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Abstract

Spatial databases have been an active area of research for over two decades, addressing
the growing data management and analysis needs of spatial applications such as Geographic
Information Systems. This research has produced a taxonomy of models for space, spatial
data types and operators, spatial query languages and processing strategies, as well as
spatial indexes and clustering techniques. However, more research is needed to improve
support for network and field data, as well as query processing (e.g. cost models, bulk
load). Another important need is to apply the spatial data management accomplishments
to newer applications such as data warehouses and multimedia information systems. The
objective of this paper is to identify recent accomplishments and the research needs in the

near term.
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1 Introduction

1.1 Spatial Databases

A spatial database [11, 15, 35] management system aims at the effective and efficient man-
agement of data related to a space such as the physical world (geography, urban planning,
astronomy); parts of living organisms (anatomy of the human body); engineering design (very
large scale integrated circuits, the design of an automobile or the molecular structure of a
pharmaceutical drug); and conceptual information space (a multi-dimensional decision support
system, fluid flow, or an electro-magnetic field).

The field of spatial database research has been an active area of research for over two
decades. The results of this research, e.g. spatial multi-dimensional indexes, are being used
in a number of areas. The field of spatial databases can be defined by its accomplishments;
current research is aimed at improving its functionality and its performance. The impetus
for improving functionality comes from the needs of existing applications such as Geographic
Information Systems (GIS) and Computer Aided Design (CAD), as well as from potential
applications such as Multimedia Information System(MMIS), Data Warehousing (DWH) and
NASA’s Earth Observation System (EOS). The acceptance of GIS as an important tool in
government decision-making is also documented [34] and military planners have embraced GIS
technology at all levels of tactical, operational and strategic planning, including battlefied
visualization and terrain analysis [20].

Commercial examples of spatial database management include Informix’s spatial data-
blades (i.e. 2D, 3D, Geodetic), Oracle’s Universal server with either Spatial Data Option or
Spatial Data Cartridge and ESRI’s Spatial Data Engine (SDE). Research prototype examples
of spatial database management systems include spatial datablades with Postgres [30], GeO2,
and Paradise [9]. The functionalities provided by these systems include a set of spatial data
types such as a point, line-segment and polygon, and a set of spatial operations such as inside,
intersection, and distance. The spatial types and operations may be made a part of a query
language such as SQL, which allows spatial querying when combined with an object-relational
database management system [6, 32]. The performance enhancement provided by these systems
includes a multi-dimensional spatial index and algorithms for spatial access methods, spatial
range queries and spatial joins. Spatial indexing with concurrency control may be implemented
in the object-relational server for performance reasons.

Existing and emerging applications require new functionalities including the modeling of
network spaces and continuous fields. The performance needs of emerging applications require
not only the management of large data-sets, but also new processing strategies for spatial
set-operations, field operations (e.g. slope), and network analysis (e.g. shortest-path, route-

evaluation).



1.2 Related Work and Our Contributions

Recent reports[11, 15, 35, 1] have described the accomplishments of spatial database research
and have prioritized research needs. A broad survey of spatial database requirements and an
overview of research results is provided by [35, 11, 1]. Basic modeling requirements for spatial
objects such as points, lines, and polygons are given in terms of their geometry, topology and
object relationships (topological, directional, metric, network). Requirements are given for
other user-level issues such as graphical input and output and query language support. Spatial
clustering and indexing techniques [23] such as Grid-files, Z-order, Quad-tree, Kd-trees, R-trees
[12] and associated join strategies are described. Finally, an architecture for spatial databases
is given in terms of the object-relational model.

Research needed to improve the performance of spatial databases in the context of object-
relational databases was listed in [15]. The primary research needs identified were concurrency
control techniques for spatial indexing methods, the development of cost models for query
strategies, and the development of new spatial join algorithms beyond nested-loop and tree
matching.

Many of the research needs identified in [15] have since been addressed. For example,
concurrency control techniques for R-trees have been studied in the context of R-link [16] trees.
Also, new spatial join strategies using space partitioning [22] have been explored. In this paper,
we identify the recent accomplishments in spatial databases as well as current research needs,

based on publications in journals and conference proceedings and recent commercial trends.

1.3 Scope and Outline

The role of the spatial database component is dependent on the type of database manage-
ment system (DBMS) involved: relational, object-oriented or object-relational. In this paper,
we focus the discussion of spatial databases in the context of the object-relational [6, 32, 31]
databases, which provide extensibility to many components of traditional databases to support
new application domains. These and other important issues including architectural options,
Raster DBMS and Network spaces are covered in detail in our forthcoming book [24]. Spatial
databases have been one of the most common applications of object-relational databases and
have influenced their design a great deal. Object-relational databases allow the inclusion of spa-
tial data-types, spatial operations, and multi-dimensional indexing systems. This three-layer
architectural framework is shown in Figure 1, and it consists of an object-relational database
management system, a spatial database, and a spatial application such as a GIS or MMIS. The
interface between the application and the spatial data system maps application-specific con-
structs to the spatial database. The spatial database associates the application requirements
to the functionality provided by the DBMS. The interface to the DBMS supports specialized

query processing, which in turn supports the core database requirements for achieving accept-
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Figure 1: 3-layer architecture

Emerging trends such as world-wide-web interfaces, multimedia data, and image processing
are likely to impact the data sharing and analysis needs of spatial databases. Scaling up to large
datasets requires new research in many areas beyond spatial databases, including research on
file-systems, device-drivers for tertiary storage, computer networks, and visualization software
and algorithms related to graphics and computational geometry. This paper does not explore
those issues.

The remainder of the paper is organized as follows: Section 2 describes the recent advances in
spatial databases. Section 3 states the research needs for spatial databases. Section 4 highlights
our conclusions and motivates exploration of applications whose needs are not currently met

by spatial databases.

2 Accomplishments

Research into spatial databases has mainly focused on developing a space taxonomy, spatial
data models, spatial query languages and processing strategies, and spatial access methods.

This section lists recent important accomplishments, not only for the current applications of



spatial databases, but also for the emerging database problems that have spatial dimensions.

2.1 Space Taxonomy

Space is a framework to formalize specific relationships among a set of objects. Depending
on the relationships of interest, different models of space such as set-based space, topological
space, euclidean space, metric space and network space can be used [35]. Set-based space
uses the basic notion of elements, element-equality, sets and membership to formalize the set
relationships such as set-equality, subset, union, cardinality, relation, function, and convexity.
Relational and object-relational databases use this model of space.

Topological space uses the basic notion of a neighborhood and points to formalize the ex-
tended object relationships such as boundary, interior, open, closed, within, connected, and
overlaps, which are invariant under elastic deformation. Combinatorial topological space for-
malizes relationships such as Euler’s formula (#faces + #tvertices - #edges =1 for planar
configuration). Network space is a form of topological space in which the connectivity property
among nodes formalizes graph properties such as connectivity, iso-morphism, shortest-path,
and planarity.

Euclidean coordinatized space uses the notion of a coordinate system to transform spatial
properties and relationships to properties of tuples of real numbers. Metric spaces formalize
the distance relationships using positive symmetric functions that obey the triangle inequality.
Many multidimensional applications use euclidean coordinatized space with metrics such as

distance.

2.2 Spatial Data Model and Query Language

A spatial data model [25, 35] is a type of data-abstraction that hides the details of data-
storage. There are two common models of spatial information: field-based and object-based.
The field-based model treats spatial information such as altitude, rainfall and temperature as
a collection of spatial functions transforming a space-partition to an attribute domain. The
object-based model treats the information space as if it is populated by discrete, identifiable,
spatially-referenced entities. The operations on spatial objects include distance and boundary.
The operations on fields include local, focal, and zonal operations, as shown in Table 2. The
fields may be continuous, differentiable, discrete, and isotropic or anisotropic, with positive or
negative auto-correlation. Certain field operations (slope or interpolation) assume certain field
properties (differentiable or positive auto-correlation).

An implementation of a spatial data model in the context of object-relational databases
consists of a set of spatial data types and the operations on those types. Much work has
been done over the last decade on the design of spatial Abstract Data Types(ADTs) and their

embedding in a query language. Consensus is slowly emerging via standardization efforts, and



recently the OGIS consortium [21] has proposed a specification for incorporating 2D geospatial
ADTs in SQL. Figure 3, which illustrates this spatial data-type hierarchy consists of Point,
Curve and Polygon classes and a parallel class of Geometry Collection. The basic operations
operative on all datatypes are shown in Table 1. The topological operations are based on the
ubiquitous 9-intersection model [10]. Using the OGIS specification, common spatial queries can
be intutively posed in SQL. For example, the query Find all lakes which have an area greater

than 5 sq. km. and are within 20 km. from the campgrounds can be posed as shown in Figure
2(a).

SELECT L.name, Faname
FROM Lake L, Facilities Fa

Tt
‘ L.name, Faname
WHERE Area(L.Geometry) >5 AND o
(0]

Area(L.Geometry) > 5
Fatype ='campground’” AND

Distance(Fa.Geometry, L.Geometry) < 20 Fa..type =’ campground

N Distance(Fa.Geometry, L.Geometry) < 20

N

Lake L Facilities Fa

(@ (b)

Figure 2: (a) SQL query with spatial operators. (b) Corresponding query tree.

Other example GIS queries which can be implemented using OGIS operations are provided
in Table 3. The OGIS specification is confined to topological and metric operations on vector
data types. Other interesting classes of operations are network, direction, dynamic and the
field operations of focal, local and zonal(see Table 2). While standards for field based raster
data types are still emerging, Map Algebra [33], specifically designed for cartographic modeling
and RaSQL, based on Image Algebra [3], for general multi-dimensional discrete objects(satellite

images, X-rays, etc.), are important milestones.

2.3 Spatial Query Processing

The efficient processing of spatial queries requires both efficient representation and efficient
algorithms. Common representations of spatial data in an object model include spaghetti, the
node-arc-area(NAA) model, the doubly-connected-edge-list (DCEL), and boundary represen-
tation [17], some of which are shown in Figure 4 using entity-relationship diagrams. The NAA



Basic Functions | SpatialReference() | Returns the Reference System of the geometry
Envelope() The minimum bounding rectangle of the geometry
Export() Convert the geometry into a different representation.
IsEmpty() Tests if the geometry is a empty set or not.
IsSimple() Returns True if the geometry is simple(no self-intersection)
Boundary() Returns the boundary of the geometry
Topological/ Equal Tests if the geometries are spatially equal
Set, Disjoint Tests if the geometries are disjoint.
Operators Intersect Tests if the geometries intersect
Touch Tests if the geometries touch each other.
Cross Tests if the geometries cross each other.
Within Tests if the given geomtry is within another given geometry
Contains Tests if the given geometry contains another given geometry
Overlap Tests if the geometry overlaps another geometry.
Spatial Distance Returns the shortest distance between two geometries
Analysis Buffer Returns a geometry that represents all
points whose distance from the given
is less than or equal to the specified distance
ConvexHull Returns the convex hull of the geometry
Intersection Returns the intersection of two geometries
Union Returns the union of two geometries
Difference Returns the difference of two geometries
SymDiff Returns the symmetric difference of two geometries

Table 1: Representative functions specified by OGIS[21]

model differentiates between the topological concepts (node, arc, areas) and the embedding
space (points, lines, areas). The spaghetti-ring and DCEL focus on the topological concepts.
The representation of the field data model includes a regular tessellation (triangular, square,
hexagonal grid), as well as triangular irregular networks (TIN).

The spatial queries|[7] shown in Table 3 are often processed using filter and refine techniques.
Approximate geometry such as the minimal orthogonal bounding rectangle of an extended
spatial object is first used to filter out many irrelevant objects quickly. Exact geometry is then
used for the remaining spatial objects to complete the processing. Strategies for range-queries
include a scan and index-search in conjunction with the plane-sweep algorithm [5]. Strategies
for the spatial-join include the nested loop, tree matching [5] when indices are present on all
participating relations, and space partitioning [22] in the absence of indices. To speed up
computation for large spatial objects (it is common for polygons to have 1000 or more edges),
object indices are used in extended filtering. Strategies such as object approximation and tree
matching originated in spatial-databases, and can potentially be applied in other domains with

similar characteristics.
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Figure 3: Spatial Data Type Hierarchy[21]

2.4 Spatial File Organization and Indices

The physical design of a spatial database optimizes the instructions to storage devices for per-
forming common operations on spatial data files. File designs for secondary storage include
clustering methods as well as spatial hashing methods. The design of spatial clustering tech-
niques is more difficult compared to the design of traditional clustering because there is no
natural order in multidimensional space where spatial data resides. This is only complicated
by the fact that the storage disk is a logical one-dimensional device. Thus, what is needed
is a mapping from a higher dimensional space to a one-dimensional space which is distance-
preserving: so that elements that are close in space are mapped onto nearby points on the line,
and one-one: no two points in the space are mapped onto the same point on the line [2]. Several
mappings, none of them ideal, have been proposed to accomplish this. The most prominent
ones include row-order, z-order and the Hilbert-curve(Figure 5).

Metric clustering techniques use the notion of distance to group nearest neighbors together
in a metric space. Topological clustering methods like connectivity-clustered access methods
[27] use the min-cut partitioning of a graph representation to efficiently support graph traversal
operations. The physical organization of files can be supplemented with indices, which are
data-structures to improve the performance of search operations.

Classical one-dimensional indices such as the Bt tree can be used for spatial data by lin-
earizing a multi-dimensional space using a space-filling curve such as the Z-order(see Figure
5). A large number of spatial indices [23] have been explored for multi-dimensional euclidean

space. Representative indices for point objects include Grid files, multi-dimensional grid files
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Figure 4: Entity Relationship Diagrams for Common Representations of Spatial Data

[18], Point-Quad-Trees, and Kd-trees. Representative indices for extended objects include the
R-tree family, the Field tree, Cell tree, BSP tree, and Balanced and Nested grid files.

One of the first access methods created to handle extended objects was Guttman’s R-tree
structure [12]. The R-tree is a height balanced natural extension of the B+ tree for higher di-
mensions. Objects are represented in the R-tree by their minimum bounding rectangles(MBRs).
Nonleaf nodes are composed of entries of the form (R, child — pointer), where R is the MBR of
all entries contained in the child-pointer. Leaf nodes contain the MBRs of the data objects. To
guarantee good space utilization and height-balance, the parent MBRs are allowed to overlap.

Figure 6(a) illustrates the spatial objects organized in an R-tree, while Figure 6(b) shows the
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Figure 5: Space-Filling Curves to Linearize a Multidimensional Space



Data model

Operator Group

Operation

Set-Oriented

equals, is a member of, is empty, is a subset of, is disjoint

from, intersection, union, difference, cardinality

Vector Object | Topological boundary, interior, closure, meets, overlaps, is inside,
covers, connected, components, extremes, is within
Metric distance, bearing/angle, length, area, perimeter.
Direction east, north, left, above, between.
Network successors, ancestors, connected, shortest-path
Dynamic translate, rotate, scale, shear, split, merge
Local Point-wise sums, differences, maximums, means, etc
Raster field Focal slope, aspect, weighted average of neighborhood
Zonal sum or mean or maximum of field values in each zone

Table 2: A Sample of Spatial Operations

file structure where the nodes correspond to disk pages. Many variations of the R-tree structure

exist whose main emphasis is on discovering new strategies to maintain the balance of the tree,

in case of a split, and to minimize the overlap of the MBRs in order to improve the search time.

Concurrency control for spatial access methods [16] is provided by the R-link tree, which is

a variant of the R-tree with additional sibling pointers that allow the tracking of modifications.

Concurrency is provided during operations such as search, insert, and delete. The R-link tree

is also recoverable in a write-ahead logging environment.

Single Table Queries

Grouping
Isolate
Classify
Scale
Rank

Fuvaluate

Rescale

Recode all land with silty soil to silt-loam soil

Select all land owned by Steve Steiner

If the population density is less than 100 people / sq. mi., land is acceptable
Change all measurement to the metric system

If the road is an Interstate, assign it code 1; if the road

is a state or US Highway, assign it code 2; otherwise assign it code 3

If the road code is 1, then assign it Interstate; if the road code is 2,

then assign it Main Artery; if the road code is 3, assign it Local Road
Apply a function to the population density

Multi-Table Queries

Attribute Join
Zonal
Registration
Spatial Join

Join the Forest layer with the layer containing forest-cover codes
Produce a new map showing state populations given county population
Align two layers to a common grid reference

Overlay the land-use and vegetation layers to produce a new layer

Table 3: Typical Spatial Queries from GIS



Figure 6: (a) Spatial objects(bold) arranged in R-tree hierarchy, (b) R-tree file structure on
disk

2.5 Other Accomplishments

Spatial applications like NASA’s Earth Observation System (EOS) have some of the largest data
sets encountered in any application to date. This has prompted new research in database-file
design for storage on tertiary storage devices such as juke-boxes. Representative results include
those from the Sequoia 2000 project[30]. High-performance spatial applications such as flight
simulators with geographic accuracy have triggered the development of new parallel formal-
izations for the range query and the spatial join query, including declustering methods and
dynamic-load balancing techniques for multi-dimensional spatial data[28, 19]. Other interest-
ing developments include hierarchical algorithms for shortest path computation [14] and view

materialization [26].

3 Research Needs

Spatial databases are being used for an increasing number of new applications, such as Intelligent
Transportation Systems, NASA’s Earth Observation System, Multimedia Information Systems

(MMIS) and Data Warehouses. This section lists representative research needs.
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3.1 Space Taxonomy

Many spatial applications manipulate continuous spaces of different scales and with different
levels of discretization. A sequence of operations on discretized data can lead to growing errors
similar to the ones introduced by finite-precision arithmetic on numbers. There are preliminary
results [11] on the use of discrete basis and bounding errors with peg-board semantics. Another
related problem concerns interpolation to estimate the continuous field from a discretization.
Negative spatial auto-correlation makes interpolation error-prone. Further work is needed on a

framework to formalize the discretization process, its associated errors, and on interpolation.

3.2 Spatial Data Model

Spatial data models have been developed for topological, metric and coordinatized euclidean
space. The OGIS specification alluded to in Section 2.2 is confined to topological operators [8]
and more work is needed to incorporate relationships which involve directional [29] and metric
properties (see Table 2 for examples). In addition there has been very little work towards
developing data models, data types (e.g. node, edge, path), and a kernel set of operations (e.g.
get-successors, shortest path) for network space, despite their critical role in applications like
transportation and utility management (telephone, gas, electric).

Similarly, there is a need for developing the field data model [33] towards a field-based
query language. Operations on fields will be needed to help derive new information such as
land-cover classification; the fields involved include temperature, texture, and water content,
and are obtained through imaging in different bands such as other infrared, visible bands, or

microwave.

3.3 Spatial Query Processing

Many open research areas exist at the logical level of query processing, including query-cost
modeling and strategies for nearest neighbor, bulk loading as well as queries related to fields and
networks. Cost models are used to rank and select the promising processing strategies, given a
spatial query and a spatial data set. Traditional cost models may not be accurate in estimating
the cost of strategies for spatial operations, due to the distance metric as well as the semantic
gap between relational operators and spatial operation. Cost models are needed to estimate
the selectivity of spatial search and join operations towards comparison of execution-costs of
alternative processing strategies for spatial operations during query optimization. Preliminary
work in the context of the R-tree, tree-matching join, and fractal-models is promising [4, 36] ,
but more work is needed.

Similarly, common strategies employed in traditional databases for the logical transformation

step in query optimization may not be always applicable in the context of spatial databases.
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Figure 7: (a): Area() before Distance(). (b): Distance() before Area().

For example consider the query(see Figure 2(a)) first introduced in Section 2. Let us assume
that the Area() function is not pre-computed and that its value is computed afresh every time
it is invoked. A query tree generated for the query is shown in Figure 2(b).

In the classical situation, the rule “select before join” would dictate that the Area() function
be computed before the join predicate function, Distance()(Figure 7(a)), the underlying
assumption being that the computational cost of executing the select and join predicate are
equivalent and negligible compared to the 1/O cost of the operations. In the spatial situation
the relative cost per tuple of Area() and Distance() is an important factor in deciding the
order of the operations [13]. Depending upon the implementation of these two functions the
optimal strategy may be to process the join before the select operation(see Figure 7(b)).

Many processing strategies using the overlap predicate have been developed for range queries
and spatial join queries. However, there is a need to develop and evaluate strategies for many
other frequent queries such as those in Table 4. These include queries on objects using predicates
other than overlap and queries on fields such as slope analysis as well as queries on networks
such as the shortest path to a set of destinations. Bulk loading strategies for spatial data also

need further study.

3.4 Spatial File Organization and Indices: Physical Level

Many file organizations and indices with distance metrics have been developed for coordinatized
euclidean space. However, little work has been done on file clustering and on indices for network

spaces such as road-maps and telephone networks. Further work is needed, both to characterize
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Buffer Find the areas 500 ft. from power lines

Voronoize Classify households as to which supermarket they are closest to
Neighborhood Determine slope based on elevation

Network Find the shortest path from the warehouse to all delivery stops
Allocation Where is the best place to build a new restaurant
Transformation | Triangulate a layer based on elevation

Bulk Load Load a spatial data file into the database

Raster <+ Vector | Convert between raster and vector representations

Table 4: Difficult Spatial Queries from GIS

the access patterns of the graph algorithms that underlie network operations and to design
access methods.

The R-link tree [16] is among the few approaches available for concurrency control on the
R-tree. New approaches for concurrency-control techniques are needed for other spatial indices.
The data volume of emerging spatial applications such as NASA’s EOS is among the highest
of any database application. Sequoia 2000 [30] provides an approach towards tertiary storage
files and indices. Other approaches for managing databases on tertiary storage need to be

investigated.

3.5 Other

Other research needs include benchmarking, work-flow modeling, and the visual presentation of
results. The Sequoia 2000 [30] benchmark characterizes the data and queries in Earth Science
applications. The performance of loading data, raster queries, spatial selection, spatial joins,
and recursion is addressed in 11 benchmark queries. A few more are provided in the Paradise
system [9]. Similar benchmarks are needed to characterize the spatial data management needs
of other applications such as GIS, DWH, and transportation.

The work-flow in some spatial applications such as GIS is based on manipulating layers
to produce new, derived layers. Typically, the layers are combined in a tree-based manner,
starting with a large number of source layers and producing new layers until a final result layer
is produced. Information about dependence among layers is useful for change propagation if
the source layers are modified.

Spatial databases may require a different type of concurrency support than is needed by
traditional databases. For example, transactions in traditional systems tend to be short (on
the order of seconds). However, in spatial databases, these transactions can last up to a couple
of hours for editing and browsing. Similarly, recovery and backup issues may also change, as
the spatial objects tend be large (a few megabytes) when compared to their counterparts in
traditional systems. There is a need to characterize the work flow of spatial applications.

Many spatial applications present results visually, in the form of maps which consist of

13



graphic images, 3D displays, and animations. They also allow users to query the visual repre-
sentation by pointing to the visual representation using devices like a mouse or a pen. Further
work is needed to explore the impact of querying by pointing and visual presentation of results

on database performance.

4 Summary and Discussion

In this survey we have presented the major research accomplishments and techniques which
have emerged from the area of SDBMS. These include object-based data modeling, spatial
data types, filter and refine techniques for query processing and spatial indexing. We have
also identified areas where more research is needed. Some of these areas are spatial graphs,
field based modeling, cost modeling and concurrency control, query processing techniques and
discretization and propogation error.

Many of the spatial techniques highlighted in this survey are being used in an increasing
number of applications such as GIS, CAD, and EOS. We believe that other emerging multi-
dimensional applications such as multimedia information systems will use these methods to
solve problems such as searching and indexing spatial content. We illustrate the possibilities
in the context of multi-media information systems with text, audio and video data over the
world-wide-web.

Multimedia data has a spatial content which can be queried using the same spatial operators
that have become popular in geographic information systems. For example, the spatial operator
inside of can be applied to text to locate sentences that contain the word “multimedia”. Also,
audio is often broken into channels with each channel containing input from a different source;
for instance, trumpet, guitar, and voice. These channels are analogous to layers in GIS and can
be manipulated similarly. A spatial join could determine all of the locations where the input
from both piano and voice is over a certain decibel threshold.

A video database such as a movie server can take advantage of techniques developed for
spatial databases. Consider the movie Toy Story: each frame contains spatial content with
objects interacting in topological relationships. For instance, Buzz Lightyear could be above the
trees when he is flying, and frames in the movie could be queried based on those relationships.
For example, if you cannot remember when in the movie an important event occurred, but you
can remember that Buzz Lightyear was in front of a tree, you would be able to query the movie
using that relationship to determine when in the movie that event took place. Such queries

exploit the topological relationships inherent in all tangible objects.
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