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A spatial outlier is a spatially referenced object whose non-spatial attribute values are
significantly different from the values of its neighborhood. Identification of spatial out-
liers can lead to the discovery of unexpected, interesting, and useful spatial patterns for
further analysis. Previous work in spatial outlier detection focuses on detecting spatial
outliers with a single attribute. In the paper, we propose two approaches to discover
spatial outliers with multiple attributes. We formulate the multi-attribute spatial out-
lier detection problem in a general way, provide two effective detection algorithms, and
analyze their computation complexity. In addition, using a real-world census data, we
demonstrate that our approaches can effectively identify local abnormality in large spa-
tial data sets.

Keywords: Algorithm; Outlier detection; Spatial data mining.

1. Introduction

A spatial data set could be modelled as a collection of spatially referenced objects,
such as roads, buildings and cities. Attributes of spatial objects fall into two cate-
gories: spatial attributes and non-spatial attributes. The spatial attributes include
location, shape and other geometric or topological properties. Examples of non-
spatial attributes include length, height, owner, building age and name. A spatial
neighborhood [27] of a spatially referenced object is a subset of the spatial data
based on the spatial dimension using spatial relationships, e.g., distance and adja-
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cency. Comparisons between spatially referenced objects are based on non-spatial
attributes.

In a spatial context, local anomalies are of paramount importance. Spatial out-
liers are spatially referenced objects whose non-spatial attribute values are sig-
nificantly different from those of other spatially referenced objects in their spa-
tial neighborhoods. Informally, a spatial outlier is a local instability, or an ex-
treme observation with respect to its neighboring values, even though it may
not be significantly different from the entire population. Detecting spatial out-
liers is useful in many applications of geographic information systems and spatial
databases [20, 21, 24]. These application domains include transportation, ecology,
public safety, public health, climatology, and location based services. In these ap-
plications, there may be more than one non-spatial attributes associated with each
spatial object. For example, in census data set, each census track contains several
non-spatial attributes, including population, population density, income, poverty,
housing, education, and race [26]. Detecting outliers from these spatial data with
multiple attributes will help demographer and social worker to identify local anoma-
lies for further analysis.

This paper focuses on detecting spatial outlier with multiple attributes. We for-
mulate spatial outlier detection problems in a general way, propose two effective
algorithms, analyze their computational costs, and demonstrate the effectiveness
of our proposed approaches using a real-world census data set. The paper is or-
ganized as follows. Section 2 reviews related work in outlier detection. In Section
3, we formulate the problem, propose two spatial outlier detection algorithms, and
analyze their computational complexity. The experimental results and analysis are
provided in Section 4. Finally, we conclude in Section 5 with directions for future
work.

2. Related Work

Numerous outlier detection tests, known as discordancy tests, have been studied
in the field of statistics. These tests are developed for different circumstances, de-
pending on the data distribution, the number of expected outliers, and the types of
expected outliers [4,11]. The main idea is to fit the data set to a known standard
distribution, and develop a test based on distribution properties. In computational
geometry, each data object is represented as a point in a high dimensional space
with an assigned depth. Depth-based approaches [17,19, 25] organize data objects
in convex hull layers in the data space according to peeling depth, and outliers are
expected to be found from data objects with shallow depth values. In the context
of KDD, many outlier detection algorithms have been recently proposed. They pro-
vide outlier tests based on different concepts, such as distance, density, and local
property. Knorr and Ng presented the notion of distance-based outliers [12, 13].
For a k dimensional data set T with N objects, an object O in T' is a DB(p, D)-
outlier if at least a fraction p of the objects in T lies greater than distance D from
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O. Ramaswamy et al. proposed a formulation for distance-based outliers by cal-
culating the distance of a point from its k' nearest neighbor [18]. After ranking
points by the distance to its k*" nearest neighbor, the top n points are declared
as outliers. Breunig et al. introduced the notion of a “local” outlier in which the
outlier-degree of an object is determined by taking into account the clustering struc-
ture in a bounded k nearest neighborhood of the object [6,10]. The major limitation
of applying the above algorithms for spatial outlier detection is that they do not
distinguish between spatial and non-spatial attributes and are not well suitable for
detecting spatial outliers.

Recent work by Shekhar et al. introduced a method for detecting spatial outliers
in graph data set [22,23]. The method is based on the distribution property of the
difference between an attribute value and the average attribute value of its neigh-
bors. Several spatial outlier detection methods are also available in the literature
of spatial statistics. These methods can be generally grouped into two categories,
namely graphic approaches and quantitative tests. Graphic approaches are based on
visualization of spatial data which highlights spatial outliers. Example methods in-
clude variogram clouds and pocket plots [8,16]. Quantitative methods provide tests
to distinguish spatial outliers from the remainder of data. Scatterplot and Moran
scatterplot are two representative approaches. A scatterplot [7,14] shows attribute
values on the X-axis and the average of the attribute values in the neighborhood
on the Y-axis. A least square regression line is used to identify spatial outliers.
A scatter sloping upward to the right indicates a positive spatial autocorrelation;
a scatter sloping upward to the left indicates a negative spatial autocorrelation.
Nodes far away from the regression line are flagged as possible spatial outliers. A
Moran scatterplot [15] is a plot of normalized attribute value against the neigh-
borhood average of normalized attribute values. A Moran scatterplot contains four
quadrants. The upper left and lower right quadrants indicate a spatial association
of dissimilar values: low values surrounded by high value neighbors and high values
surrounded by low value neighbors. Spatial outliers can be identified from these
two quadrants. The above methods for detecting spatial outliers focus on the case
of single attribute.

For detecting outlier with multiple attributes, traditional outlier detection ap-
proaches could not be used properly due to the sparsity of the data objects in high
dimensional data space [3]. It has been shown that the distance between any pair of
data points in a high dimensional space is so similar that either each data point or
none data point can be viewed as an outlier if the concepts of proximity is used to
define outliers [1]. As a result, using traditional Euclidean distance function cannot
effectively get outliers in a high dimensional data set due to the averaging behavior
of the noisy and irrelevant dimensions. To address this problem, two categories of
research work have been conducted. The first is to project the high dimensional
data to low dimensional data that has abnormally low local density [2,3,5,9]. The
second approach is to re-design distance functions to accurately define the proxim-
ity relationship between data points [1]. All these multi-attribute outlier detection
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approaches deal with non-spatial attributes.

For spatial outlier detection, there are two dimensions: spatial dimension and
non-spatial dimension. In detecting spatial outliers, spatial and non-spatial dimen-
sions should be considered separately. The spatial dimension is used to define the
neighborhood relationship, while the non-spatial dimension is used to define the
distance function. In the following, we study two algorithms for detecting spatial
outliers with multi-attributes.

3. Algorithms

In this section, we define the multi-attribute spatial outlier detection problem and
propose our algorithms. The first algorithm is based on computing the average of
attribute values of neighbors, while the second algorithm is based on computing
the median of attribute values of neighbors.

3.1. Problem Formulation

Suppose ¢ measurements (attribute values) y1,y2,---,yq (¢ > 1) are made on the
spatial object x. We use y to denote the vector (y1,yz2,- -+, yq)"
the transpose operation. That is, y = (y1, 2, -+, y,)T . Given a set of spatial points
X = {x1,X2,...,X,} in a space with dimension p > 1, an attribute function f is
defined as a map from X to RY (the ¢ dimensional Euclidean space) such that for
each spatial point x, f(x) equals the attribute vector y. For convenience, we write

yi = f(x:)
= (fl(xi)7f2(xi>7"'afq(xi))T
= (yilayiQ,"'ayiq)T

, where T represents

for i =1,2,...,n. Denote the set {y1,y2,...,¥n} by A.

For a given integer k, let NNy (x;) denote the k nearest neighbors of point x;
for i = 1,2,...,n. A neighborhood function g is defined as a map from X to RY
such that the jth component of g(x), denoted g;(x), returns a summary statistic
of attribute values y; of all the spatial points inside NNy (x).

For the purpose of detecting spatial outliers, we compare all of the components
of y at x with the corresponding quantities from the neighbors of x. A comparison
function A is a function of f and g, whose domain is X and range is in R" with
r < gq. Examples of h include h = f — g, which represents a map from X to R? with
r=g¢q,and h = f1/¢1, a map from X to R with r = 1. Denote h(x;) by h;.

Given the attribute function f, neighborhood function g, and comparison func-
tion h, a point x; is an S-outlier (spatial outlier) if h; is an extreme point of the
set {h1,ha,...,hn}. We note that the definition is very general and depends on
the choices of functions g and h. The following problem characterizes the task of
designing algorithms for detecting spatial outliers:
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Spatial Outlier Detection Problem

Given:
e A set of spatial points X = {x1,X2,...,X,}
e Neighborhoods NNy (x1), NNi(x2),..., NNg(x,)
e An attribute function f: X — R9
e A neighborhood function g : X — R4
e A comparison function h: X — R"
Design:
e Algorithms to detect spatial outliers

3.2. Spatial Outlier Detection Algorithms

We introduce two multi-attribute spatial outlier detection algorithms. Different
choices of g and h may lead to different outliers. The criterion on the selection of g
and h is that most of the resulting outliers should possess practical meanings. For
example, examining outliers should often lead to causation investigations.

Detecting unusual attribute vector by the difference between f and g, i.e., h =
f — g, is available. We do this through checking the Mahalanobis distance between
h(x) and the average h value from the neighbors of x. The Mahalanobis approach
considers both the average value and its variance and covariance of the attributes
measured. It accounts for ranges of variance between attributes and compensates
for interactions (covariance) between attributes. To describe this method, let us
first note the following: a) Under certain conditions, we may show that h(x) follows
a multivariate normal distribution. b) If h(x) is distributed as N,(u,X), ie., ¢-
dimensional vector h(x) follows a multivariate normal distribution with mean vector
p and variance-covariance matrix ¥, then (h(x) — p)TS 71 (h(x) — p) is distributed
as X2, where x2 is the chi-square distribution with ¢ degrees of freedom. Therefore
the probability that h(x) satisfies (h(x) — p)" S (h(x) — p) > x3(a) is a. Here
Xg(a) is the upper (100« )th percentile of a chi-square distribution with ¢ degrees
of freedom. For example, x2,(0.05) = 18.31.

Now suppose there are n spatial referenced objects x1, - -+, x,. For the sample
h(x1), -+, h(xy), calculate the sample mean
1 n
=1
and sample variance-covariance matrix
1< T
Ts = — > () — mlh(x) — p]"

i=1

Then we should expect that the probability of h(x) satisfying (h(x) —
1T () — 1) > x2(a) is roughly .
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Set d?(x) = (h(x) — py ) TE ;7 (h(x) — pg). For any x, if d?(x) is unusually large,
x will be teated as a spatial outlier. In other words, if d?(x) > 6, x is a spatial out-
lier, where 6 is a predetermined number depending on a specified confidence level.
It follows from the above discussion that many algorithms for detecting S-outliers
are available. Choosing g to be the average attribute vectors from the neighborhood
yields the following mean algorithm.

Spatial Outlier Detection Algorithm 1 (Mean Algorithm):

(1) Assume we are given the spatial data set X = {xi,X2,...,X,}, pre-defined
threshold 6, attribute function f, and the number k& of nearest neighbors.
(2) Foreachfixed j (1 < j < q), standardize the attribute function f;, i.e., f;(x;) <

% fori=1,2,... n.

(3) For e;ch spatial point x;, compute the k nearest neighbor set NNy (x;).

(4) For each spatial point x;, compute the neighborhood function g such that
g;j(x;) = average of the data set {f;(x) : x € NNy(x;)}, and the compari-
son function h(x;) = f(x;) — g(xi).

(5) Compute d?(x;) = (h(x;) — pg)TE 7 H(h(x:) — pg)- If d%(x;) > 0, x; is a spatial
outlier.

Motivated by the fact that median is a robust estimator of the “center” of a
sample, we obtain the following median detection algorithm by choosing g to be
the median of the attribute vectors from the neighborhood.

Spatial Outlier Detection Algorithm 2 (Median Algorithm):

(1) Assume we are given the spatial data set X = {xj,Xa,...,X,}, pre-defined
threshold 6, attribute function f, and the number k& of nearest neighbors.
(2) For each fixed j (1 < j < ¢), standardize the attribute function f;, i.e., fj(x;) <

BOOZ0 o= 1,2, 0
- —1,2,....n.

(3) For each spatial point x;, compute the k nearest neighbor set NNy (x;) based
on its spatial location.

(4) For each spatial point x;, compute the neighborhood function g such that
g;j(x;) = median of the data set {f;(x) : x € NNy(x;)}, and the compari-
son function h(x;) = f(x;) — g(x;).

(5) Compute d?(x;) = (h(x;) — pg)TE 7 H(h(x:) — pg). If d%(x;) > 0, x; is a spatial
outlier.

The only difference between these two algorithms lies in the fourth step, where
the Mean Algorithm uses average attribute values to compute the neighborhood
function while the Median Algorithm uses the median attribute values. We note
that in the above two algorithms, if the expected number m of S-outliers is given,
instead of 6, then those m outliers could be picked up according to the m largest
values of d?.
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3.3. Computational Complexity

For the Mean Algorithm, Step 2 is to standardize the attribute function, which costs
O(gn). In Step 3, the neighborhood is computed for each spatial point, in which a &
nearest neighbor (KNN) query is issued. The time complexity is then based on that
of KNN query. For the KNN query, there are two choices. We can use a grid-based
approach, which processes KNN query in constant time if the grid directory resides
in memory, leading to a complexity of O(n). If an index structure (e.g. R-tree) exists
for the spatial data set, spatial index can be used to process KNN query, which
has complexity of O(logn), leading to a complexity of O(nlogn). For Step 4, the
computation of neighborhood function g and comparison function h takes O(gkn).
In Step 5, the computation of Mahalanobis distance costs O(g?*n). In summary, the
total computational cost for the Mean Algorithm is O(qn)+0(n)+O0(qgkn)+O(g**n)
for grid-based structure, or O(gn) + O(nlogn) + O(gkn) + O(q¢* * n) for index-
based structure. If n > k and n > d, the total time complexity is O(n) for grid-
based structure, or O(nlogn) for index-bases structure. The time complexity is
then primarily determined by the KNN query. The Median Algorithm has the
same time complexity as the Mean Algorithm. The only difference between the two
algorithms lies in the computation of neighborhood function g. Nevertheless, the
time complexity for computing average and median for k neighbors is the same,

ie., O(k).

4. Experiments

We empirically evaluated our detection algorithms by mining a real-life census data
set. The experiment results indicate that our algorithms can effectively identify
spatial outliers with multiple attributes.

The census data is the most detailed tabulation of American demographic data
compiled by U.S. Census Bureau [26]. It contains detailed data on population, race
and ethnicity, age and sex, education, employment, income, poverty, housing, and
many other attributes for each of the following different levels of geography: 1) the
United State and major regions of the country; 2) each state and metropolitan area;
3) all 3000+ counties in the United States; 4) municipalities, census tracts, and block
groups. More than 3000 counties were processed in our experiment. The location
of each county is determined by one or more polygons consisting of hundreds of
longitude and latitude pairs. The neighborhoods were chosen to be dynamic, i.e.,
the neighborhood of a county was chosen to be the set of adjacent counties.

In the experiment, we used the following 11 attributes: population in 2001,
population percent change from April 1 2000 to July 1 2001, population percent
change from 1990 to 2000, percentage of persons under 5 years old in 2000, per-
centage of persons under 18 years old in 2000, percentage of persons over 65 years
old in 2000, percentage of persons under 5 years old in 2000, percentage of persons
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Fig. 1. US Population in the Year 2001

under 18 years old in 2000, percentage of White persons, percentage of Black per-
sons, percentage of Asian persons, and percentage of American Indian persons. The
experiment was conducted on data of all counties in the United States. Figure 1
shows an example attribute population in year 2001 used in our experiment. The
high population areas in the east coast, west coast, and around Great Lakes region
can be clearly observed.

The multiple attributes may have different magnitudes. For example, population
of a county is usually more than 10,000, but the percentage of population change is
mostly less than 1. So population of a county may dominate the value of difference
function. To avoid this negative impact, we standardized the attribute values for
each attribute. The experiment results are shown in Tables 1 and 2.

Note that the attribute values for each county have been standardized. The
tables show only top 10 counties which are most likely to be spatial outliers. As
can be seen from Tables 1 and 2, Los Angeles is selected as top spatial outlier
by both algorithms, because it has the largest Mahalanobis distance, 1142 for the
Mean Algorithm and 1306 for the Median Algorithm. Specifically, the largest dis-
tance mainly comes from the contribution of the corresponding attribute population
(standardized value 32.15), compared with its neighboring counties, e.g., Orange
Co. (9.43), Ventura Co.(2.28), San Bernardino Co. (5.64), and Kern Co. (1.97).
The second spatial outlier, Cook Co, which encompasses the downtown of Chicago,
is also identified due to its high population (standardized value 17.71), compared
with its neighboring counties, e.g., Dupage Co. (2.76) Will Co. (1.5), Lake Co.(1.32),
Kane Co. (1.12), and McHenry Co.(0.6). The third and fourth spatial outliers, San
Francisco, CA and Santa Clara, CA, have high percentage of Asian population
(standardized Value 19.11 and 15.80, respectively) compared with the Asian pop-
ulation of their neighboring counties. The remaining seven counties in both tables
were detected as spatial outliers because the total contributions to the Mahalanobis
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distance from various attribute values are significant. From Tables 1 and 2, we can
also see that the Mean Algorithm and the Median Algorithm have 9 outliers in
common and the rankings of the top 4 outliers are in the same order. This shows
that both of the algorithms are effective in detecting spatial outliers.

5. Conclusion

In this paper we propose two spatial outlier detection algorithms using Mahalanobis
distance to analyze spatial data with multiple attributes: one algorithm based on
the average of the attribute values from neighborhoods and the other based on
median of the attribute values. The experimental results indicate our methods are
effective in practical use.

Spatial outlier detection is the focus of this paper. However, there are other types
of outliers, such as temporal outliers and spatial-temporal outliers, and regional
outliers where the data contain two neighboring regions with different ranges of
attribute values. We are planning to investigate the definitions of these kinds of
outliers, as well as to expand our algorithms to identify these local anomalies. Our
algorithms assume that the data set can be loaded into memory to process. We are
planning to investigate the issue of handling a large, disk-resident spatial data set.
The goal will be to minimize the number of page reads or passes over the data set.
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