources
Ensuring fairness

Design & Implementation
Evaluation
Conclusions

PURDUE




Background: Overlay Networks

P2P networks are self-organizing overlay
networks without cengral control PURDUE




Background: structured p2p overlays

Overlays with imposed structure
= Each node has a unique random nodeId

= Each message has a key
* ThenodeId and key reside in the same name space

Routing: Takes a message with akey and sendsit to a
unigue node

mplements Distributed Hash Table (DHT) abstraction

DHT abstraction is preserved in the presence of node
fallure/departure

PURDUE




Properties of structured p2p networks

Scalable
Self-organizing
Fault-tolerant

L ocality-aware
Simple to deploy

Many implementations available
» E.g. Pastry, Tapestry, Chord, CAN...

PURDUE




128-bit circular identifier space

Routing: A message Is routed
reliably to a node with nodeId

numerically closest to the key

L ocality-aware

= Routing table has O(log N) entries
matching increasingly long prefix
of local nodeId

Example: Pastry

PURDUE




e Background

PURDUE




Resour ce availability information

e Announcements to nearby nodes

= Contan resource characteristics and
availability information

= | everage locality-aware routing table

= Soft state
= Periodically refreshed

PURDUE




Resour ce announcements

@ 2ephysicaly closeto ()
12 PURDUE




Execution node salection

« Utilizelocal resource availability information

e Query nearby nodes for job execution
= Proximity
= Credit-worthiness

e Request remote execution

PURDUE




* Discovering resources

PURDUE




Fairness in cycle-sharing

* More complex than fairness in storage sharing
[Samsara: SOSP 2003]

= Cycles are perishable resources

e Challenge
= Mutual guarantees for submitting and contributing nodes

e Our Solution:
= VM and compiler instrumented code for progress monitoring
= DHT based feedback system to report unfair nodes
= Assumption: nodes act in their own self-interest

PURDUE




Job progress monitoring

o System leverages existing Instrumentation Sampling
Framework

A thread periodically retrieves contents of Method
Invocation Counters

VM communicates progress (using beacons)
asynchronously to the Reporting Module

PURDUE




Monitoring setup

Execution Submission

* Reporting module node A

* Provides submitter

with job monitoring Reporting
capability module

= Decouples design of
beacons from that of Progress
query info

. uer
= Provides asynchronous program proqcesging

job monitoring and
beacons

PURDUE




Distributed credit feedback system

Ensure compensation for consumed cycles

Tradable credit-reports
= Digitally signed
= Un-forgeable

DHT based distributed credit tracking
= Allows anode’stransactions to be checked by other nodes
= Allows determination of a node’s credit-worthiness

Credit-worthiness used to punish and reward nodes

PURDUE




job

Progress

report

sighed

credit

insert
credit

credit

check
credit

PURDUE

UNIVERSITY




e Ensuring fairness

PURDUE




| mplementation

* Prototype implementation:

= P2p functionality using FreePastry 1.3
= DHT feedback built on PAST

* Augmented JikesRVM

= Added new VM thread to use adaptive compiler
Information to monitor progress

PURDUE




Software modules

communication

Credit generator

Resource
Manager

Remote job
probing

P2p
Storage

Code
instrumentation
engine

Modified
JVM with
Probe support

RDUE

PU

vERSITYX




 Design & Implementation

PURDUE




Methodol ogy

e Overhead measurement in areal implementation
= Overhead of beacons
= Overhead of reporting module

» Effectiveness of catching thievesin alarge scale
simulation

PURDUE




| mplementation Setup

e Hardware
= Pentium 4, 2 GHz, 512MB RAM
= Linux kernel 2.4.18
= Connected via 100 Mb/s Ethernet

PURDUE




)
-
3
S
O
©
(e
S
[
3

B 200ms B 500ms

H0ms

oBrvioAy

Yol 8727

TN LT

orpneSady zzz~

OBAR[ CIZ

Benchmarks

ssaadwoy) 107

(9881UDDI0J) SUMOPMOTS

I'NEBE RS E T-¥

U N




LD
D
g
@)
=
=
®,
9]
| N—-—
&)
-
-
©
[®
S
m
=
O

B No Beacon

H50ms MW 200ms ™ 500ms

® 10ms

|

o

Lo -’ oD
(98v1Ud0I3) SUMOPMOTS

o

Ao®[ 8ZT

TIIN 222

o1pnedady z7z

ovAB[TEIT

ssaf z0g

ssaadmo) 107

Benchmarks

UNIVERSITY




S mulations

e 1000 Nodes setup

e Georgia Tech-Internet Topology Models (GT-ITM)
= Trangt-stub model
= 100 transit domains
= 10 stub domains

e Seguence
= 100 (issuetime: T, job length: L) pairs
= Interval (T—T,,), L uniform distribution [1,17]
= Random overload/idle periods

PURDUE




Jobs issued and completed: No cheaters

N
LD
2,
(P

o

=

QL
L

£

-
=

— Jobs issued

/—

800 1000

1200

PURDUE




Jobs issued and completed: cheaters

— Jobs issued

N
LD
2,
(P

o

=

QL
L

£

-
=

600 800 1000 1200 1400

Time

PURDUE




Jobs issued and completed:. cheaters caught

— Jobs issued

N
LD
2,
(P

o

=

QL
L

£

-
=

1000 1200 1400

PURDUE




Eval uation conclusion

* The overhead of monitoring code is insignificant

* The accounting system effectively recognizes
cheating nodes and restricts them

PURDUE




e Evaluation

PURDUE




Conclusions

* Building blocks for cycle-sharing
* Peer-to-peer networks
= Java based progress monitoring and security
= Credit-based accountability mechanisms

 |deal system for inter-organizational
networks of pooled resources

PURDUE




Questions?




