CSCE 513 Computer Architecture
Kirk W. Cameron, Ph.D.
Assistant Professor
Department of Computer Science and Engineering
University of South Carolina

Syllabus Highlights

• Dr. Cameron’s info
 - kcameron@cse.sc.edu
 - SWGN 3A47
 - TR 3:15-4:30 or by appt.
 - Phone: 777-8627

• TA: Allen Michalski
 - michalsk@cse.sc.edu
 - 1D49
 - TR 12:30-1:45pm
 - Phone: 576-6355

• Text:
 - Computer Organization and Design: The Hardware/Software Interface by Patterson and Hennessy (2nd Edition)

• Exams:
 - midterm and a comprehensive final exam
 - Closed book, crib sheets (later)

• Grading:
 - 25% midterm, 35% final exam
 - 35% projects, 5% participation

• Homework (exam-like questions, not collected, not graded, hard-copy solutions posted)

• Supplementary readings (papers, appendices, background)

Syllabus Highlights

• Projects: (subject to change)
 - Microbenchmarking
 - Application Speedup
 - Simulation
 - Undergrad
 - Introductory simulation project
 - Grad students
 - Advanced simulation project

• Undergrads
 - Introductory simulation project
• Grad students
 - Advanced simulation project

Syllabus Highlights

• Pop Quizzes
 - Extra credit only, 5 minutes only, 2:00 pm by my watch
 - Analytical puzzles, not course material
 - Goals:
 - Encourage promptness
 - Reward thinking outside the box
 - Points will be tacked onto final exam grade (not final grade!)
 - Each quiz worth 1 point. ½ point for attempt, ½ if correct
 - No makeup, if late then no quiz for you (late is when I say it is)

Academic Dishonesty

• You are responsible for your conduct
• Unless otherwise specified you must do your own work on all assignments and exams.
• Those found cheating will be referred to the university committee on academic dishonesty and will receive an F in this class.
• If you are unsure as to what constitutes cheating see web page, ask instructor
Academic Courtesy

- No chatting among classmates during lecture
 - Distracts me and impolite to others
- No food in class, drinks are o.k. - but be careful
- No web surfing during class
- I welcome questions provided:
 - You are respectful of others (raise hand, don’t interrupt classmates, be polite)

Prerequisites

- MATH 141 Calc I C or better
- MATH 115 Pre-calc
- MATH 174 Discrete Math
- CSCE 145 Algorithm Design I
- CSCE 211 Digital Logic
- CSCE 213 Computer Organization
- CSCE 212 Intro to Comp Arch
- CSCE 513 Computer Architecture
 - or
- or

Things you should already know…

- Binary arithmetic
- Number representation
 - 2’s complement (int and fp)
- Combinational logic
 - And, or, xor, nand, nor, mux, etc
- Sequential logic
 - Flip-flops

Things you should already know…

- Basic design
 - Adders, 1-bit ALUs, PLAs, DRAM, register files
 - Control, basic organization
- Some assembly language
- Memory addressing (virtual vs. physical mapping)
- Boolean algebra
 - Axioms, laws, theorems, reduction (Karnaugh maps)

See recommended text for help on these topics…
Computer Organization and Design by Patterson and Hennessey

Things you should learn…

- Memory organization
- Performance quantification and issues
- ILP
- Simulation
- Into to Advanced Architecture Topics

Why you should take this class…

- You want to learn something…practical
- You want to do something…practical
Things you will do...

- System benchmarking
- Improving application performance
- Microarchitecture simulation

Why not to take this class...

- Need to fill my schedule
- Need to graduate this semester
- Need an easy grade
 - Fall 2003: 34 students
 - Grads: 4 A, 2 B+, 8 B, 3 C, 1 D, 4 F
 - Ugrads: 2 B+, 1 B, 4 C+, 3 C, 2D
 - Grades are earned, not given

Questions?

Intel 8080, 1975 4500 transistors

Intel 8086, 1978 29000 transistors

Intel 286, 1982 90000 transistors
Gordon Moore’s Law

The number of transistors that can be fabricated on a single integrated circuit at a reasonable cost doubles every year...

- **How?**
 - Material techniques such as extreme ultraviolet lithography (<100 nm)

- **Impact:**
 - Increase in manufacturing yield, more dies per wafer
 - Smaller transistors consume less power => Higher speed for same power per unit area
 - More complex devices can be created in same die area

- **Corollary**
 - Processor speed doubles at same rate

What do we do with all these extra transistors?

- Computer Architecture studies how to
 - Define important attributes of new machine
 - Optimize design for attributes
 - ISA organization
 - Logic, packaging, power, cooling
 - Price verse performance
- This text: Inductive reasoning