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Abstract 

 
Processing queries “in place” over sensor networks 

lends itself to optimization techniques that reduce the 
number of messages required for fulfilling the query. 
This can lead to significant reduction in power 
consumption, a precious commodity in such networks, 
thereby extending the life of these networks. In this 
paper, we examine the efficacy of some known 
optimization techniques using a simulator. We also 
present a new “silent message” optimization technique 
and utilize query normalization technique from 
traditional databases to support queries of greater 
complexity. 
 
Keywords: sensor networks, database, SQL, query 
optimization.  
 
1. Introduction 
 

Sensor networks are expected to be central to future 
advances in the prevailing information age. An almost 
countless number of such networks of varying sizes are 
expected to be deployed for monitoring and tracking in 
a host of domains such as earth and environmental 
sciences, traffic management, public safety and health, 
industrial process control to name just a few. Present 
day sensor networks are comprised of tiny nodes that 
are equipped with a radio, a processor, and some 
sensing devices. They run on power supplied via a 
battery pack, whose life effectively determines the life 
of the sensor. The radio allows sensors to send and 
receive messages over only a limited range based on 
broadcast. Communication is unreliable due to various 
disturbances and is also very expensive. Transmitting a 
single bit of data may consume as much battery as 
executing 800 instructions. A typical battery pack 
would be exhausted in just over 2 months if the sensor 
continuously transmits data. Thus minimizing 
communication is of paramount importance to having 
long-living sensor networks. 

Sensors in the near future are expected to be a lot 
cheaper, have greater computing power and memory, 
and have better ability to withstand adverse 
environment and terrains. This is expected to lead to a 
huge explosion in their deployment. At the same time, 
improvements in communication and battery life are 
not expected to keep pace. Thus minimizing 
communication is expected to be the focus of much 
research in the field of sensor networks. 

In most present and future models of sensor 
networks, data gathering remains one of the primary 
functions of a sensor network. Given that sensor 
networks have limited memory, computing power and 
are generally not very reliable, a common approach has 
been to simply feed the sensor readings into a 
traditional database or data-warehouse. This approach 
has certain drawbacks. One drawback is that simply 
sending all observations to a database typically 
requires a lot of communication since each observation 
has to go through multiple hops. Another drawback is 
that needing to communicate to a database makes the 
sensor network less autonomous.  

In this paper, we examine the motivation, benefits, 
challenges, and implications of processing queries “in 
place” in sensor networks. We thus view the sensor 
network as a database. We discuss the similarities 
between sensor networks and traditional databases and 
also note the differences. We define an SQL-like query 
language for sensor networks and then present a “silent 
message” optimization technique that exploits the 
predictability of the next sensor reading to reduce 
communication. We review the efficacy of the various 
optimization techniques using a simulator we 
developed for this purpose and we finally discuss 
related work and conclude our work. 
 
2. Sensor networks as databases 
 
2.1. Similarities 
 

One of the most distinctive characteristics of 
traditional database systems is that they are self 



describing. This facilitates construction of non-
application-specific applications such as query 
processing tools to learn about the database. Sensors 
networks may also be self-describing. Sensors can 
respond to queries about what attributes they observe. 
Each distinct type of sensor may be viewed as a 
distinct relation. 

A traditional database provides a separation of the 
physical, conceptual and logical layers. The physical 
level is generally not visible to the user. A self-
describing sensor network could easily provide 
separation of physical and conceptual layers. 
Database-like access control lists can be implemented 
to provide separation of the logical level by providing 
views of the data to different users. 

Both databases and sensor networks lay great 
emphasis on efficient access methods. Sensor networks 
lay a great deal of emphasis on reducing 
communication to conserve power. Accessing data is 
by far the most common operation in databases as well 
as sensor networks. Thus efficient access to data is of 
paramount importance in both. 
 
2.2. Differences 

    
As compared to traditional databases, sensors are 

massively distributed stores. This difference manifests 
by making query processing in sensor networks much 
more communication bound than in traditional 
databases. 

Sensors are also extremely tiny stores of data. 
Typical memory on sensors is 4KB and while expected 
to increase substantially, it would always be infeasible 
to near the capacity of database drives. Additionally, 
sensors are also highly unreliable. Given these 
limitations, sensors are always likely to store a limited 
number of past readings temporarily. 

Query characteristics in sensor networks also differ 
from those in traditional databases. In sensor networks, 
the retrieval query (SELECT) is registered and returns 
results at specified intervals. Additional to this, the 
semantics of insert, update, and delete operations differ 
to a much greater extent. In most cases, sensor 
networks only read values and do not necessarily have 
any control over the values. A very important 
implication of this continuous nature is that traditional 
query plan approaches is not necessarily suitable for 
query optimization. Instead techniques that adapt to 
changing data patterns are required. There has been a 
great deal of research [10, 12, 13] in this area 
especially as pertains to web databases. Eddies appear 
particularly suitable for sensor networks. They also 
facilitate sharing of data and processing over multiple 
queries. 

 
3. SQL-like query language 
 

Given that other than the continuous nature of data 
and queries, the other basic semantics of the retrieval 
operation are the same, we use a SQL-like query 
language for querying sensor networks. We add some 
extensions to support the continuous nature of queries. 
The basic structure of the SQL-like query statement 
follows: 

 
<select-stmt> := 

<select-query> 
EVERY <time-interval> 
[FOR <time-span>] 

 
<select-query> := 

SELECT <column-list> 
FROM <relation-list> 
[WHERE <predicate>] 
[GROUP BY <group-by-list>] 
[HAVING <predicate>] 
[UNION | MINUS | INTERSECT select-query] 

 
The <column-list> may contain attributes or 

aggregates in addition to arithmetic operations. 
Aggregates may be one of the standard aggregates as 
SQL or user-defined aggregates. The <relation-list> 
may contain any relation supported in the sensor 
network and <predicate> is the typical WHERE clause 
in SQL, so are the GROUP BY and HAVING clauses.  

The EVERY clause and the optional FOR clause 
are new clauses that apply to the statement as a whole. 
The EVERY clause needs to be used to specify the 
sampling interval. The optional FOR clause may be 
used to specify the number of samplings to retrieve. 
 
4. Silent messages 
 

Given that sensor networks are likely to be widely 
used for monitoring, one would typically expect the 
readings of individual sensors to change in a 
predictable manner. This is especially true when the 
monitoring data is used for control. This predictability 
of readings can be exploited to reduce the number of 
messages required to process a continuous query. 
Children initially provide their readings to the parents. 
The child only sends its next reading to the parent in 
case it is not within an expected range. If the parent 
does not receive a reading from the child, it simply 
uses the expected value for its computation. Note that 
this hypothesizing and message elimination can bubble 
up all the way to the root node. For long running 



continuous queries, this can lead to substantial 
reduction in communication.  In case the expected 
value is not the same as the previous value, for 
example, it is expected to increase by a constant factor, 
computing expected values for aggregates such as 
SUM would require additional processing. Another 
important consideration is that receiving no messages 
may indicate that a sensor is no longer unavailable. 
Thus a mechanism is needed that ensures against this. 
One possible approach is to attach a probability to next 
reading not being within expected range. Say this 
probability is 0.1. In this case, the parent would wait 
for 10 cycles (10 / 0.1) without receiving a message. If 
after 10 cycles, it has not heard from a particular child, 
it would treat the child as unavailable and initiate a 
rebuild. In cases where the next expected value differs 
per node, as described above, the child could transmit 
the expected values till the next transmission along 
with each transmission.  
 
5. Simulator 
 

We have developed a simulator for studying the 
efficacy of various query optimization techniques, in 
order to have our own framework as the basis for 
conducting experiments for further research.  

In keeping with the view to provide a framework, 
we allow the user to provide values for various 
characteristics of a sensor network, such as radio range, 
data transfer rate, battery consumption, available 
memory, relations and attributes, expected range of 
values and probability of within value range. 

When a configuration is loaded, sensors are 
arranged using random numbers and a routing tree is 
constructed. The root node is selected at random. The 
root node then sends out a broadcast message to invite 
sensors to be its children. Each sensor that receives this 
message responds back to the root by accepting the 
invitation and in turn broadcasts its own message to 
invite other sensors to be its children. This process 
continues till all sensors have joined the routing tree. 
When a single sensor receives multiple invitation 
messages around the same time, it would select the 
closest sensor. The simulator displays the resulting 
routing tree.  

 
5.1. Preparing queries 
 

Users can execute queries by selecting the 
Tools|Query menu option. The syntax of the query is 
as described in section 3 with some differences. An 
additional OPTIMIZATIONS clause is allowed to 
choose optimizations among in_network, 

silent_messages, snooping and packet_merging to use. 
The interval for the EVERY clause can only be 
specified in terms of seconds and the value specified 
for the FOR clause is the number of time-points before 
the query is cancelled. The input query is parsed, 
syntactic and semantic checks are performed and if the 
query is valid, it is normalized.  

 
5.2. Executing queries 
 

The root sensor then extracts operations and passes 
on them to its children which in turn pass them on to 
their children. All sensors including the root sensor 
perform the necessary processing. The simulator 
displays the results for each time-point in a list control. 
A timer is used to wake up the sensors to obtain the 
results for the next interval. This process continues till 
either the specified number of cycles complete or the 
user cancels the query. 

 
5.3. Results 
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Figure 1: Results 
 

We carried out experiments on networks of varying 
sizes with and without the in-network and silent 
messages optimizations. We used a simple query for 
this purpose; SELECT AVG(SampledValue) FROM 
Pollen EVERY 1 FOR 10. Results are presented 
below:  

As can be seen, not performing in-network 
aggregation scales very poorly as the size of the 
network grows. Silent message optimization reduces 
the number the number of messages as compared to 
just in network processing. As volatility decreases, the 
silent message technique performs better as one would 
expect. 

 



6. Related work 
 

Querying sensor networks has been a fertile area of 
research. Using SQL-like language for querying sensor 
networks and various techniques for query 
optimization including in-network aggregation, 
snooping and hypothesis testing have been presented 
by Madden et al [1]. The directed diffusion paradigm 
to achieve energy savings for distributed sensing is 
presented by Intanagonwiwat et al [2]. Various designs 
for query processing in sensor networks have been 
proposed that discuss routing algorithms as well as 
optimization techniques [8]. Routing algorithms for ad-
hoc networks have been studied for mobile networks 
and have direct applications to sensor networks [6]. 
Bonnet et al have also examined treating sensors as 
databases [7]. 

Adaptive query processing techniques have been 
applied to web and streaming databases and have been 
used in projects on sensor networks [5, 9]. 
Chandrasekaran et al study continuous query 
processing over data that has arrived prior to the query 
as well as future data [11]. Transforming queries while 
maintaining equivalence has been researched and used 
extensively in traditional databases [3, 4, 14]. 
 
7. Conclusion and future work 
 

The results from our initial experiments support the 
argument for performing queries in place in sensor 
networks. We also see that the silent message 
optimization can greatly reduce number of messages 
required to process continuous queries when the sensor 
data is expected to be largely predictable. Query 
normalization techniques allow us to support more 
complex queries. 

We expect to continue extending our work in this 
area. We have not broached the topic of clock 
synchronization, sensor failure, and transmission 
failures. We expect to continue enhancing the 
simulator to support correlated queries and some other 
query optimization techniques, and model more 
realistic scenarios. 
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