
An Efficient Data Model for Sensor Networks

Janak Mathuria, Chang-Tien Lu, Jing Dai
Department of Computer Science

Virginia Polytechnic Institute and State University
Falls Church, VA22043, USA

{janakm, ctlu, daij}@vt.edu

Abstract

Processing queries “in place” over sensor networks

lends itself to optimization techniques that reduce the
number of messages required for fulfilling the query.
This can lead to significant reduction in power
consumption, a precious commodity in such networks,
thereby extending the life of these networks. In this
paper, we examine the efficacy of some known
optimization techniques using a simulator. We also
present a new “silent message” optimization technique
and utilize query normalization technique from
traditional databases to support queries of greater
complexity.

Keywords: sensor networks, database, SQL, query
optimization.

1. Introduction

Sensor networks are expected to be central to future
advances in the prevailing information age. An almost
countless number of such networks of varying sizes are
expected to be deployed for monitoring and tracking in
a host of domains such as earth and environmental
sciences, traffic management, public safety and health,
industrial process control to name just a few. Present
day sensor networks are comprised of tiny nodes that
are equipped with a radio, a processor, and some
sensing devices. They run on power supplied via a
battery pack, whose life effectively determines the life
of the sensor. The radio allows sensors to send and
receive messages over only a limited range based on
broadcast. Communication is unreliable due to various
disturbances and is also very expensive. Transmitting a
single bit of data may consume as much battery as
executing 800 instructions. A typical battery pack
would be exhausted in just over 2 months if the sensor
continuously transmits data. Thus minimizing
communication is of paramount importance to having
long-living sensor networks.

Sensors in the near future are expected to be a lot
cheaper, have greater computing power and memory,
and have better ability to withstand adverse
environment and terrains. This is expected to lead to a
huge explosion in their deployment. At the same time,
improvements in communication and battery life are
not expected to keep pace. Thus minimizing
communication is expected to be the focus of much
research in the field of sensor networks.

In most present and future models of sensor
networks, data gathering remains one of the primary
functions of a sensor network. Given that sensor
networks have limited memory, computing power and
are generally not very reliable, a common approach has
been to simply feed the sensor readings into a
traditional database or data-warehouse. This approach
has certain drawbacks. One drawback is that simply
sending all observations to a database typically
requires a lot of communication since each observation
has to go through multiple hops. Another drawback is
that needing to communicate to a database makes the
sensor network less autonomous.

In this paper, we examine the motivation, benefits,
challenges, and implications of processing queries “in
place” in sensor networks. We thus view the sensor
network as a database. We discuss the similarities
between sensor networks and traditional databases and
also note the differences. We define an SQL-like query
language for sensor networks and then present a “silent
message” optimization technique that exploits the
predictability of the next sensor reading to reduce
communication. We review the efficacy of the various
optimization techniques using a simulator we
developed for this purpose and we finally discuss
related work and conclude our work.

2. Sensor networks as databases

2.1. Similarities

One of the most distinctive characteristics of
traditional database systems is that they are self

describing. This facilitates construction of non-
application-specific applications such as query
processing tools to learn about the database. Sensors
networks may also be self-describing. Sensors can
respond to queries about what attributes they observe.
Each distinct type of sensor may be viewed as a
distinct relation.

A traditional database provides a separation of the
physical, conceptual and logical layers. The physical
level is generally not visible to the user. A self-
describing sensor network could easily provide
separation of physical and conceptual layers.
Database-like access control lists can be implemented
to provide separation of the logical level by providing
views of the data to different users.

Both databases and sensor networks lay great
emphasis on efficient access methods. Sensor networks
lay a great deal of emphasis on reducing
communication to conserve power. Accessing data is
by far the most common operation in databases as well
as sensor networks. Thus efficient access to data is of
paramount importance in both.

2.2. Differences

As compared to traditional databases, sensors are

massively distributed stores. This difference manifests
by making query processing in sensor networks much
more communication bound than in traditional
databases.

Sensors are also extremely tiny stores of data.
Typical memory on sensors is 4KB and while expected
to increase substantially, it would always be infeasible
to near the capacity of database drives. Additionally,
sensors are also highly unreliable. Given these
limitations, sensors are always likely to store a limited
number of past readings temporarily.

Query characteristics in sensor networks also differ
from those in traditional databases. In sensor networks,
the retrieval query (SELECT) is registered and returns
results at specified intervals. Additional to this, the
semantics of insert, update, and delete operations differ
to a much greater extent. In most cases, sensor
networks only read values and do not necessarily have
any control over the values. A very important
implication of this continuous nature is that traditional
query plan approaches is not necessarily suitable for
query optimization. Instead techniques that adapt to
changing data patterns are required. There has been a
great deal of research [10, 12, 13] in this area
especially as pertains to web databases. Eddies appear
particularly suitable for sensor networks. They also
facilitate sharing of data and processing over multiple
queries.

3. SQL-like query language

Given that other than the continuous nature of data
and queries, the other basic semantics of the retrieval
operation are the same, we use a SQL-like query
language for querying sensor networks. We add some
extensions to support the continuous nature of queries.
The basic structure of the SQL-like query statement
follows:

<select-stmt> :=

<select-query>
EVERY <time-interval>
[FOR <time-span>]

<select-query> :=

SELECT <column-list>
FROM <relation-list>
[WHERE <predicate>]
[GROUP BY <group-by-list>]
[HAVING <predicate>]
[UNION | MINUS | INTERSECT select-query]

The <column-list> may contain attributes or

aggregates in addition to arithmetic operations.
Aggregates may be one of the standard aggregates as
SQL or user-defined aggregates. The <relation-list>
may contain any relation supported in the sensor
network and <predicate> is the typical WHERE clause
in SQL, so are the GROUP BY and HAVING clauses.

The EVERY clause and the optional FOR clause
are new clauses that apply to the statement as a whole.
The EVERY clause needs to be used to specify the
sampling interval. The optional FOR clause may be
used to specify the number of samplings to retrieve.

4. Silent messages

Given that sensor networks are likely to be widely
used for monitoring, one would typically expect the
readings of individual sensors to change in a
predictable manner. This is especially true when the
monitoring data is used for control. This predictability
of readings can be exploited to reduce the number of
messages required to process a continuous query.
Children initially provide their readings to the parents.
The child only sends its next reading to the parent in
case it is not within an expected range. If the parent
does not receive a reading from the child, it simply
uses the expected value for its computation. Note that
this hypothesizing and message elimination can bubble
up all the way to the root node. For long running

continuous queries, this can lead to substantial
reduction in communication. In case the expected
value is not the same as the previous value, for
example, it is expected to increase by a constant factor,
computing expected values for aggregates such as
SUM would require additional processing. Another
important consideration is that receiving no messages
may indicate that a sensor is no longer unavailable.
Thus a mechanism is needed that ensures against this.
One possible approach is to attach a probability to next
reading not being within expected range. Say this
probability is 0.1. In this case, the parent would wait
for 10 cycles (10 / 0.1) without receiving a message. If
after 10 cycles, it has not heard from a particular child,
it would treat the child as unavailable and initiate a
rebuild. In cases where the next expected value differs
per node, as described above, the child could transmit
the expected values till the next transmission along
with each transmission.

5. Simulator

We have developed a simulator for studying the
efficacy of various query optimization techniques, in
order to have our own framework as the basis for
conducting experiments for further research.

In keeping with the view to provide a framework,
we allow the user to provide values for various
characteristics of a sensor network, such as radio range,
data transfer rate, battery consumption, available
memory, relations and attributes, expected range of
values and probability of within value range.

When a configuration is loaded, sensors are
arranged using random numbers and a routing tree is
constructed. The root node is selected at random. The
root node then sends out a broadcast message to invite
sensors to be its children. Each sensor that receives this
message responds back to the root by accepting the
invitation and in turn broadcasts its own message to
invite other sensors to be its children. This process
continues till all sensors have joined the routing tree.
When a single sensor receives multiple invitation
messages around the same time, it would select the
closest sensor. The simulator displays the resulting
routing tree.

5.1. Preparing queries

Users can execute queries by selecting the
Tools|Query menu option. The syntax of the query is
as described in section 3 with some differences. An
additional OPTIMIZATIONS clause is allowed to
choose optimizations among in_network,

silent_messages, snooping and packet_merging to use.
The interval for the EVERY clause can only be
specified in terms of seconds and the value specified
for the FOR clause is the number of time-points before
the query is cancelled. The input query is parsed,
syntactic and semantic checks are performed and if the
query is valid, it is normalized.

5.2. Executing queries

The root sensor then extracts operations and passes
on them to its children which in turn pass them on to
their children. All sensors including the root sensor
perform the necessary processing. The simulator
displays the results for each time-point in a list control.
A timer is used to wake up the sensors to obtain the
results for the next interval. This process continues till
either the specified number of cycles complete or the
user cancels the query.

5.3. Results

0

10000

20000

30000

40000

50000

60000

10
0

50
0

10
00

20
00

Sensors

M
es

sa
ge

s
No
Optimization

In-netw ork
aggregation

Silent
Messages
(Volatility
0.15)

Silent
Messages
(Volatility
0.05)

Figure 1: Results

We carried out experiments on networks of varying
sizes with and without the in-network and silent
messages optimizations. We used a simple query for
this purpose; SELECT AVG(SampledValue) FROM
Pollen EVERY 1 FOR 10. Results are presented
below:

As can be seen, not performing in-network
aggregation scales very poorly as the size of the
network grows. Silent message optimization reduces
the number the number of messages as compared to
just in network processing. As volatility decreases, the
silent message technique performs better as one would
expect.

6. Related work

Querying sensor networks has been a fertile area of
research. Using SQL-like language for querying sensor
networks and various techniques for query
optimization including in-network aggregation,
snooping and hypothesis testing have been presented
by Madden et al [1]. The directed diffusion paradigm
to achieve energy savings for distributed sensing is
presented by Intanagonwiwat et al [2]. Various designs
for query processing in sensor networks have been
proposed that discuss routing algorithms as well as
optimization techniques [8]. Routing algorithms for ad-
hoc networks have been studied for mobile networks
and have direct applications to sensor networks [6].
Bonnet et al have also examined treating sensors as
databases [7].

Adaptive query processing techniques have been
applied to web and streaming databases and have been
used in projects on sensor networks [5, 9].
Chandrasekaran et al study continuous query
processing over data that has arrived prior to the query
as well as future data [11]. Transforming queries while
maintaining equivalence has been researched and used
extensively in traditional databases [3, 4, 14].

7. Conclusion and future work

The results from our initial experiments support the
argument for performing queries in place in sensor
networks. We also see that the silent message
optimization can greatly reduce number of messages
required to process continuous queries when the sensor
data is expected to be largely predictable. Query
normalization techniques allow us to support more
complex queries.

We expect to continue extending our work in this
area. We have not broached the topic of clock
synchronization, sensor failure, and transmission
failures. We expect to continue enhancing the
simulator to support correlated queries and some other
query optimization techniques, and model more
realistic scenarios.

8. References

[1] S. Madden, M. J. Franklin, J. Hellerstein, and W. Hong,
“TAG: a Tiny AGgregation Service for Ad-Hoc Sensor
Networks”, 5th Annual Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

[2] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed
diffusion: A scalable and robust communication paradigm
for sensor networks”, In MobiCOM, August 2000.

[3] U. Dayal, “Of nests and trees: a unified approach to
processing queries that contain nested subqueries, aggregates
and quantifiers”, in VLDB 1987.

[4] P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex
query Decorrelation”, in ICDE 1996.

[5] S. Madden and M. J. Franklin, “Fjording the stream: An
architecture for queries over streaming sensor data”, In
ICDE, 2002.

[6] V. D. Park and M. J. Corson, “A highly adaptive
distributed routing algorithm for mobile wireless networks”,
In INFOCOM, 1997.

[7] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor
database systems”, In Conference on Mobile Data
Management, January, 2001.

[8] Y. Yao, J. Gehrke, “Query Processing for Sensor
Networks”, Proceedings of the 2003 CIDR Conference.

[9] S. Madden, M. Shah, and J. Hellerstein, “Continuously
Adaptive Continuous Queries over Streams”, ACM
SIGMOD, June 2002.

[10] P. J. Haas and J. Hellerstein, “Ripple Joins for Online
Aggregation”, In ACM SIGMOD, June, 1999, pp. 287-298.

[11] S. Chandrasekaran and M. J. Franklin, “Streaming
Queries over Streaming Data”, Proceedings of the 28th
VLDB Conference, 2002.

[12] R. Avnur and J. Hellerstein, “Eddies: Continouously
adaptive query processing”, in ACM SIGMOD, May 2000,
pp. 261-272.

[13] T. Urhan and M. J. Franklin, “"{XJ}oin: Getting Fast
Answers From Slow and Bursty Networks”, University of
Maryland Computer Science Technical Report, February
1999.

 [14] A. Aho, Y. Sagiv, and J. Ullman, “Equivalence of
relational expressions”, SIAM Journal on Computing 8[2],
1979.

	1. Introduction
	2. Sensor networks as databases
	2.1. Similarities
	2.2. Differences

	3. SQL-like query language
	4. Silent messages
	5. Simulator
	5.1. Preparing queries
	5.2. Executing queries
	5.3. Results

	6. Related work
	7. Conclusion and future work
	8. References

