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Abstract— The provisions of any emergency management 
system with respect to the public safety necessitates the 
inclusion of the transportation network. The 
transportation network provides a means for mitigation 
strategies for any disaster, whether it is natural or human-
induced. In this paper, we introduce a set of tools to 
integrate with a traffic information system to provide 
automatic traffic incident detection and traffic forecast. 
Current automated incident detection techniques may not 
perform well under changing traffic patterns, recurrent 
congestions, and may require large amounts of training 
data. We propose a solution to mitigate these shortcomings 
by utilizing predicted traffic models and performing 
comparative analysis against observed traffic patterns to 
automatically detect incidents. 
 

Index Terms— automated incident detection, data mining 
and analysis, intelligent highway systems 

I. INTRODUCTION 

 The provision of any emergency management system with 
respect to the public safety necessitates the inclusion of the 
transportation road network. Obstructions to traffic flow (i.e., 
congestions) can enormously reduce a regions ability to 
transport inhabitants and resources. This hindrance debilitates 
the region from invoking optimal response strategies to 
emergent events. The transportation network provides a means 
for mitigation plans (e.g., evacuation) for any disaster, 
whether it is natural or human-induced. If the transportation 
network is compromised, then the safety of the public 
infrastructure can be fatally handicapped. Therefore, it is 
critical that a region provide supporting infrastructures to 
protect their transportation road network. 
 The effects of road congestions not only impact the region’s 
infrastructure, but can severely hamper its economy and 
environment. It is estimated in 2005 that both recurrent and 
non-recurrent congestions cost $75 billion and dissipated 
approximately 8.4 billion gallons of wasted fuel [1]. The 
Texas Transportation Institute performed a nationwide study 
of 85 urban areas and reported that on average, an urban 
region (defined as a medium sized area) will lose $418 million 
due to congestion associated costs and produce 15 million 
gallons of wasted fuel [2]. The major contributors of 
congestions (more than half) are non-recurrent congestions. 
Non-recurrent congestions are results of incidents such as 
vehicular collisions, construction and maintenance activities, 
inclement weather conditions, or other activities which reduce 
the roadway capacity.    

 Several Intelligent Transportation Systems (ITS) have been 
deployed that employ mechanisms to minimize the damages 
ensued by roadway incidents. An important step in containing 
and reducing the damages caused by incidents is to minimize 
the time needed to respond to the event. ITS can employ a 
monitoring tool to observe the behavior of traffic within a 
region and provide an Automatic Incident Detection (AID) 
scheme to alert traffic operation personnel of a possible 
incident event. AID schemes are pivotal in providing 
maximum effectiveness for emergency personnel to react to an 
incident as it reduces the time to detect the event. For the 
victims of incidents, their chance of fatality rises 6% for every 
minute of delay it incurs on the emergency team’s response 
time [5]. Furthermore, the chance of secondary incidents rises 
as the duration of an incident increases and travel times for 
commuters suffer due to incidents. A tool that ITS can 
leverage for performing road safety analysis is traffic trend 
prediction, which provide traffic planners and other key 
decision-makers insights into building effective roadway 
designs. These decisions can impact the ability of a roadway 
to handle sudden increased loads and moderate traffic capacity 
to reduce recurrent and non-recurrent congestions. 
 Much research and development have been emphasized on 
the subject of traffic incident detection. But many current 
methods have drawbacks that can render them ineffective for 
use in emergency management systems.  Due to 
computational time constraints and their inability to 
automatically adapt to changing traffic behaviors, the current 
set of AID may not be suitable for use in the unpredictable 
and highly dynamic setting of emergency management 
systems. 
 Over the past two decades, several automatic incident 
detection methodologies have been proposed, such as [8], [9], 
[10], and [12]. These methods are able to determine incidents 
with high detection rates, but must be performed within strict 
environmental parameters such as specific temporal 
constraints and minimum traffic volumes. When the road 
behavior changes, approaches such as these may become less 
effective and require manual re-adjustments to their 
parameters. Other methods that can work under changing road 
conditions are based on computational intelligence. Many of 
these schemes utilize neural networks, Bayesian networks, and 
fuzzy logic [3, 7, 11]. But, these techniques can require large 
training datasets (which may not be readily available) and in 
some cases incur high runtime cost that cannot meet the 
computational constraints of emergency management systems. 
 The AID we have developed in this paper can adapt to the 
varying dynamics of the environment, requires a minimal set 
of training data which is a user-adjustable parameter, and 
efficiently utilizes the system’s computational resources. 
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Adaptive Online Incident Detection (AOID) is our proposed 
contribution to alleviate these deficiencies of current AID 
approaches. The AOID system is implemented as an extension 
to our Advanced Interactive Traffic Visualization System 
(AITVS) [6]. The AITVS, developed by Virginia Tech’s 
Spatial Data Management lab, is a comprehensive traffic 
visualization system that presents summarizations of 
spatiotemporal patterns of road detector data in the 
Metropolitan Washington D.C. areas. AITVS marries a wide 
set of the multidimensional visual components with efficient 
processing algorithms to deliver a responsive and complete 
traffic visualization system. The AOID contributes and 
integrates two sets of tools into AITVS: recurrent traffic 
behavior forecasting and automatic incident detection. These 
tools supplement AITVS to give emergency personnel the 
information required to quickly devise and invoke an 
emergency plan. Furthermore, the information derived from 
the tools can be interfaced with traveler information systems 
such as highway variable signs to give commuters the most 
up-to-date traffic conditions. 
 The paper is organized as follows. Section II gives a 
detailed description of AOID. Section III explains our 
implementation and case study. And section IV provides our 
conclusion and future work.  

II. PROPOSED APPROACH: AOID 
 AOID is our unified solution that targets the inter-
dependent requirements of incident detection and traffic 
forecast. Traffic incident can be qualitatively described as 
follows: a traffic incident exhibits as a spatial anomaly that 
diverges for some threshold m (e.g., standard deviation for our 
case) from the forecasted traffic value. Since only a subset of 
the spatial anomalies is incident related, it is necessary to 
provide a classification mechanism to decipher which of the 
observed anomalies are representatives of actual incidents. A 
traffic trend model is generated in real-time and can adapt to 
evolving recurrent traffic patterns that are induced by changes 
in environmental parameters (e.g., long-term road 
construction,  
 

 

Figure 1: Architecture of AOID. 
road expansions). Using the traffic trend models, the system 
determines the deviations of currently observed traffic values. 
The deviations are analyzed using statistical methods and 
processed into a dynamic decision-tree to classify incident 
occurrences. Hence, the architecture is divided into the 
following subtasks: data preprocessing, model formulation, 
anomaly detection, classification, and data visualization.  
 In the AOID (see Figure 1), detection is performed as 
follows. Firstly, a traffic trend model is generated for the 
given day. Then that day’s observed traffic value is compared 
to the generated model and determined if anomalies exist 
within that observation. If anomalies are found, then they are 
classified with their incident probabilities. The AOID system 
is tightly coupled with the AITVS and as such it inherits all 
the low-level data preprocessing and access functionalities of 
the AITVS. Raw sensor data arriving at the AITVS server are 
parsed and stored in the AITVS traffic database. AOID 
utilizes this database, but the data are not filtered for noises 
such as sensor fluctuations and missing values. Therefore, it is 
the task of the data preprocessor in the AOID to furnish 
usable and cleaned traffic data to the remaining AOID 
subsystems. From the data preprocessor, traffic data is passed 
to the model formulation module to generate the traffic 
models in real-time. Then current traffic observations are sent 
to the anomaly detection module along with the generated 
traffic models. If anomalies are found, then this anomaly 
dataset is sent to the classification module. The classification 
gives the incident probability of the anomaly set.  

 
Data Preprocessor (Step 1) 

 To perform the mining tasks, historical traffic data will 
need to be cleaned for noise, marked for incident related data, 
and labeled for short-term traffic events. Data noises include 
malfunctioning sensors and missing values. Marked or labeled 
records will be used to differentiate data stemming from 
normal traffic activity. The data preprocessing task is outlined 
as follows: 
 

 Noise filtration: Scan the database for non-
conforming records that are likely to originate from 
malfunctioning detectors or invalid values and 
remove these records 

Data Preprocessor 

Model Formulation 

Anomaly Detection 

Classification 

Incident  
Feedback 

Data Visualization 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

AITVS 

 Incident filtration: Find all records that are known 
to be associated with incident events and mark this 
information. These events include vehicular 
collisions, highway maintenance, and other incidents 
reported by the DOT database.   

 Short-term event filtration: Find all records that are 
associated with holidays or special events and mark 
this information 

 Output: Furnish traffic records that are associated 
with normal and recurrent traffic behavior 

 
A rule-based algorithm is used to identify and remove data 
noises. Incident related data and short-term events will need to 
be correlated with the incident report and traffic event 
database which are performed using database join routines. 
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Join routines are costly functions that can take O(n*log m) 
time complexity where n and m are the dataset cardinalities. 
Hence, to improve the performance of the preprocessing step, 
we propose an incremental approach for AOID. The AOID 
utilizes an agent that monitors newly arriving data in AITVS. 
The agent processes the new data at designated intervals to 
perform the necessary filtration tasks. The processed data are 
then re-inserted into the AITVS database for use with the 
model formulation and anomaly detection tasks of AOID. 
Therefore, preprocessing only occurs with newly arrived data. 

 
Model Formulation (Step 2) 

 This module generates weekly traffic trends (e.g., traffic 
models) for each day of the week. For each day, the model 
captures the same set of days of some preceding weeks to 
generate the predicted trend. For example, to generate the 
traffic model for Monday of the 4th week of July, the module 
will obtain the traffic data from Monday of the 3rd, 2nd, and so 
forth of July and possibly extending to June. The number of 
weekly data is a user-adjustable parameter. After obtaining the 
past weekly data, the model will use a weighted average to 
produce the expected value (i.e., trend value). Weighted 
average will allow the model to adapt to changes in traffic 
patterns. The generated models will be used to determine 
deviating values of current traffic. Depending on the scope of 
the analysis, the models can be directly sent to the to the data 
visualization module for further studies. 
 To describe the traffic trend generation, we first define the 
following: 
  

 Let F(s,w,d,t) be the function that evaluates the value 
on week, w, day, d, time-step, t, and station, s.  

 Let V[i..n] = [F(s,w1,d,t), F(s,w2,d,t) … F(s,wi,d,t) … 
F(s,wn,d,t] where wi is the week prior to wi-1 and n is 
the number of weeks 

 Let αi be the scalar weights given to each element of 
V 

 
Then the predicted value is defined as follows F(s,wpredicted,d,t) 
= α1V[1]+ α2V[2] + … + αnV[n].  
 
  Constraints for αi : 

 Give higher weights to more recent data i.e., α1 > α2 

>… > α1 … > αn 
 Make inter-weight relationship  adjustable via a 

parameter (i.e., learning rate), θ 
 Summation property:       

                                              (1) 1=
n

α 
Because the model needs to adapt to changes in traffic pattern 
behavior, it will necessarily assign higher weights to more 
recent data. In general, we can choose any formula for αi that 
satisfies the above requirements. Let α’i  be weights that 
follow all of the given requirements above except for the 
summation property and the summation of α’i is greater than 
0. Then we make the following observation for α’i : 

1

 
                                      (2) 

Equation (2) relaxes the constraints of αi and simplifies our 
search for formulae that will satisfy our requirements. For this 
paper, we have chosen two formulas for α’i. One based on 
Zipf’s law [4] and the second based on linearly proportional 
weights with respect to data recency. Zipf’s law is defined as: 
                             (3)  
 
                             (4) 
 
For equations (3) and (4), n is the magnitude of V and Hβ is 
the harmonic number with order θ of β. By assigning α’i to 
(3), we have the following: 
                                   (5) 
 
Derivation of αi is achieved by using (2). Therefore, Zipf’s 
law will give us the following αi: 
                           (6) 
 
Equation (6) does not give us a gradual and linearly 
proportional learning rate due to the definition of Zipf’s law. 
Instead, it will give us an approximated method to change the 
weights’ curve behavior. For example, by changing the θ 
parameter we can set each αi with exponential distribution, 
inverse linear distribution, etc.  
 For our second formula, we will define αi so that the 
weights are gradual and linearly proportional (to data recency) 
relative to their neighboring weights. To derive this formula, 
let us define a parameter, k, such that k is a scalar multiple of 
the oldest weight and that k will be the value assigned to the 
most recent weight. Therefore, the relationship of α’i and its 
older neighbor can be described as follows: 
                             (7) 
 
Removing the recurrence relationship of equation (7) to a 
direct expression formula we have the following: 
                             (8) 
 
Let α’n = 1 and we determine the closed-form summation 
formula for α’i as follows: 
 
                                (9) 
Using equations (2), (8), and (9), we have the following final 
closed form solution for the linear weights αi: 
                           
                        (10) 
  
If we let k = θ then we have established k as the learning rate 
parameter for formula (10). Both formulae (10) and (6) have 
been implemented as weights for the AOID. 

 
Anomaly Detection (Step 3) 

 The task of this module is to determine anomalies for the 
currently observed values. Along with the traffic trend model, 
the variance of the traffic model is also provided by the model 
formulation step. This variance will provide the threshold 
deviation value at each time slot for classification of observed 
traffic as normal. Else, if the new value at that time slot 
deviates more than associated variance (threshold) then this 
new value is considered an anomaly. The variance is 
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determined by calculating the standard deviation which is 
calculated as follows:              
         SD = (1/n) * SQRT (α1 (V[1]-F(s,w,d,t+1))2 + 
                       α2 (V[2]-F(s,w,d,t+1))2 + … +         (11) 
                                   αn (V[n]- F(s,w,d,t+1))2 ) 
The deviation between current observation and trend value, D, 
is defined as follows: 
                 D = |F(s,wpredicted,d,t) -F(s,w0,d,t)|                  (12) 
Therefore, the current observation, F(s,w0,d,t), is an outlier if 
its D > SD.  
 This task highlights the importance of the preprocessing 
stage. Because the calculation of SD and D can be highly 
sensitive to perturbations in data behavior, it is important that 
the data used in the model generation are free from noise and 
other knonwn anomalies (e.g., incidents). It is also equally 
important to consider and remove noises from current traffic 
data otherwise D can include anomalies that are defined in the 
preprocessing step and may be misclassified in the latter steps. 
  

Incident Classification (Step 4) 
 This module verifies that the anomalous data received from 
step 3 reflect actual incidents. The anomalies are aggregated 
and compared to known incidents. Then a similarity score is 
assigned and designated as incident probabilities. The 
similarity score is calculated in two phases: 

 Anomalous events are assigned weights with respect 
to their closeness to neighboring anomalies (with 
respect to time) 

 Incident probability of the anomalous dataset is 
calculated based on its weight and distance to its 
incident vector 

Let W represent the weight for an anomaly set S, then W is 
increased by some positive valued function, f, if and only 
subsequent anomalous data is close in time with the last 
occurring element in S. Therefore, larger clusters of 
anomalous data will receive higher W. The clusters and along 
with their weights are further analyzed to determine the 
similarity score with an incident vector. An incident vector 
contains descriptive components to describe a particular class 
of incidents. Primarily, the components are the mean deviation 
in occupancy, speed, and volume. This approach gives AOID 
the ability to classify incidents into specific types. For 
example, the incident vector for inclement weather will be 
markedly different from the incident vector associated with 
vehicular collisions. The similarity measure (i.e., incident 
probability) used in our approach is simply one minus the 
ratio of the distance of current traffic vector from the incident 
vector and the distance of trend vector from the incident 
vector. We give the incident probability measure below: 
 
  Incident Probability = 1 - Distance(Observed,Incident) / 
                                          Distance (Trend,Incident)  (13) 
 
We employ the Euclidean distance as our distance measure. 
Euclidean distance is a simple and elegant approach for 
several similarity rankings, but can be problematic if some 
subsets of the data dimensions are multiply correlated on 
varying degrees. Hence, we introduce a scaling list for each of 
the incident vector. For example, components that are highly 

and positively correlated will be assigned with smaller scales 
since they do not belong to the set of components (i.e., 
principal components) that define a particular incident class. 
The scaling list can be regarded as an approximate variance-
covariance matrix in the Mahalanobis distance. For our 
current dataset, the Euclidean distance with its scaling list is 
suitable for our purposes since an incident vector contains 
only three components. In addition, determining the Euclidean 
distance with its scaling list incurs a small cost that is 
proportional to the number of components in a vector. 
However, the Mahalanobis distance requires that the inverse 
variance-covariance matrix be computed which can incur a 
cost that is quadratic to the number of components. But as the 
size of the incident vector becomes large (e.g., more data 
types), the scaling list will no longer be suitable to represent 
the variability and correlation of the vector components. At 
which point we will need to consider adopting the 
Mahalanobis distance for AOID and investigate approaches 
that optimize its computation. 
 

Data Visualization (Step 5) 
 This module serves as an interface to the user and various 
subsystems of AOID.  The module creates a graphical 
representation from the following components: model 
formulation, anomaly detection, and classification. For the 
model formulation, volume, speed, and occupancy plots for 
both the currently observed traffic patterns and the generated 
traffic models are shown (Figure 2a). Lastly, incident 
probabilities of the currently observed values will be plotted 
on a time series graph (Figure 2b). 
 

Parameter Tuning 
 The learning rate parameter (i.e., θ), the vector scales in the 
incident classification step, and the incident probability 
threshold (i.e., alarm value) are determined by applying 
heuristics from the training dataset. The learning rates are 
calculated by selecting a maximum historical data range, 
processing those historical samples from the training set, and 
calculating the θ values which optimizes model accuracy. For 
each incident class and their instances, the correlation values 
are calculated to give the class’ vector scales. Similarly, the 
incident probability threshold is determined for each incident 
class by taking the average probability values exhibited by 
each instances of the class.  

III. IMPLEMENTATION AND CASE STUDY 
 The AOID is implemented using Java 1.4.2 and designed as 
a subsystem of AITVS. AITVS provides interfaces for traffic 
data access and visualization. Low-level data processing is 
performed by the AITVS. Tasks such as data fusion and 
translation are dispatched within the AITVS to a standard 
format that can be efficiently accessed by the AITVS 
subsystems.  For our case study we use incident cases of I-66 
from January 2004 to December 2005. 
 Real-time application: Adapting our approach for real-
time environment follows a stream data mining technique in 
which AOID will incrementally determine the outlier values 
and hence their incident classification for the newly arriving 
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data by using the synopsis information given from prior 
weeks. Because anomaly detection, incident classification, 
and incident feedback can be efficiently done in real-time, 
these components will not require any algorithmic or design 
alterations for application in a real-time scenario. However, 
the model formulation will need to be re-adapted to serve as 
a summarization (synopsis) structure for which to compare 
current arriving data. Since the model formulation only 
requires information from past records in the database, it can 
be generated before the real-time monitoring task is invoked. 
For example, real-time monitoring for ith day will utilize the 
summarization structure that has been pre-generated at some 
previous jth day (i.e.,  j < i).  
 In the following we give in-depth discussions of three 
cases, one in 5/3/2005 at station 331 (case 1), second in 
7/24/2005 at station 341 (case 2), and third in 5/1/2005 at 
station 261 (case 3). For case 1 (Figure 2), we observe that an 
incident occurred between 10:15AM to 10:30PM with a peak 
probability of approximately 0.95. We verify this fact using 
the Virginia Department of Transportation (VDOT) incident 
database. For this case, VDOT reported that a vehicular 
collision occurred at 10:16AM and cleared at 10:27AM which 
coincides with the first spike in the incident graph. This spike 
is indicative of the initial impact of a vehicular collision. At 
initial impact, immediate trailing vehicles will reduce their 
speeds dramatically and form an anomalous cluster dataset 
which is translated to the first spike of the incident 
probability. But oncoming traffic will slow down (regardless 
of the fact that the incident has been cleared) due to debris or 
other vehicles slowing down which accounts for the presence 
of a second spike. This second spike is not directly indicative 
of a separate incident but rather a subsequent congestion (i.e., 
secondary incident) that resulted from the first incident. 
Because this is a non-recurrent congestion, the AOID will 
regard this as an incident and could potentially cause a false 
alarm. One way to remedy this issue is to adjust the weights of 
the anomalous dataset such that subsequent anomalous 
clusters are assigned with lower weights.  
 In case 2 (Figure 3), we demonstrate the effectiveness of 
the AOID for identifying incidents in the presence of non-
incident anomalous data. Between 3:30PM and 6:30PM there 
is divergence in traffic behavior as occupancy is higher than 
expected. The AOID views this as an anomalous set but is 
dismissed at the classification stage as it does not exhibit the 
behaviors of an incident. But, at approximately 10:30PM 
during low volumes, the AOID shows that there is a 0.85 
probability that an incident occurred.   
 In case 3 (Figure 4), it is observed that an incident occurred 
at around 1:30PM-7:00PM. Similar to the above cases, the 
duration of the incident for case 3 can also be evaluated by 
estimating the length of the incident probability graph for 
those values that exceed an incident probability threshold. The 
gap between 2:30PM-3:00PM is indicative of the situation 
that is explained in case 1. Prior to the incident, at 
approximately 10:00AM to 11:45AM there is a dramatic drop 
on the volume curve due to a malfunctioning detector. Much 
of this data is detected and filtered at the preprocessing stage. 
However, its neighboring data anomalies (Figure 4a) at 
9:30AM-10:00AM and 11:45PM-12:00PM, were not removed 

but transferred onto the remaining AOID components. At the 
classification stage, these anomalous datasets are assigned low 
similarity scores due to their large distances from the incident 
vectors, and hence become categorized as non-incidents. This 
demonstrates a critical step in removing all such potential 
false alarms.            
 We used 8 actual incident cases to evaluate the AOID and 
in each case the AOID is able to detect the incidents with 
probabilities higher than 0.70. Because of the limited number 
of incident cases, detection rate and false alarm rate metrics 
were not considered. However, the paper provides a set of 
case studies covering a wide scope of incident types to 
observe and validate AOID’s approach. 
 

 
Figure 2(a): Traffic for (5/3/2005, EB, 331). 

 

 
Figure 2(b): Incident results for (5/3/2005, EB, 331). 

 

 
Figure 3(a): Traffic for (7/24/2005, EB, 341). 
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Figure 3(b): Incident results for (7/24/2005, EB, 341). 

      

 
Figure 4(a): Traffic for (5/1/2005, EB, 261). 

 

 
Figure 4(b): Incident results for (5/1/2005, EB, 261). 

IV. CONCLUSION AND FUTURE WORK 
 In this paper, we introduced two sets of traffic analysis and 
monitoring tools: traffic trend prediction and automatic 
incident detection. The tools are integrated to form the AOID 
system which detects incidents within various and dynamic 
traffic environments, requires minimal training data set, and 
efficiently uses the system’s computational resources. We also 
developed an effective learning algorithm using Zipf’s law 
and a linearly proportional weight scheme to generate the 
traffic models and predictions. 
 Future work includes further experimentation to determine 
the optimal range of anomalous dataset weights and refine the 
incident classification technique to cover a wider range of 
incident types. Incidents may occur between stations and more 
accurate detection can be derived by fusing nearby stations’ 
data, therefore another future work of this project is to 

investigate efficient methods that integrate the stations’ spatial 
properties. 
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