

Evaluating GML Support for Spatial Databases

 Lakshmi N Sripada, Chang-Tien Lu Weili Wu
 Department of Computer Science Department of Computer Science
 Virginia Tech University of Taxes at Dallas
 7054 Haycock Road 2601 North Floyd Road
 Falls Church, VA 22043 Ricahrdson, TX 75083
 {lsripada, ctlu}@vt.edu weiliwu@utdallas.edu

Abstract

This paper presents a study on Geography Markup
Language (GML), the issues that arise from using GML
for spatial databases and solutions that have been
proposed. We concentrate on three aspects of GML,
including storage, parsing, and querying. GML is an
XML encoding for storing geographic data. It has been
developed by the OpenGIS as a medium for uniform
geographic data storage and exchange among diverse
applications. The underlying concepts of XML therefore
can also be applied to GML data. This results in both
advantages and disadvantages, which are discussed in
the paper. GML is a comparatively new language in the
field of geographic information systems and still in its
developmental stage. Most of the data processing
techniques need to be further developed in order for GML
to be an efficient medium for geographic data storage
and processing.

1. Introduction

With the increase in the use of Internet for the
exchange of information, there is a need for developing
languages that can be used by the diverse systems to
understand each other. Markup languages were developed
to provide a common medium of data description and
display for such systems. XML or Extensive Markup
Language was an attempt in this direction. XML is a text
based meta-language. Being a meta-language, other
languages can be developed by extending XML for use in
specific areas of application. Geography Markup
Language (GML) has been defined as an XML encoding
for geographic information. This encoding helps in the
storage, exchange, and modeling of geographic
information systems. GML uses the concepts provided in
the abstract specification (simple feature data model) by
OpenGIS consortium for modeling geographic objects,
such as geometry, topology, time, and features. It is a data
descriptive language, which means that the data is stored
in a self-descriptive manner. It is not a presentation
markup language like HTML. In other words, GML
stores the data but does not indicate how the data is to be
displayed. GML has been designed to be used as a

mechanism for information discovery, retrieval and
exchange [11]. Since spatial databases store geographical
information, the concepts of GML can be used for the
storage and exchange of spatial data sets.

A spatial database system has been defined as a
database system supporting spatial data types. Spatial
data type objects not only have a non-spatial description,
such as name and population, but also contain spatial
attributes associated with them, such as location,
geometry, and neighborhood properties. A spatial
database system has to provide various functionalities,
including input, storage, retrieval, selection, analysis, and
display of the information [12]. Although these features
are provided by traditional databases, such databases do
not store information in a uniform format. This leads to
the difficulties of exchanging information among
databases. GML proves to be a common language in
which these databases can exchange information with
each other. Thus, although the representation of
information is unique, the use of information can be
different and meaning can vary depending on the context.
This makes the data very flexible and portable.

However, using GML for spatial databases has its
advantages and disadvantages. The data types required for
spatial databases have spatial and geometric attributes in
addition to the one-dimensional attribute of traditional
data type. GML documents are suitable for storing such
data types due to their nested structure, which involves
storing similar data together, thus making it effective in
representing spatial features and attributes. Spatial
databases involve a large amount of data, which has to be
stored in such a way as to allow efficient query
processing. However, extracting information from GML
documents is rather tedious because the XML/GML
parser parses the entire data before looking for a specific
piece of information. This might lead to very inefficient
query processing, especially for large databases. Since
GML is an XML encoding for geographic data, the query
languages and other data processing capabilities available
for XML can also be used for GML. A number of query
languages have been developed for XML documents.
Most of these languages provide support for only
alphanumeric data. However, GML documents also

contain spatial and temporal attributes in addition to the
alphanumeric data. These XML query languages have to
be extended to provide support for GML documents.
Thus even GML promises to provide many capabilities,
mechanisms to implement these capabilities and use them
effectively have not yet been fully developed.

The rest of the paper is organized as follows. Section
2 gives a description of GML document schema. Section
3 summarizes studies conducted on GML document
storage. Section 4 provides an overview of GML parsers.
Section 5 introduces query languages available for GML.
Section 6 discusses the advantages of GML. Finally, we
summarize our work in Section 7.

2. GML Schema

GML is a markup language, which means that GML
documents have to follow certain rules in order to be
termed as valid GML documents. These set of rules are
defined in a schema document. GML specification states
that the method of generating the GML document is
irrelevant, that is, the documents can be hand-generated
or through any available tools. All that is required is that
the documents should conform to the requirements in the
GML specification. GML version 1.0 uses the Document
Type Descriptors (DTDs) for defining the elements and
their associated attributes. However, DTDs have many
disadvantages. For example, they are not written in XML,
which makes it inconvenient to be interpreted. GML
version 2.0 and 3.0 use GML schemas instead of DTDs.
A GML schema is written in XML, which means that one
interpreter can be used for both the DTDs and GML
documents. The elements and their attributes used in a
GML document must be defined in the related GML
schema for the document to be valid. A GML schema
provides a set of type definitions and element declarations
that can be used to check the validity of well-formed
GML documents [15]. GML defines various entities such
as features, geometries and topologies through a
hierarchy of GML objects. GML specification provides a
series of schema for describing geographic data. The
GML schemas defined in the OpenGIS specification
include feature, geometry, topology, value, coordinate
reference system, and style-descriptor. There are other
schemas that are subclasses of the feature schema, such as
observation, coverage and definition. Depending on the
requirements of the application domain, designers can
create different types. These schemas can be created by
adding or restricting the features of GML base schema
[8]. This provides the flexibility to use GML to represent
diverse types of spatial objects. Using some basic
features, all these objects can be described. Most
applications make use of only a subset of the schemas
that have been defined in the GML specification.

3. GML Document Storage

Efficient storage of GML documents is also an
important issue. One of the important considerations
regarding the storage of geographic data is that the data
does not have to be stored in GML format for
transportation. The data can be stored in one of the
existing formats and converted into GML format for
exchange whenever required. GML documents are much
larger in size than other documents containing the same
information due to their descriptive nature. The
techniques used for the storage of XML documents
cannot be directly used for the storage of GML
documents due to the differences in XML and GML data,
in the sense that GML data have larger number of
dimensions than the XML datasets, and the spatial
attributes of GML data also have to be preserved while
storing these documents.

Most of the approaches to storing GML data are
based on relational model or object-oriented model. One
approach proposed for the storage of GML documents is
to use the concepts of relational databases for the storage
of GML documents [7]. In this way, a complete set of
data management services would be available. Such
database schemas have been divided into two categories:
structure mapping approach and model mapping approach
[19]. The design of the database schema is based on the
understanding of the DTD (Document Type Descriptor)
or GML schema that describes the structure of the GML
documents in case of structure mapping. Under the model
mapping approach, a fixed database schema is used to
store any GML documents without the assistance of GML
schema or DTD. In a study conducted to compare the
performance of different approaches of storing GML
documents [7], three types of document storing
techniques were compared, including LegoDB (structure
mapping), Monet, and Xparent (model mapping). The
study concludes that LegoDB is the best approach to store
GML documents as it works well for both queries
involving large number of attributes and documents that
have large amounts of data. Any approach for mapping
GML documents to databases should take advantage of
the features provided by the relational databases like
concurrency control and at the same time allow for
querying large amounts of data efficiently with queries
involving a large number of attributes.

4. GML Parser

A GML parser reads the GML document and creates
a representation of the document. This representation can
be accessed by other parts of the application. Software
applications interpret the output from the parser into their
own local meaningful contexts. Not many parsers are
available for reading and interpreting the GML files.
However, XML parsers can be used for parsing GML
files, as GML is based on XML specifications [10]. Some
of the XML parsers available are Xerces2 [3], XSV [16],

and MSXML4.0 [1]. A software application must know
what each element in the GML dataset means - whether
the element refers to a feature, a property of a feature, or a
feature collection, so that the data can be used in a
meaningful context. The software has to meet two
requirements for processing GML information - it has to
use the GML parser to validate the data so that it
conforms to the GML schema, and also it should
understand how the data has been defined in GML
according to the specification. This knowledge will help
the application in correct interpretation of the data. Not
only the document has to be read by the application, it
also has to be interpreted by the application in terms of
the GML specification. This interpretation would result in
extraction of data embedded in the GML document for
use by the application in its local context.

There are two standard APIs that are used by
software applications to parse GML documents: DOM
(Document Object Model) and SAX (Simple API for
XML). The choice of DOM or SAX parser for GML
documents depends on the resource usage of each of these
approaches and their efficiencies. DOM constructs a tree
structure for the GML data as it processes the data. This
structure would involve a large amount of memory for
spatial databases. Therefore, DOM seems to be unsuitable
for GML documents. A SAX parser parses the documents
sequentially, treating the document as a data stream. This
consumes much less resources and hence can be used for
large data sets. However, SAX parser has to process the
entire document before the processed data is available to
the application. Moreover, it does not support random
access of data. This might cause it to be inefficient for
spatial databases due to their large data size. Various
studies have been performed to compare the performance
of GML parsers [14, 18]. Due to the differences in their
approaches to store the parsed documents, DOM and
SAX have their own limitations. While SAX model
excels in point and range queries, DOM is better for join
operations. SAX is suitable for storing and processing
data in web server; in contrast, DOM is suitable for
storing documents at the client side since it requires more
resources. The use of DOM parsers for GML documents
is thus not feasible, because of its memory usage. SAX
parser, on the other hand, is inefficient in case of queries
involving large number of attributes since the data
involved in spatial databases is large. Thus a parser has to
be developed combining the features or advantages of
these two types of parsers. This is a major area in the field
of GML that has to be explored in order to make GML a
universal language. Table 1 provides a summary of the
features provided by DOM and SAX.

5. GML Query Languages

Even the well-known approaches of querying that
work well with the XML files could not guarantee good

results when applied to GML documents that contain both
alphanumeric and spatial data [7]. The storage of
informa tion in GML documents leads to new problems of
extracting data from those documents. Many query
languages have been proposed for querying GML
documents [6, 17]. Being derived from XML, GML has
the advantage of readily available query languages that
have been developed for XML. The query languages
available for XML documents are of general use.
However, these languages have to be extended with
spatial operators if the language is to be used for GML. A
specification of query language for GML by extending
the concept of XML-QL [13] has been proposed [6] and
compared based on the features defined by [5].

All query languages have an underlying data model
that abstracts away from the physical representation of the
data. For example, relational query languages operate on
relations and object-oriented query languages on objects.
Therefore, it is necessary to define precisely a data model
for GML. The objects represented in GML are much
more complex compared to the ones in XML, since
geographic objects have spatial attributes in addition to
the non-spatial attributes that are used to describe spatial
objects. The data model for GML query language has to
reflect this complexity. It has to be more efficient than the
data model for XML in the sense that the data represented
in GML would be more complicated and will have more
dimensions associated with it. The queries for GML data
are of two types- spatial and non-spatial. Non-spatial
queries are similar to the XML queries, since XML
queries and documents involve alphanumeric data only.
Therefore, XML query language models can be extended
so that the spatial query attributes of GML can be
included. This takes advantage of the existing XML query
processing capabilities available and at the same time
provides the capabilities required for GML data
processing. Xquery (XML query language) is one of the
proposals for query languages for XML. Xquery has been
designed to meet the requirements of an XML query
language as identified by W3C XML query working
group [2]. Vatsavai claims that Xquery is the most
comprehensive of all languages and chooses Xquery
instead of any other language for extending to GML
query language [17]. Different approaches for developing
query languages have been proposed [4, 6, 17]. However,
an important consideration while developing such
languages is to decide whether to extend the already
existing XML query languages or to develop a new query
language for GML.

6. Summary
GML has been developed to help in the interchange of
geographic data over the Internet and across diverse
systems. The sharing of such data involves support for
various services for the interpretation and storage of data.

Although GML specification has the guidelines for
developing GML documents, much work has still to be
done in the area of parsing, querying, and storage of these
documents. The storage of GML documents and the
querying of those documents are inter-related. Efficient
query processing requires that the documents be stored in
a logical manner preserving the neighborhood
characteristics of spatial data. Also the storage techniques
can take advantage of already existing techniques such as
relational model. Parsing of GML documents is another
area of active research. Parsing of these documents
presents a difficult situation due to the size of these
documents. However, despite of these drawbacks, GML
would emerge as a major form of geographic data
exchange in future due to its non-proprietary and portable
nature.

7. References

[1] "MSXML 4.0 SDK,"

http://msdn.microsoft.com/library/default.asp?ur
l=/library/en-
us/xmlsdk30/htm/xmmscxmloverview.asp.

[2] "XQuery 1.0: An XML Query Language," W3C
Working Draft http://www.w3.org/TR/xquery/,
2003.

[3] Apache XML project, "Xerces2 Java Parser,"
http://xml.apache.org/xerces2-j/index.html.

[4] D. Beech, A. Malhotra, and M. Rys, "A formal
data model and algebra for XML," University of
California, Berkeley, CS 298-13: Digital Library
Seminar
http://elib.cs.berkeley.edu/seminar/2000/200002
07.pdf, 2000.

[5] A. Bonifati and S. Ceri, "Comparative analysis
of five XML query languages," ACM SIGMOS
Record, vol. 29, pp. 68-79, 2000.

[6] J. E. Corcoles and P. Gonzalez, "A specification
of a spatial query language over GML,"
Geographic information systems. Proceedings of
the ninth ACM international symposium on
Advances in geographic information systems, pp.
112-117, 2001.

[7] J. E. Corcoles and P. Gonzalez, "Analysis of
different approaches for storing GML
documents," Geographic information systems.
Proceedings of the tenth ACM international
symposium on Advances in geographic
information systems, pp. 11-16, 2002.

[8] S. Cox, P. Daisey, R. Lake, C. Portele, and A.
Whiteside, "OpenGIS Geography Markup
Language (GML 3.0) Impleme ntation
Specification," OpenGIS Specifications
http://www.opengis.org/specs/?page=specs,
2003.

[9] Galdos Systems Inc, "Top 10 benefits of using
GML," Wireless developer network,
http://www.wirelessdevnet.com/channels/lbs/feat
ures/top10gml/, 2001.

[10] D. Murray and J. C. Chow, "An XML-Driven
data translation engine for GML 2," For
proceedings of the urban and regional
information systems association
http://www.safe.com/company/media_archive/G
ML_User_Perspectives.pdf.

[11] Z.-R. Peng and M.-H. Tsou, Internet GIS
Distributed Geographic Information Services for
the Internet and Wireless Networks: John Wiley
& Sons, Inc., 2003.

[12] P. Rigaux, M. Scholl, and A. Voisard, Spatial
Databases with Application to GIS: Morgan
Kaufmann Publishers, 2002.

[13] J. Robie, J. Lapp, and D. Schach, "XML Query
Language (XQL),"
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

[14] S. Shekhar, R. R. Vatsavai, N. Sahay, T. E.
Burk, and S. Lime, "WMS and GML based
interoperable web mapping system," Geographic
Information Systems. Proceedings of the ninth
ACM international symposium on Advances in
geographic information systems, 2001.

[15] H. S. Thompson, D. Beech, M. Maloney, and N.
Mendelsohn, "XML Schema Part 1: Structures,
W3C Recommendation 2 May 2001,"
http://www.w3.org/TR/xmlschema-1/, 2001.

[16] H. S. Thompson and R. Tobin, "Current Status
of XSV: Coverage, known bugs, etc,"
http://www.ltg.ed.ac.uk/~ht/xsv-status.html,
2004.

[17] R. R. Vatsavai, "GML-QL: A Spatial Query
Language Specification for GML," Department
of Computer Science and Engineering,
University of Minnesota
http://www.cobblestoneconcepts.com/ucgis2sum
mer2002/vatsavai/vatsavai.htm.

[18] W3C DOM WG, "Document Object Model
FAQ," W3C Architecture domain
http://www.w3.org/DOM/faq.html, 2003.

[19] M. Yoshikawa and T. Amagasa, "XRel: a path-
based approach to storage and retrieval of XML
documents using relational databases," ACM
transactions on Internet technology, vol. 1, pp.
110-141, 2001.

