hd Geolnformatica 7:2, 139-166, 2003
‘ﬁ © 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Unified Approach to Detecting Spatial Outliers

SHASHI SHEKHAR, CHANG-TIEN LU AND PUSHENG ZHANG

Computer Science Department, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455, U.S.A.
E-mail: {shekhar, ctlu, pusheng}@cs.umn.edu

http:/lwww.cs.umn.edu/Research/shashi-group

Abstract

Spatial outliers represent locations which are significantly different from their neighborhoods even though they
may not be significantly different from the entire population. Identification of spatial outliers can lead to the
discovery of unexpected, interesting, and implicit knowledge, such as local instability. In this paper, we first
provide a general definition of S-outliers for spatial outliers. This definition subsumes the traditional definitions of
spatial outliers. Second, we characterize the computation structure of spatial outlier detection methods and
present scalable algorithms. Third, we provide a cost model of the proposed algorithms. Finally, we
experimentally evaluate our algorithms using a Minneapolis-St. Paul (Twin Cities) traffic data set.
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1. Introduction

Global outliers have been informally defined as observations in a data set which appear to
be inconsistent with the remainder of that set of data [2], or which deviate so much from
other observations so as to arouse suspicions that they were generated by a different
mechanism [8]. The identification of global outliers can lead to the discovery of
unexpected knowledge and has a number of practical applications in areas such as credit
card fraud, athlete performance analysis, voting irregularity, and severe weather
prediction. This paper focuses on spatial outliers, i.e., observations which appear to be
inconsistent with their neighborhoods. Detecting spatial outliers is useful in many
applications of geographic information systems and spatial databases [22], [23]. These
application domains include transportation, ecology, public safety, public health,
climatology, and location based services.

We model a spatial data set to be a collection of spatially referenced objects, such as
houses, roads, and traffic sensors. Spatial objects have two distinct categories of
dimensions [27] along which attributes may be measured. Categories of dimensions' of
interest are spatial and non-spatial. Spatial attributes of a spatially referenced object
include location, shape, and other geometric or topological properties. Non-spatial
attributes of a spatially referenced object include traffic-sensor-identifiers, manufacturer,
owner, age, and measurement readings. A spatial neighborhood [27] of a spatially
referenced object is a subset of the spatial data based on a spatial dimension, e.g., location.
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Spatial neighborhoods may be defined based on spatial attributes using spatial
relationships such as distance or adjacency. Comparisons between spatially referenced
objects are based on non-spatial attributes.

A spatial outlier is a spatially referenced object whose non-spatial attribute values are
significantly different from those of other spatially referenced objects in its spatial
neighborhood. Informally, a spatial outlier is a local instability (in values of non-spatial
attributes) or a spatially referenced object whose non-spatial attributes are extreme relative
to its neighbors, even though they may not be significantly different from the entire
population. For example, a new house in an old neighborhood of a growing metropolitan
area is a spatial outlier based on the non-spatial attribute house age.

In this paper, we provide a general definition of spatial outliers and propose efficient
spatial outlier detection algorithms. We analyze cost models for outlier detection
algorithms, and compare alternative underlying data clustering methods. We also
experimentally evaluate the proposed algorithm using a Minneapolis-St. Paul (Twin
Cities) traffic data set.

1.1. An illustrative application domain

The Minnesota Department of Transportation Traffic Management Center [17] Freeway
Operations group archives traffic measurements from the freeway system in Minneapolis-
St. Paul (Twin Cities). The sensor network includes about 900 stations, each of which
contains one to four loop detectors, depending on the number of lanes. Sensors embedded
in the freeways monitor the volume of traffic on the road. At regular intervals, this
information is sent to the Traffic Management Center for operational purposes, e.g., ramp
meter control, and research on traffic modeling and experiments.

In this application, each station is a spatially referenced object with spatial attributes
(e.g., location) and non-spatial attributes (e.g., measurements). Spatial arrangement of
stations can be modeled as a spatial graph [24]. A directed edge from station s, to station s,
indicates the existence of a road segment allowing traffic to move from s, to s,. This graph
is called a spatial graph because nodes, i.e., stations, are located in a Euclidean space [27]
where each node has a location specified by coordinates, e.g., (highway, mile point). The
non-spatial attributes include sensor-id and traffic measurements (e.g., volume,
occupancy). We are interested in discovering the location of stations whose measurements
are inconsistent with those of their neighbors. This spatial outlier detection task is
formalized as follow.

Let the traffic sensors constitute a collection of spatially referenced objects. The
location of a sensor represents a spatial attribute and is represented by the symbol x. A
traffic measurement (e.g., volume) constitutes a non-spatial attribute space and is
represented as f(x). The neighborhood of x, N(x), is the set of traffic sensors adjacent to
the sensor located at x. We note that the neighborhood relationship is based on directed
edges in the underlying spatial graph. Thus sensors on opposite sides (e.g., I-35W north
bound and I-35W south bound) are not neighbors even if the pairwise Euclidean
distance is small. A sensor is compared to its neighborhood using the function
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S(x) = [f(x) = Eyeny (£ ()], where f (x) is the attribute value for a location x, N(x) is the
set of neighbors of x, and E . y(, (f(v)) is the average attribute value for the neighbors of x.
The statistic function S(x) denotes the difference of the attribute value of a sensor located
at x and the average attribute value of x’s neighbors.

Theorem 1: Spatial statistic S(x) is normally distributed if the attribute value f(x) is
normally distributed.

Proof: The formal proof is available at Shekhar et al. [26]. []

A popular test for detecting spatial outliers for normally distributed f(x) can be
described as: Spatial statistic Z,) = |(S(x) — p;/a,)| > 0. For each location x with an
attribute value f(x), the S(x) is the difference between the attribute value at location x and
the average attribute value of x’s neighbors, y, is the mean value of S(x), and o, is the value
of the standard deviation of S(x) over all stations. The choice of § depends on a specified
confidence level. For example, a confidence level of 95% will lead to 0~ 2.

1.2.  Definition of S-outliers

Consider a spatial framework SF = (S, NB), where S is a set of locations {s,$,,...,8,}
and NB : S x S—{True, False} is a neighbor relation over S. We define a neighborhood
N(x) of a location x in S using NB, specifically N(x) = {y | yeS,NB(x,y) = True}.

Definition: An object O is an S-outlier (f,fre, Fug,ST) if ST{Fu[f(x),

e (f(x),N(x))]} is true, where f : S — R is an attribute function, ., : R — R is an
aggregation function for the values of f over neighborhood, R is a set of real numbers,
Fu : RXR — R is a difference function, and ST : R — {True, False} is a statistical test

procedure for determining statistical significance.

Example 1: The spatial outliers defined in Section 1.1 are examples of S-outliers. We
can define respective components in the traffic application domain. The f function
represents the non-spatial attribute, namely, traffic volume. The neighborhood aggregate
function fJ%,,(x) = Eycy((f(y)) is the average attribute value function over neigh-
borhood N(x). The difference function F g (x) is S(x) = [f(x) — Eyeni (f ()] i-e., the
arithmetic difference between attribute function f(x) and neighborhood aggregate
function f;gg,, (x). Let s(v) and o,y be the mean and standard deviation of the difference

function F e, then the significance test function ST can be defined as
Z.\‘(x) = |(S(x) - :us(x))/a.v(,\')| > 0.

Example 2: A DB(p,D)-outlier [14] is also an example of a S-outlier. For a k
dimensional data set T with N objects, an object O in T is a DB(p, D)-outlier if at least a
fraction p of the objects in T lies greater than distance D from O [14]. Assuming j;fi,g, is
the number of objects within distance D from object O, the statistical test function ST can
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be defined as ((Total number of object) — fi\,,(x))/(Total number of objects) > p. The

DB-outlier subsumes many other definitions of global outliers [14].

1.3.  Contribution, outline, and scope

This paper provides a general definition of spatial outliers and shows that various tests for
detecting spatial outliers are special cases. We identify the basic spatial-self-join
computational structure for the scalable implementation of spatial outlier tests and
recognize clustering methods to be the primary design decision influencing the total
computational cost. We also provide efficient strategies to implement a spatial outlier
detection test and evaluate our method in a Twin Cities traffic data set to show its
effectiveness and usefulness.

The rest of the paper is organized as follows. Section 2 reviews related work. In Section
3, we discuss the computation structure for detecting spatial outliers and propose our
general outlier detection algorithms. The cost models for proposed algorithms are
analyzed in Section 4. Section 5 presents our experiment design. The experimental
observation and results are shown in Section 6. We summarize our work and discuss future
directions in Section 7.

This paper focuses on spatial outlier detection using a single attribute. Outlier detection
in multi-dimensional space using multiple attributes is beyond the scope of this paper.

2. Related work
Many outlier detection algorithms [1]-[3], [12], [13], [19], [21], [28] have been recently

proposed. As shown in figure 1(a), these methods can be broadly classified into two
categories, namely 1-D (linear) outlier detection methods and multi-dimensional outlier

Outlier Detection Methods

One-dimensional Mullu-u.mensmnal
{limear) I
Frequency Homegeneous Bi-pariite dimensicn
distribution over Dimensions (Spatial outlier detection)
altribute value
(linear) Homaogeneous | Spatial
Graphical Quantitative (Spatial method)
Neighbor | N/A location and | location
Definition attribute
. Moran Comparison|with population |location and | attribute values
Varigram Cloud Scatterplot Scatterplot Spal.-al Slalushc distribution attribule of neighbors

(a) Classification (b) Comparison

Figure 1. Classification and comparison of outlier detection methods.
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Figure 2. A data set for outlier detection.

detection methods. The 1-D outlier detection algorithms [2], [9] consider the statistical
distribution of non-spatial attribute values, ignoring the spatial relationships between
items. Numerous outlier detection tests, known as discordancy tests [2], [9], have been
developed for different circumstances, depending on the data distribution, the number of
expected outliers, and the types of expected outliers. The main idea is to fit the data set to a
known standard distribution, and develop a test based on distribution properties. We use an
example to illustrate the differences among 1-D and multi-dimensional outlier detection
methods. In figure 2(a), the X-axis is the location of data points in 1-D space; the Y-axis is
the attribute value for each data point. One-dimensional outlier detection methods ignore
the spatial location of each data point, and fit the distribution model to the values of the
non-spatial attribute. The outlier detected using a 1-D approach is the data point G,
which has an extremely high attribute value 7.9, exceeding the threshold of
w+20=449+2%1.61 =7.71, as shown in figure 2(b). This test assumes a normal
distribution for attribute values.

Multi-dimensional outlier detection methods can be further grouped into two categories,
namely homogeneous multi-dimensional metric based methods and spatial methods. The
homogeneous multi-dimensional methods model data sets as a collection of points in a
multi-dimensional isometric space, and provide tests based on concepts such as distance,
density, and convex-hull depth. These methods do not distinguish between attribute
dimensions and geo-spatial dimensions, and use all dimensions for defining neighborhood
as well as for comparison, as shown in figure 1(b). We discuss representative methods now.
Knorr and Ng presented the notion of distance-based outliers [12], [13]. As discussed in
example 2 of Section 1, for a k-dimensional data set T with N objects, an object O in T is a
DB(p,D)-outlier if at least a fraction p of the objects in T lies greater than distance D from
O. Ramaswamy et al. [20] proposed a formulation for distance-based outliers based on the
distance of a point from its k-th nearest neighbor. After ranking points by the distance to its
k-th nearest neighbor, the top 7 points are declared as outliers. Breunig et al. [3] introduced
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the notion of a ‘‘local’’ outlier in which the outlier-degree of an object is determined by
taking into account the clustering structure in a bounded neighborhood of the object, e.g., k
nearest neighbors. They formally defined the outlier factor to capture this relative degree
of isolation or outlierness. In computational geometry, depth-based approaches [21], [19]
organize data objects in convex hull layers in data space according to peeling depth [19],
and outliers are expected to be found from data objects with shallow depth values. Yu et al.
[28] introduced an outlier detection approach, called FindOut, which identifies outliers by
removing clusters from the original data. The key idea of this approach is to apply signal
processing techniques to transform the space and find the dense regions in the transformed
space. The remaining objects in the non-dense regions are labeled as outliers. In figure
2(a), for example, the outliers detected using homogeneous multi-dimensional approaches
are the data point D and L, which lie in a low density area.

Homogeneous multi-dimensional methods have several limitations. First, they are
designed to detect global outliers rather than spatial outliers. Second, they assume that the
data items are embedded in an isometric metric space and do not distinguish between non-
spatial attributes and spatial attributes. Third, they do not exploit apriori information about
the statistical distribution of attribute data. Last, they seldom provide a confidence
measure for the discovered outliers.

Bi-partite multi-dimensional tests are designed to detect spatial outliers. They separate
spatial attributes from non-spatial attributes, as shown in figure 1(b). Spatial attributes are
used to characterize location, neighborhood, and distance. Non-spatial attribute
dimensions are used to compare a spatially referenced object to its neighbors. Spatial
statistics literature provides two kinds of bi-partite multi-dimensional tests, namely
graphical tests and quantitative tests. Graphical tests are based on the visualization of
spatial data which highlights spatial outliers. Example methods include variogram clouds
[4] and Moran scatterplot [16]. Quantitative methods provide a precise test to distinguish
spatial outliers from the remainder of data. Scatterplots [15] are a representative technique
from the quantitative family.

Avariogram-cloud displays data points related by neighborhood relationships. For each
pair of locations, the square-root of the absolute difference between attribute values at the
locations versus the Euclidean distance between the locations are plotted. In data sets
exhibiting strong spatial dependence, the variance in the attribute differences will increase
with increasing distance between locations. Locations that are near to one another, but
with large attribute differences, might indicate a spatial outlier, even though the values at
both locations may appear to be reasonable when examining the data set non-spatially.
Figure 3(a) shows a variogram cloud for the example data set in figure 2(a). This plot
shows that two pairs (P, S) and (Q,S) in the left hand side lie above the main group of
pairs, and are possibly related to spatial outliers. The point S may be identified as a spatial
outlier since it occurs in both pairs (Q, S) and (P, S). However, graphical tests of spatial
outlier detection are limited by the lack of precise criteria to distinguish spatial outliers. In
addition, a variogram cloud requires non-trivial post-processing of highlighted pairs to
separate spatial outliers from their neighbors, particularly when multiple outliers are
present or density varies greatly.

A Moran scatterplot [16] is a plot of normalized attribute value
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Figure 3. Variogram cloud and Moran scatterplot to detect spatial outliers.

(Z[f(i) = (f(i) — ps)/0s]) against the neighborhood average of normalized attribute
values (W -Z), where W is the row-normalized (i.e., ;W;; = 1) neighborhood matrix,
(i.e., W;; > 0 iff neighbor (i,/)). The upper left and lower right quadrants of figure 3(b)
indicate a spatial association of dissimilar values: low values surrounded by high value
neighbors (e.g., points P and Q), and high values surrounded by low values (e.g., point S).
Thus we can identify points (nodes) that are surrounded by unusually high or low value
neighbors. These points can be treated as spatial outliers.

Definition: Moran, ;. is a point located in upper left and lower right quadrants of
Moran scatterplot. This point can be identified by (Z[f(i)]) x (X;(W;Z[f(/)])) <O.

Lemma 1: Moran;., is a special case of an S-outlier.

Proof: For a Moran,,;,, the difference functions are Z; and I;, where
Z = (f(i) — )/ op, 1 = 3 5;(WyZ[f(j)]), and p, and o, are the mean and standard
deviation of the attribute function f(i). The statistical test function ST is

@) < &;Wz[f()) <0. O

A scatterplot [7], [15] shows attribute values on the X-axis and the average of the
attribute values in the neighborhood on the Y-axis. A least square regression line is used to
identify spatial outliers. A scatter sloping upward to the right indicates a positive spatial
autocorrelation (adjacent values tend to be similar); a scatter sloping upward to the left
indicates a negative spatial autocorrelation. The residual is defined as the vertical distance
(Y-axis) between a point P with location (XI77 Y p) to the regression line Y = mX + b, that
is, residual ¢ = Y, — (mX, + b). Cases with standardized residuals, &n4ara = (€ — 1)/,
greater than 3.0 or less than — 3.0 are flagged as possible spatial outliers, where u, and o,
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Figure 4. Scatterplot and spatial statistic Z,) to detect spatial outliers.

are the mean and standard deviation of the distribution of the error term ¢. In figure 4(a), a
scatter plot shows the attribute values plotted against the average of the attribute values in
neighboring areas for the data set in figure 2(a). The point S turns out to be the farthest
from the regression line and may be identified as a spatial outlier.

Definition: Scatterplot, ;.. is a point with significant standardized residual error from the
least square regression line in a scatter plot. Assuming errors are normally distributed, then
Estandard = (|6 — i,)/0,| > 0 is a common test. Nodes with standardized residuals
Estandard = (€ — 1)/ 0, greater than 0 or less than — 0 are flagged as possible spatial outliers.
The p, and o, are the mean and standard deviation of the distribution of the error term e.

Lemma 2: Scatterplot, is a special case of an S-outlier.

outlier

Proof: For a Scatterplot,,,;,, the neighborhood aggregate function a’z,g,, =E(x) =
1/k Zye N (v) is the average attribute value of neighbors. The difference function F
ise = E(x) — ((m*f(x)) + b), where m and b characterize the slope and intercept of the
least square line fitting (f(x),E(x)). The spatial outliers are tested using statistic test

function ST : (|e — p,/0,| > 0). O

Figure 4(b) shows the visualization of spatial statistic Zyy method described earlier in
Section 1.1 and Example 1. The X-axis is the location of data points in 1-D space; the Y-
axis is the value of spatial statistic Z, for each data point. We can easily observe that the
point § has the Z, value exceeding 3, and will be detected as spatial outlier. Note the two
neighboring points P and Q of S have Z(,) values close to —2 due to the presence of spatial
outlier in their neighborhoods. Example 1 has already shown that spatial statistic Z, is a
special case of S-outlier.
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3. Spatial outlier detection: Problem definition and proposed algorithms

In this section, we provide a formal definition of the problem of designing computationally
efficient techniques for detecting spatial outliers. Earlier sections presented a definition of
spatial outliers and showed that the definition subsumes other quantitative spatial outlier
definitions. Table 1 shows examples of difference function F;; and statistical test function
ST for different spatial outlier detection methods. Difference function F 5 computes
parameters that are used by statistical test function ST to verify the outlierness of a node.
We show F ;- and ST functions for Spatial statistic Z,y, Scatterplot, and Moran scatterplot
approaches to summarize the lemmas presented in the earlier section. For example, in the
scatterplot approach, the difference function computes the error term ¢, which is the value
of the vertical distance between a node and the regression line in the X-Y plane and is
defined as Fp : ¢ = E(x) — (m*f(x) + b), where E(x), the average attribute value of
neighbor nodes of x, is the Y-axis value; f(x), the attribute value of node x, is the X-axis
value; the m and b are the slope and intercept of the scatterplot line in the X-Y plane.

The computation needs of spatial outlier detection are divided into two parts, model
building and test result computation. Model building computes aggregate functions used
by the difference function F, diff and statistical test function ST, as shown in the last row of
table 1. We discuss the computation of the aggregate functions and propose algorithms for
model building and test result computation.

3.1. Problem definition

Given the components of the S-outlier definition, the objective is to design a
computationally efficient algorithm to detect the S-outliers. The components of the S-
outlier definition are restricted via constraints to allow computational efficiency while
preserving the correctness of Lemmas showing that various existing spatial outlier
detection tests (e.g., Scatterplot, Moran scatterplot, Spatial statistic Z,)) are special cases
of S-outliers. Thus the algorithms proposed in this section are useful in building models to
detect spatial outliers via a variety of existing techniques. The following optimization

Table 1. Examples of F; and ST functions for different approaches.

Test Computation

Spatial Outlier Definition Spatial Statistic Zy,)  Scatterplot Moran Scatterplot

Difference function Fyy  S(x) = [f(x) = E(x)] ¢ =E(Q) — (m+f(x) +b) Z = ’“7;“/1 =YW,z

Statistical test function ST W%"‘ >0 |55 >0 Zlr@)
x (5 (WZIf()]) <0
Aggregate function used in  yg, 0 m,b, 11,0, Ks Oy

Fy and ST
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problem characterizes the problem of designing efficient algorithms for detecting spatial
outliers:

Spatial Outlier Detection Problem

Given:

® A spatial framework S consisting of locations s;,5,,...,5,.

e A neighborhood relationship N < § x S.

e An attribute function f : 5; = R.

e A neighborhood aggregate function aj\;,g,. : RN >R, where N is the maximum neighbor

number for a location.
A comparison function F 5 (f,fer)-
e Statistical test function ST : R — {True, False}.

Design: An efficient algorithm to detect S-outliers,
i.e., {s;|s;€S,s;is an S-outlier}.

Objective:
e Efficiency: To minimize the computation time.
Constraints:

® Fu; and ST are algebraic aggregate functions of values of f (x) and f,ﬁ\g’,g,..
o The size of the data set is much greater than the main memory size.
e Computation time is determined by I/O time.

Aggregate functions can be grouped into three categories, namely, distributive,
algebraic, and holistic [5], [25]. An aggregate function F is called distributive if there
exists a function G such that the value of F for a data set can be computed by applying a G
function to the value of F in each partition of the data set. In most cases, F' = G. Examples
of distributive aggregate functions include count, max, and sum. An aggregate function F’
is algebraic if F' of a data set can be computed using a fixed number of distributive
aggregates from each partition of the data set. Average, variance, standard deviation,
maxN, minN are all algebraic aggregate functions. An aggregate function F is called
holistic if the value of F for a data set cannot be computed using a constant number of
distributive aggregates from each partition of the data set. Example of a holistic aggregate
function includes median. Detail illustrations of aggregate functions are available at
technical report [26]. We note that algebraic and distributive aggregate functions can be
computed by a single scan of a data set even when the data set is too large to fit in the main
memory. In processing a data set with a size greater than the size of memory, extra disk
scans are required to calculate the holistic aggregate function.

For each node, say x, the attribute function f(x) contains the attribute value of x. The
neighborhood aggregate function f,ﬁgg,. computes a value using the attribute value of x and
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Table 2. Model building to compute the aggregate functions.

Model Building

Outlier Definition Spatial Statistic Zq Scatterplot Moran Scatterplot
Attribute function f fx) fx) fx)
Neighborhood aggregate S(x) =f(x) — E(x) E(X) =} Zyenof ()
function f2%.
Distributive aggregate functions: =5(x), £5(x), n(count) 3f(x), ZE(x), Zf (x)E(x), SF(x), Zf2(x), n(count)
Dgers D -+ Diger

%2 (x), TE?(x), n(count)

_ NEFWE()-Ef () ZE(x) _ W

Algiﬁralc s;ggregale élk.mctlons: Hy==,0,= NP0 1y 0 =
Aeasrr By« A (=500 S()EE ()~ () (EC 1)
1 2 _ (ESW)” — YWZE” () -2 (V) Zf()E(x) 1 2 (x) — x))°
n [ES @) n ] b= NI ()~ (5 (x))° ’ n [Ef () n ]

n

where S, = >f? (x) — [M}

the attribute value of x’s neighboring nodes. The distributive aggregate function computes
the aggregate value (e.g., sum, count) of the attribute value and neighborhood aggregate
value for all nodes. The algebraic aggregate function computes the statistic values for all
nodes, e.g., mean and standard deviation, and can be derived using the values computed in
the distributive aggregate functions. The comparison function F,; and statistical test
function ST for the spatial outlier definition can be computed using algebraic aggregate
functions of values from f(x) and ,,]‘g’,g,.. Table 2 shows the algebraic aggregate functions
for different definitions of spatial outliers. Each column shows the computation structure
of the attribute function, neighborhood aggregate function, distributive aggregate
functions, and algebraic aggregate functions for each spatial outlier detection approach.
For example, in the scatterplot approach, the attribute function is f(x); the neighborhood
agcjgregate function fJy,, is E(x) = 1/kZ,n(f (v); the distributive aggregate functions
D gger are Ef (x), TE(x), Tf (x)E(x), Zf*(x), ZE(x); and the algebraic aggregate functions
Agger are the slope m and the intercept b of the regression line and the standard deviation o,
of the error term ¢, all of which can be derived using the distributive aggregate functions.

By utilizing table 2, we can compute the algebraic aggregate functions in one single
scan of the spatial self-join of the station data set using the neighbor relationship. For
example, the standard deviation of the error term ¢ in the scatterplot approach can be
computed using the values computed in the distributive aggregate functions. In a naive
approach, however, two data scans of the spatial self-join may be used, where the first scan
computes the slope and intercept of the regression line, and the second scan calculates the
statistic values (e.g., mean and standard deviation) of the error term.
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3.2.  Our approach

The computational task in the spatial outlier detection problem can be divided into two
subtasks: (a) design an efficient computation method to compute the global statistical para-
meters using a spatial join and (b) test whether spatial locations on a given path are outliers.
The first task is called model building; the second task is called test result computation.

3.2.1. Model building. An 1/O efficient model building algorithm computes the
algebraic aggregate functions, e.g., the mean and standard deviation, in a single scan of
a spatial self-join from a spatial data set using a neighbor relationship. The computed
values from the algebraic aggregate functions can be used by the difference function F
and statistical test function ST to validate the outlierness of an incoming data set.
Algorithm 1 shows the steps of the Model Building algorithm. In the first step, the
algorithm retrieves the neighbor nodes for each data object, say x; then it computes the
neighborhood aggregate function f;ﬁ}’),g,.. The distributive aggregate functions are then
aggregated using the attribute function f(x) and the neighborhood aggregate function al‘gg,.
Finally, the algebraic aggregate functions are computed using the values from the
distributive aggregate functions. Note that the data objects are processed on a page basis to
reduce redundant I/O. In other words, all the nodes within the same disk page are
processed before retrieving the nodes of the next disk page.

Algorithm 1: Pseudo-code for model construction.

Model building algorithm
Input: S is a spatial framework;
f is an attribute function;
N is the neighborhood relationship;

| é%, is the neighborhood aggregate function;
Do DSy - - [k, are the distributive aggregate functions;
Output: Algebraic aggregate functions A}  AS2 = .. AG¥

aggrr aggr’ aggr

for(i=1;1 < |§] ;i++){
0; = Get_One_Object(i,S); /* Select each object from S */
NNS = Find_Neighbor_Nodes_Set(O;, N, S); /* Find neighbor nodes of O; from S */
for(j = 1;j< [NSS[;j++){
O; = Get_One_Object(j,NNS); /* Select each neighbor of O; */
f2eer = Compute_and_Aggregate(f(0,),f(0;));

[* Add the element to global aggregate functions */

Aggregate Element(DG},, D52, ..., DG¥,, [N ..1);
}
[* Compute the algebraic aggregate functions™*/
(AG AGS - - ,zAfé‘g,.) = Compute_Algebraic_Aggregate(DSy,,, DSz, - . ., DSk,):
return (ASy,, , S, - - - AGte,)-
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Assuming each node has k neighbors, the first operation Get_One_Object() retrieves data
points on the basis of the disk page, thus reducing redundant disk I/O operation. The
Find_Neighbor_Nodes_Set() operation retrieves the data records of the £ neighbors of the
current processing node. If the neighbor nodes are not in the memory buffer, extra I/O
operations are required to retrieve the disk pages which contain the data records of the
neighbor nodes. The time needed to locate and transfer a disk block to memory buffer is in
the order of milliseconds, usually ranging from 15 to 60 msec. Therefore, the operation
Find_Neighbor_Nodes_Set() dominates the computation time. The I/O cost of
Find_Neighbor_Nodes_Set() is determined by the clustering efficiency (CE), that is, how
the nodes are grouped into disk pages. If a node and all of its neighbor nodes can be
arranged in the same disk page, no redundant I/O operation will be required. The execution
time for each data object can be estimated as follows.

For instance, we assume a 500 MHz machine, and that the cycle per instruction (CPI) is
5, the instruction count is 150, the number of neighbors k for each data node is 10, that
each disk 1/O operation takes 15 * 103 sec (typical: 15-60 msec), and that CE, clustering
efficiency, denotes the probability that a node v; and a neighbor of v; are stored in the same
disk page. For each data record, the execution time will be CPU time+ (I/O
time) * (1 —CE) xk = 150 % 5% 1/500 % 10° = 1.5% 107 %+ 1.5% 10~ % (1 — CE) sec.
The CE value determines the execution time. The higher the CE value, the shorter the
execution time. We will formally define CE in the following section.

Lemma 3: Algebraic aggregate functions needed by the difference function F gy and
statistical test function ST can be computed by the model building algorithm in one scan
of the spatial self-join of the data set.

Proof: By definition, an algebraic function F of a data set can be computed using
a fixed number of distributive aggregates from each partition of the data set. In the
model building algorithm, a fixed & number of distributive aggregate functions
DS DSy - .- DSh, are used to store the aggregate values in memory, and the
algebraic aggregate functions are then computed using these aggregate values. If the
distributive aggregate functions can fit inside the memory buffer, the algebraic aggregate
functions can be computed using a single disk scan of the self-join of the data set.
Distributive aggregate functions needed for various spatial outlier definitions are shown
in table 2. In all cases, one needs a very small number (less than a dozen) of distributive
aggregate functions to compute the algebraic aggregate functions needed by each spatial
outlier definition. []

3.2.2. Test result computation. The algebraic aggregate functions, e.g., mean and
standard deviation, computed in the model building algorithm can be used to verify the
spatial outlier of incoming data sets. The two verification algorithms are route outlier
detection (ROD) and random node verification (RNV). The ROD algorithm detects the
spatial outliers from a user specified route, as shown in Algorithm 2. The RNV procedure
checks the outlierness from a set of randomly generated nodes. The step to detect outliers
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in both ROD and RNV are similar, except that the RNV has no shared data access needs
across tests for different nodes. The I/Os for Find_Neighbor_Nodes_Set() in different
iterations are independent of each other in RNV. We note that the operation
Find_Neighbor_Nodes_Set() is executed once in each iteration and dominates the I/O
cost of the entire algorithm. The storage of the data set should support efficient I/O
computation of this operation. We discuss the choice for storage structure and provide
experimental comparison in Sections 5 and 6.

Given aroute RN within the data set S, the ROD algorithm first retrieves the neighboring
nodes from S for each data object, say x, in the route RN; then it computes the
neighborhood aggregate function f(i\fgg)' using the attribute value of x and the attribute values
of X's neighbors. The difference function F aie 18 computed using the attribute function
f(x), neighborhood aggregate function f(gg,., and the algebraic aggregate functions
computed in the model building algorithm. Node x can then be tested for outlierness using
the statistical test function ST

Algorithm 2: Pseudo-code for route outlier detection.
Route outlier detection (ROD) algorithm

Input: S is a spatial framework;
f is an attribute function;
N is the neighborhood relationship;
f,fg’,g,. is a neighborhood aggregate function;
F 2,7,-}?( is a difference function;
A agg,A,Afﬁg,,, ... ,Af;g,, are algebraic aggregate functions;
ST is the spatial outlier test function;
RN is the set of node in a route;

Output: Outlier_Set.
for(i=1;i < [RN| ;i++){
0O; = Get_One_Object(i,RN); /* Select each object from RN */
NNS = Find_Neighbor_Nodes_Set(0;, N, S);
[* Find neighbor nodes of O; from S */
for(j=1:;j < [NSS|;j++){
O; = Get_One_Object(j,NNS); /* Select each neighbor of O; */
f2eer = Compute_and_Aggregate(f(0,),f(0;));

F 4 = Compute Difference(f, 1%, Ay ASeers - - - AGte,):

aggry“taggrrraggry aggr

if(ST(F g, AGLr AD, - . AGK,) = = True)

aggr? aggr? agyr

Add_Element(Outlier_Set,i); /* Add the element to Outlier_Set */

}
}

return Outlier_Set.
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Figure 5. Example of clustering efficiency (CE).

4. Analytical evaluation and cost models

The computation of outlier detection algorithms is dominated by the operation
Find_Neighbor_Nodes_Set(), which is determined by the CE parameter of disk page
clustering. In this section, we provide simple algebraic cost models for the I/O cost of
outlier detection operations, using the CE measure of physical page clustering methods.
The CE value is defined as follows:

CE — Total number of unsplit edges
"~ Total number of edges

The CE value is determined by the disk page clustering method, the data record size,
and the disk page size. Figure 5 gives an example of CE value calculation. The blocking
factor, i.e., the number of data records within a page is three, and there are nine data
records. The data records are clustered into three pages. There are a total of nine edges and
six unsplit edges. The CE value of this graph can be calculated as 6/9 = 0.66.

Table 3 lists the symbols used to develop our cost formulas. o is the CE value.  denotes
the blocking factor, which is the number of data records that can be stored in one memory
page. A is the average number of nodes in the neighbor list of a node. N is the total number
of nodes in the data set, L is the number of nodes along a route, and R is the number of
nodes randomly generated by users for spatial outlier verification.

Table 3. Symbols used in the cost analysis.

Symbol Meaning

The CE value

Average blocking factor

Total number of nodes

Number of nodes in a route

Number of nodes in a random set

Average number of neighbors for each node

>% 2™ R
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Lemma 4: The cost function for the model building algorithm is Cy = N/f+
N x A x (1 —0).

Proof: The Model Building algorithm is a nested loop index join. Suppose that we use
two memory buffers: one memory buffer stores the data object x used in the outer loop
and the other memory buffer is reserved for processing the neighbors of x. The outer loop
retrieves all the data records on the page basis and has an aggregated cost of N/f. For
each node x, on average, o * A neighbors are in the same page as x, and can be processed
without redundant I/O. Additional data page accesses are needed to retrieve the other
(I — o) * A neighbors, and it takes at most (1 —a) * A data page accesses. Thus the
expected total cost for the inner loop is N x A * (1 —a). [

The cost functions for the ROD and RNV algorithms can also be derived in a similar
manner. Proofs of the following lemmas are provided at Shekhar et al. [26].

Lemma 5: The cost function for the ROD algorithm is Crop =L (1 —a)+
LxAx(l—o)=Lx*(1—oa)x(1+A).

Lemma 6: The cost function for the RNV algorithm is Cpyy =R + R x A * (1 — o).

5. Experiment design

In the spatial outlier detection algorithm, CE is a dominant factor for computation cost.
The CE value is determined by the disk page clustering method. In this section, we
describe the layout of our experiments and illustrate the candidate data clustering methods.

5.1. Experimental layout

The design of our experiments is shown is figure 6. The input data set, a Twin Cities
Highway Connectivity Graph, was provided by the Minnesota Department of
Transportation and physically stored into data pages using different page clustering
strategies and page sizes. These data pages were then processed to generate sets of pages
of data to be used by the model building algorithm and test result computation algorithm.
The model building algorithm computes the algebraic aggregate functions to be used by
the test result computation algorithm to detect spatial outliers.

We compared three different data page clustering schemes: the connectivity-clustered
access method (CCAM) [24], Z-ordering [18], and Cell-tree [6]. Other parameters of
interest were the size of the memory buffer, the buffering strategies, the memory block
size (page size), and the number of neighbors. The experimental measures for the model
building procedure and the test result computation procedures are the CE value and I/O
cost.

The experiments were conducted on many spatial frameworks. We present the results on
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Figure 6. Experimental layout.

a representative framework, which is a spatial network with 990 nodes that represents the
traffic detector stations for a 20-square-mile section of the Twin Cities area. We used a
common record type for all the clustering methods. Each record contains a node and its
neighbor-list, i.e., a successor-list and a predecessor-list. The size of each record is 256
bytes.

5.2. Candidate clustering methods
In this section, we describe the candidate clustering methods used in the experiments.

5.2.1. Connectivity-clustered access method (CCAM). CCAM [24] clusters the nodes of
the graph via graph partitioning, e.g., Karypis and Kumar [10], [11]. Other graph-
partitioning methods can also be used as the basis of our scheme. In addition, an auxiliary
secondary index is used to support query operations. The choice of a secondary index can
be tailored to the application. Since the benchmark graph was embedded in graphical
space, we used the BT tree with Z-order in our experiments. Other access methods such as
the R-tree and Grid File can alternatively be created on top of the data file as secondary
indices in CCAM to suit the application. In figure 7, a simple graph and its CCAM are
shown. The left half of figure 7 shows a spatial graph. Nodes are annotated with the node-
id and geographical coordinates. The node-id is an integer representing the Z-order of the
(x,y) coordinates. For example, the node with the coordinates (1,1) gets a node-id of 3.
The solid lines that connect nodes represent edges. The dashed lines show the cuts and
partitioning of the spatial graph into data pages. The partitions are (0,1,4,5), (3,6,8.,9),
(7,12,13,18), and (11,14,15,26). The right half of figure 7 shows the data pages and the
secondary index. Nodes in the same partition set are stored on the same data page.

5.2.2. Linear clustering by Z-order. Z-order [18] utilizes spatial information while
imposing a total order on the points. The Z-order of a coordinate (x,y) is computed by
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Figure 7. CCAM clustering method.

interweaving the bits in the binary representation of the two values. Alternatively, Hilbert
ordering may be used. A conventional 1-D primary index (e.g., BT -tree) can be used to
facilitate a search. Figure 8(a) shows an example of using Z-order as the page clustering
method and B-tree as the primary index for accessing the data file. The nodes of different
partitions are (0,1,3,4), (5,6,7,8), (9,11,12,13), and (14,15,18,26).

4 4
3
3
2
2
1 1
0
0
0 1 2 3 0 1 2 3
(a) Z-order (b) Cell-tree

Figure 8. Z-order and Cell-tree clustering methods.
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5.2.3. Cell-tree. A Cell-tree [6] is a height-balanced tree. Each Cell-tree node
corresponds not necessarily to a rectangular box but to a convex polyhedron. A cell tree
restricts polyhedra to partitions of a binary space partitioning (BSP) in order to avoid
overlaps among sibling polyhedra. Each cell-tree node corresponds to one disk space,
and the leaf nodes contain all the information required to answer a given search query.
The Cell-tree can be viewed as a combination of a BSP- and R -tree, or as a BSP-tree
mapped on paged secondary memory. Figure 8(b) is an example of using Cell-tree to
cluster the nodes. The first level binary partition is line H1, and the second level
partitions are lines H2 and H3. The partitions are (0,1,3,6), (4,5,7,18), (8,9,11,14), and
(12,13,15,26).

5.3. Candidate buffering strategies

We evaluated three buffering strategies to replace the page in the memory buffer. The
simplest page replacement algorithm is the first in first out (FIFO) algorithm. A FIFO
replacement algorithm marks the time when each page was bought into the memory
buffer. When a page must be replaced, the oldest page is chosen. The least recently used
(LRU) algorithm selects the page that has not been referenced for the longest period of
time for replacement. In contrast, the most recently used (MRU) algorithm replaces the
page which has been just recently referenced.

6. Experimental observations and results

In this section, we illustrate outlier examples detected in the traffic data set, present the
results of our experiments, and test the effectiveness of different page clustering methods.
To simplify the comparison, the I/O cost represents the number of data pages accessed.
This represents the relative performance of the various methods for very large databases.
For smaller databases, the I/O cost associated with the indices should be measured. We
examined the CE measures in the set of experiments that deals with range outlier detection
queries.

6.1. Outliers detected

We tested the effectiveness of our algorithm on the Twin-Cities traffic data set and
detected numerous outliers. Figure 9 shows one example of traffic flow outliers. Figures
9(a) and (b) are the traffic volume maps for [-35W north bound and south bound,
respectively, on January 21, 1997. The X-axis is a 5S-minute time slot for the whole day and
the Y-axis is the label of the stations installed on the highway, starting from 1 on the north
end to 61 on the south end. The abnormal white line at 2:45 pm and the white rectangle
from 8:20 am to 10:00 am on the X-axis and between stations 29 to 34 on the Y-axis can be
easily observed from both (a) and (b). The white line at 2:45 pm is an instance of temporal
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Figure 9. An example of an outlier.

outliers, where the white rectangle is a spatial-temporal outlier. Moreover, station 9 in
figure 9(a) exhibits inconsistent traffic flow compared with its neighboring stations, and
was detected as a spatial outlier.

6.2. Evaluation of the proposed cost model

We evaluated the I/O cost for different clustering methods for outlier detection procedures,
namely, model building (MB), ROD and RNV. The experiments used Twin Cities traffic
data with page size 1 Kbytes, and two memory buffers. Table 4 shows the number of data
page accesses for each procedure under various clustering methods. The CE value for each
method is also listed in the table. The cost function for MB is Cyp =N/ + Nx
A % (1 — o). The cost function for RNV is Cgyy = R + R * A % (1 — o). The cost function
for ROD is Crpp = L * (1 —a) * (1 + A), as described in Section 4.2.

As shown in table 3, CCAM produced the lowest number of data page accesses for the

Table 4. The actual I/O cost and predicted cost model for different clustering methods.

Parameters Computation Random Node Verification Route Outlier Detect
Clustering
Method Actual Predicted Actual Predicted Actual Predicted o=CE
CCAM 628 v687 241 246 30 36 0.68
Cell-tree 834 919 279 291 45 53 0.53
Z-order 1,263 1,269 349 357 78 79 0.31

N=773,L =38R =150, =4,A =2
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outlier detection procedures. This is to be expected, since CCAM generated the highest CE
value.

6.3. Evaluation of 1/0 cost for the model building algorithm

In this section, we present the results of our evaluation of the I/O cost and CE value for
alternative clustering methods while computing the model. The parameters of interest are
buffer size, page size, number of neighbors, and neighborhood depth.

6.3.1. The effect of buffering. We evaluated the effect of buffering on the performance
of the page clustering methods and buffer replacement strategies. The variable parameters
were the number of buffers available. Figure 10(a) shows the effect of buffering on the
performance of model construction for various clustering methods with fixed page size
2 Kbytes. As can be seen, the performance improves as the number of buffers increases.
The performance ranking for each clustering methods remains the same for different
buffer sizes. Figure 10(b) demonstrates the effect of different buffering strategies on the
number of page accesses. When the buffer size is small (e.g., 4-8), the LRU algorithm has
the best performance. As the number of buffers increases to greater than 10, both FIFO and
LRU have better performance than MRU.

6.3.2. The effect of page size and CE value. Fgure 11(a) and (b) show the number of
data pages accessed and the CE values, respectively, for different page clustering methods,
as the page sizes change. The buffer size is fixed at 32 Kbytes. As can be seen, a higher CE
value implies a lower number of data page accesses, as predicted in the cost model. CCAM
outperforms the other competitors for all four page sizes, and Cell-tree has better
performance than Z-order clustering.
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Figure 10. Effect of buffering.
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Figure 11. Effect of page size on data page accesses and clustering efficiency (buffer size = 32 Kbytes)

6.3.3. The effect of neighborhood cardinality. We evaluated the effect of varying the
number of neighbors and the depth of neighbors for different page clustering methods.
The neighborhood depth defines the levels of the neighborhood relationship. When the
neighborhood depth D is set to one, only directly connected nodes are considered as
neighbors; when D is set to be greater than one, then node 7, is considered a neighbor of
node n; provided there is a path connecting n; to n, with number of edges less than or
equal to D. For example, there are three nodes, n,, n,, and n., with directed graph
relationship: edge (n,, n,) and edge (ny, n,). If the neighborhood depth is set to two, node
n. will be considered as neighbor of node n, due to a path of length two via node n,. We
fixed the page size at 1Kbytes, buffer size at 4 Kbytes, and used the LRU buffering
strategy. Figure 12 shows the number of page accesses as the number of neighbors for each
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Figure 12. Effect of neighborhood cardinality on data page accesses (page size = 1Kbytes, buffer size

= 4 Kbytes)
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node increases from 2 to 10. CCAM has better performance than Z-order and Cell-tree. The
performance ranking for each page clustering method remains the same for different
numbers of neighbors. Figure 12 shows the number of page accesses as the neighborhood
depth increases from 1 to 5. CCAM has better performance than Z-order and Cell-tree for
all the neighborhood depths.

6.4. Evaluation of 1/O cost for ROD algorithm

We evaluated the performance for different page clustering methods, page size, and buffer
size when users request an outlier detection along a given route (e.g., [-35W north bound)
on a highway. We also evaluated the performance of RNV algorithm. The experiment
results showed the similar trend as the ROD algorithm.

6.4.1. The effect of buffering. We evaluated the effect of buffering for the outlier
detection along a route. Figure 13 shows the number of page accesses as we increase the
buffer number from 2 to 8. As can be seen, the increase of buffer size does not improve the
performance after a certain buffer size, and CCAM has the best performance.

6.4.2. The effect of page size and CE value. Fgure 14(a) and (b) show the number of
data pages accessed and the CE values respectively, for different page clustering methods,
as the page sizes change. The buffer size is fixed at 4 Kbytes. As can be seen, a higher CE
value implies a lower number of data page accesses, as predicted in the cost model. CCAM
outperforms the other competitors for all three page sizes. Note that the Cell-tree has a CE
value of 0 and generates the highest number of page accesses when page size is 0.5 Kbytes
and record size is 256 bytes. Cell-tree clusters stations by Euclidean distance even when
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Figure 13. Effect of buffering.
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Figure 14. Effect of page size on data page accesses and clustering efficiency (buffer size = 32 Kbytes).

there is no edge connecting the stations. This can lead to low CE values and CE value of 0
when each data page (disk block) can hold only two records.

7. Conclusions and future work

In this paper, we focus on detecting spatial outliers in spatial data sets. We propose a
definition of S-outliers which generalizes traditional spatial outliers; we also analyze
computation structures for detecting spatial outliers, design efficient algorithms to detect
outliers, provide cost models for outlier detection procedures, and compare the
performance of our approach using different data clustering approaches. In addition, we
provide experimental results from the application of our algorithm on a Twin Cities traffic
archival to show its effectiveness and usefulness.

We have evaluated alternative clustering methods for neighbor outlier query processing,
including model building, random node verification, and route outlier detection. Our
experimental results show that the CCAM, which achieves the highest CE value, provides
the best overall performance.

Our algorithm is designed to detect spatial outliers using a single non-spatial attribute
from a data set. We are planning to investigate spatial outliers with multiple non-spatial
attributes, such as the combination of volume, occupancy, and speed in the traffic data set.
For multiple attributes, the definition of spatial neighborhood will be the same, but the
neighborhood aggregate function, comparison function, and statistical test function need
to be redefined. The key challenge is to define a general distance function in a multi-
attribute data space.

We will also explore graphical methods for spatial outlier detection. The key issue is to
facilitate the visualization of spatial relationships while highlighting spatial outliers. For
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instance, in variogram cloud and scatterplot visualizations, the spatial relationship
between a single spatial outlier and its neighbors is not obvious. It is necessary to transfer
the information back to the original map to check neighbor relationships. As a single
spatial outlier tends to flag not only the spatial location of local instability but also its
neighboring locations, it is important to group flagged locations and identify real spatial
outliers from the group in the post-processing step.

Although spatial outlier detection is the focus of this paper, figure 9 shows other types of
outliers, such as temporal outliers and spatial-temporal outliers. While our proposed
algorithm can efficiently detect spatial outliers, temporal and spatial-temporal outliers are
detected by post-processing and data visualization. We are planning to investigate the
definitions of temporal and spatial-temporal outliers, as well as to expand our algorithm to
directly detect these outliers.
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Notes

1. Examination of other categories of dimensions, e.g., temporal, is beyond the scope of this paper and may be
explored in future work.
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